Способ получения просветляющего золь-гель покрытия на основе диоксида кремния

Изобретение относится к способу получения просветляющих покрытий. Технический результат – повышение интегрального коэффициента светопропускания. Готовят пленкообразующий раствор (ПОР), содержащий ТЭОС-Н2O-С2Н5ОН-HCl с мольным соотношением компонентов 1:3:2,5:1⋅10-3 путем его перемешивания в течение 30 минут при температуре 35-40°С. После в ПОР вводят модифицирующую органическую добавку – композицию холодного покрытия КХП-19 или КХП-23 в количестве 0,5-1,5% от массы ПОР. Перед нанесением покрытия на подложку ПОР разбавляют этиловым спиртом в соотношении 1:(2-6) и перемешивают в течение 30 минут. Термообработку подложки с покрытием проводят при температуре 350°С в течение 15 минут. 1 з.п. ф-лы, 4 пр., 2 ил.

 

Изобретение относится к технологии синтеза пленочных покрытий, а именно к способам получения просветляющих покрытий, и может быть использовано в стекольной промышленности, гелиоэнергетике и электронике.

Основная, почти классическая, задача просветляющих покрытий - увеличение спектрального диапазона пропускания света и уменьшение остаточного отражения. Для эффективного просветления оптики используются мезопористые золь-гель покрытия на основе диоксида кремния с контролируемой пористостью. Этот структурный параметр влияет на показатель преломления, а значит на отражение и пропускание света стеклом. В настоящее время в качестве пленкообразующего соединения широко используются алкоксиды кремния, предпочтительно тетраэтоксисилан (ТЭОС). В качестве допантов, увеличивающих просветляющий эффект за счет формирования органо-неорганической структуры пленки с развитой морфологией и высокой пористостью, в покрытии диоксида кремния применяются различные классы органических соединений, например катионоактивные и неионогенные поверхностно-активные вещества (ПАВ). Органические соединения являются структурирующими агентами, природа которых определяет конечный состав, структуру покрытия и его свойства.

Известен способ получения просветляющего золь-гель покрытия, описанный в международной заявке на изобретение WO №2012125271. Способ включает получение пленкообразующего раствора (ПОР) в результате кислотного или щелочного гидролиза алкоксида кремния, например тетраэтоксисилана. Формирование золя осуществляют путем непрерывного перемешивания ПОР при комнатной или повышенной температуре (50-60°С) в течение 24 часов. ПОР наносят на предварительно очищенную стеклянную подложку, сушат при 150°С в течение 30 минут, а затем отжигают при 625-650°С в течение 6 минут. Особенностью данного способа является использование в синтезе молекулярных структурообразователей с торговыми марками «SILWET L-77» или «Brij 78» в количестве от 0,1 до 5 мас. %.

Недостатками данного способа являются:

- использование в синтезе ПОР дорогостоящих молекулярных структурообразователей SILWET L-77 или Brij 78;

- снижение технологичности и повышение трудоемкости процесса получения золя вследствие продолжительного перемешивания ПОР;

- использование длительной двухступенчатой системы термообработки нанесенного покрытия, что не эффективно для промышленного применения.

Известен также способ получения пористого просветляющего золь-гель покрытия, описанный в европейском патенте ЕР на изобретение №1239433. Согласно способу осуществляют гидролиз одного или нескольких алкоксисоединений. В качестве растворителя используют смесь воды и этанола в присутствии кислотного катализатора. В качестве модифицирующей добавки, увеличивающей пористость покрытия, используют n-(трет-октил)-фениловый эфир полиэтиленгликоля в количестве 5-50 г/л. Получившийся раствор наносят на стеклянную подложку, которую затем отжигают в атмосфере воздуха, азота или аргона при температуре 400-600°С в течение 60 минут.

Известен также способ получения однослойных просветляющих покрытий, описанный в патентах RU на изобретение №2371399, №2466948. Способ включает в себя золь-гель процесс гидролиза тетраалкоксида кремния в присутствии низко- и высокомолекулярных, в том числе поверхностно-активных органических соединений, с использованием техники самоорганизации наноструктур, вызванной испарением растворителя (EISA) при нанесении золя на стекло. Образец с покрытием нагревают в атмосфере воздуха при 500°С в течение 5-6 ч с целью термического разрушения органической добавки с образованием пленки из мезопористого диоксида кремния.

Недостатками описанных выше способов является использование дорогостоящих и дефицитных ПАВ, что снижает технико-экономические показатели данных методов. Кроме того, технологический процесс получения покрытия характеризуется высокими температурами термообработки и ее продолжительностью, что усложняет использование технологии в непрерывном производстве.

Наиболее близким к заявляемому изобретению является способ получения просветляющих мезопористых покрытий на основе диоксида кремния [патент RU на изобретение №2564710]. Способ включает получение золя с наночастицами кремнезема из смеси компонентов: ТЭОС-Н2О-С2Н5ОН, созревание золя, стабилизацию частиц золя в присутствии катализатора - соляной кислоты (HCl), нанесение пленкообразующего раствора на стекло с последующей его термообработкой. Для получения адгезионно прочного просветляющего пористого покрытия на стекле пленкообразующий раствор, содержащий ТЭОС-Н2О-С2Н5ОН с мольным соотношением компонентов 1:3,5:2,7 при рН раствора 2,3-2,4, перемешивают при температуре 65-70°С в течение 1-1,5 часов. Далее в ПОР дополнительно вводят смесь катионоактивного и неионогенного ПАВ: цетилпиридиния хлорида (ЦПХ) и лаурилового эфира полиоксиэтилена (Бридж-35) в количестве 0,5-1,0% от массы золя при соотношении ЦПХ к Бридж-35, равном 1:(1-4). Молярное соотношение HCl/ТЭОС составляет 2⋅10-3:1. После нанесения ПОР стекло с покрытием выдерживают на воздухе в течение 30 минут, а затем производят термообработку в атмосфере воздуха при температуре 450°С в течение 15 минут.

К недостаткам наиболее близкого аналога следует отнести использование в золь-гель синтезе дорогостоящих реагентов, таких как катионоактивные и неионогенные ПАВ - цетилпиридиния хлорид (ЦПХ) и лауриловый эфир полиоксиэтилена (Бридж-35). Кроме того, описанный выше способ характеризуется высокой температурой термообработки, что снижает технико-экономические показатели способа.

Задачей заявляемого изобретения является улучшение оптических свойств стекла, а именно интегрального коэффициента светопропускания, при оптимизации технологии получения.

Сущность заявляемого изобретения заключается в том, что в способе получения просветляющего золь-гель покрытия на основе диоксида кремния, включающем приготовление пленкообразующего раствора, содержащего ТЭОС-Н2О-С2Н5ОН-HCl, нанесение ПОР на подложку и ее последующую термообработку, ПОР готовят с мольным соотношением компонентов 1:3:2,5:1⋅10-3 путем его перемешивания в течение 30 минут при температуре 35-40°С, после чего вводят в ПОР в качестве модифицирующей органической добавки композицию холодного покрытия КХП-19 или КХП-23 в количестве 0,5-1,5% от массы ПОР, перед нанесением покрытия на подложку ПОР разбавляют этиловым спиртом в соотношении 1:(2-6) и перемешивают в течение 30 минут.

Кроме того, заявляется способ в котором, наряду с вышеописанными признаками, термообработку стекла с покрытием проводят при температуре 350°С с выдержкой 15 минут для выгорания органической фазы и стабилизации пористой структуры.

Технический результат заявляемого способа заключается в получении высоких оптических характеристик стекла с покрытием, а именно интегрального коэффициента светопропускания, за счет использования структурообразующей добавки композиции холодного покрытия на основе КХП-19 или КХП-23. Композиции холодного покрытия КХП-19 и КХП-23 представляют собой композиции на основе синтанолов - полиэтиленгликолевых эфиров с различным количеством оксиэтильных групп или полиэтиленгликоля, где в качестве добавок используется целлозольв, кислоты и спирты [ТУ 233229-004-49546302-99].

Использование композиций холодного покрытия широко известно в стекольной промышленности для увеличения защитных свойств стеклотары [glassrussia.ru/84.html, дата обращения: 29.02.2016] и листового стекла [в патенте RU на изобретение №2391302], однако применение в золь-гель технологии в качестве модифицирующей органической добавки предлагается впервые. Кроме того, именно КХП позволяет получить увеличение коэффициента интегрального светопропускания на 4,5-5,0% относительно стекла без покрытия.

За счет заявляемого способа происходит удешевление и упрощение технологии получения просветляющих золь-гель покрытий, повышение интегрального коэффициента светопропускания стекла до 95%. В сравнении с наиболее близким аналогом данный способ сокращает время получения просветляющего покрытия за счет сокращения продолжительности стадии перемешивания ПОР и снижения температуры термообработки стекла с покрытием.

Для получения пленкообразующего раствора был выбран состав ТЭОС-Н2О-С2Н5ОН⋅HCl с мольным соотношением компонентов 1:3:2,5:1⋅10-3, позволяющий синтезировать золь с диаметром частиц 10-500 нм и средней полидисперсностью. Диаметр частиц соответствующих покрытий измеряли на анализаторе серии Zetasizer Nano (ZS) компании Malvern Instruments.

Введение органической модифицирующей добавки - КХП-19 или КХП-23, представляющих собой смесь органических компонентов с различными радикалами, в количестве 0,5-1,5% способствует формированию кластеров с разветвленной структурой и, следовательно, с развитой пористостью, что влияет на снижение показателя преломления. Образование просветляющего покрытия происходит в результате самопроизвольного микроразделения неорганической и органической фаз при формировании геля в виде прозрачной пленки на поверхности стекла. В результате происходит повышение прозрачности оптической подложки.

Способ осуществляют следующим образом.

ПОР получают путем гидролиза ТЭОС (массовая доля основного вещества ω - 98,9%) в присутствии соляной кислоты, взятой в качестве катализатора. В качестве растворителя используют этанол, в частности с ω=95%. ПОР с мольным соотношением компонентов ТЭОС-Н2О-С2Н5ОН-HCl =1:3:2,5:10-3 готовят путем его перемешивания в течение 30 минут при температуре 35-40°С. Затем в ПОР вводят в качестве модифицирующей структурообразующей органической добавки КХП-19 или КХП-23 в количестве 0,5-1,5% от массы ПОР. Непосредственно перед нанесением ПОР разбавляют этиловым спиртом в соотношении 1:(2-6) и перемешивают в течение порядка 30 минут.

В качестве подложки использовали образцы листового бесцветного флоат-стекла толщиной 4 мм с интегральным коэффициентом светопропускания TV - 89,7%. Поверхность стекла очищают от загрязнений, например, путем ручной подполировки аммиачно-меловой суспензией (10 г СеО2, 125 г СаСО3, 40 мл NH3OH в расчете на 1000 мл воды) с последующей промывкой водой, затем ополаскиванием дистиллированной водой и обезжириванием этиловым спиртом непосредственно перед нанесением покрытия. Термообработку проводили при температуре 350°С в течение 15 минут.

Пример 1.

В стеклянную колбу емкостью 50 мл помещали 3,5 мл ТЭОС, 2,3 мл этилового спирта, 0,85 мл 0,03 М водного раствора HCl. Полученную смесь перемешивали при температуре 35±2°С с помощью магнитной мешалки в течение 30 минут.

В полученный золь наночастиц кремнезема вводили раствор КХП-19 в количестве 0,5% от массы ПОР, разбавляли этиловым спиртом в соотношении 1:2 и перемешивали в течение 30 минут при комнатной температуре.

Покрытия наносили на стекло методом окунания при комнатной температуре. Стекло вытягивали из золя со скоростью 90 мм/мин и подвергали сушке на воздухе в течение 30 минут. Затем помещали в муфельную электропечь СНОЛ 10/11, нагревали со скоростью 5°С/мин до 350°С и выдерживали при максимальной температуре в течение 15 минут с последующим естественным охлаждением.

Спектральные и интегральные коэффициенты светопропускания в интервале длин волн 380-780 нм измеряли на спектрофотометре UV-3600 Shimadzu.

Интегральное пропускание стекла с пленкой составило 94,1%, что на 4,4% выше значения исходного стекла.

Пример 2.

Условия проведения эксперимента такие же, как и в примере 1, однако концентрация вводимой в золь добавки КХП-19 составила 1,2%, а разбавление ПОР этиловым спиртом - 1:5. Интегральное пропускание стекла с пленкой составило 94,3%, что на 4,6% выше значения исходного стекла.

Пример 3.

В стеклянную колбу емкостью 50 мл помещали 3,5 мл ТЭОС, 2,3 мл этилового спирта, 0,85 мл 0,03 М водного раствора НСl. Полученную смесь перемешивали с помощью магнитной мешалки при температуре 40±2°С в течение 30 минут.

В полученный золь наночастиц кремнезема вводили раствор КХП-23 в количестве 1,0% от массы ПОР, разбавляли этиловым спиртом в соотношении 1:5 и перемешивали в течение 30 минут при комнатной температуре.

В полученный золь методом окунания погружали стеклянную подложку, далее стекло извлекали со скоростью 9 см/мин и подвергали сушке на воздухе в течение 30 минут, затем помещали в муфельную электропечь СНОЛ 10/11, нагревали со скоростью 5°С/мин до 350°С и выдерживали при максимальной температуре в течение 15 минут с последующим естественным охлаждением.

Интегральное пропускание стекла с пленкой составило 94,5%, что на 4,8% выше значения исходного стекла.

Пример 4.

Условия проведения эксперимента такие же, как и в примере 3, однако концентрация вводимой в золь наночастиц кремнезема добавки КХП-23 составила 1,5% и разбавление этиловым спиртом в соотношении 1:5. Термообработку проводили как в Примере 1. Интегральное пропускание стекла с пленкой составило 94,6%, что на 4,9% выше значения исходного стекла.

На Фиг. 1 представлены спектрограммы пропускания стекол с двухсторонним однослойным покрытием диоксида кремния с 0,5% добавкой КХП-19 (кр. 2) и 1,2% добавкой КХП-19 (кр. 3) относительно исходного стекла (кр. 1).

На Фиг. 2 представлены спектрограммы пропускания стекол с двухсторонним однослойным покрытием диоксида кремния с 1,0% добавкой КХП-23 (кр. 4) и 1,5% добавкой КХП-23 (кр. 5) относительно исходного стекла (кр. 1).

Интегральный коэффициент светопропускания стекла равен 89,7%, стекла с покрытием с добавкой КХП-19 - 94,1-94,3%, с добавкой КХП-23 - 94,5-94,6%. Максимальный эффект просветления на 4,9% обеспечивает добавка КХП-23 с концентрацией 1,5%.

1. Способ получения просветляющего золь-гель покрытия на основе диоксида кремния, включающий приготовление пленкообразующего раствора (ПОР), содержащего ТЭОС-Н2О-С2Н5ОН-HCl, нанесение ПОР на подложку с ее последующей термообработкой, отличающийся тем, что для получения просветляющего покрытия на стекле используют ПОР с мольным соотношением компонентов 1:3:2,5:1⋅10-3 путем его перемешивания в течение 30 минут при температуре 35-40°C, после чего вводят в ПОР в качестве модифицирующей органической добавки композицию холодного покрытия КХП-19 или КХП-23 в количестве 0,5-1,5% от массы ПОР, перед нанесением покрытия на подложку ПОР разбавляют этиловым спиртом в соотношении 1:(2-6) и перемешивают в течение 30 минут.

2. Способ, по п. 1, отличающийся тем, что термообработку проводят при температуре 350°C в течение 15 минут.



 

Похожие патенты:

Изобретение относится к тонкопленочным прозрачным покрытиям из диоксида кремния на стекло. Технический результат – отверждение покрытия при пониженной температуре, повышение прочности покрытия.

Варианты изобретения относятся к изоляционным элементам, в частности к изоляционным элементам, имеющим полиуретансодержащие уплотнения. Описан способ получения изоляционного элемента, включающий: образование, по меньшей мере, одной изоцианатнореакционной стороны, причем, по меньшей мере, одна изоцианатнореакционная сторона содержит: по меньшей мере, один гидрофобный полиол, имеющий среднюю функциональность от примерно 2 до примерно 6; по меньшей мере, один удлинитель цепи, имеющий две изоцианатнореакционные группы на молекулу и эквивалентный вес на изоцианатнореакционную группу менее 400; по меньшей мере, один наполнитель, где, по меньшей мере, одним наполнителем является, по меньшей мере, один представитель из сульфата бария (BaSO4), оксида алюминия (Al2O3), гидроксида алюминия (Al(OH)3), гидроксида магня (Mg(OH)2), карбоната кальция (CaCO3), слюды и талька; и взаимодействие, по меньшей мере, одной изоцианатнореакционной стороны с, по меньшей мере, одним первым изоцианатом в присутствии, по меньшей мере, одного промотора адгезии, причем, по меньшей мере, один промотор адгезии содержит, по меньшей мере, продукт взаимодействия, по меньшей мере, одного вторичного аминоалкоксисилана и, по меньшей мере, одного второго изоцианата, причем продукт взаимодействия имеет в среднем, по меньшей мере, одну силановую группу и, по меньшей мере, одну изоцианатную группу на молекулу; и нанесение, по меньшей мере, после взаимодействия, по меньшей мере, одной изоцианатнореакционной стороны, по меньшей мере, одного первого изоцианата и, по меньшей мере, одного промотора адгезии между, по меньшей мере, частями первой поверхности и второй поверхности.
Изобретение относится к способу получения просветляющих покрытий. Технический результат изобретения заключается в повышении адгезионной прочности.

Изобретение относится к просветляющим тонкопленочным оксидным покрытиям на основе SiO2, наносимым на прозрачные стекла для миниатюрных ламп накаливания. Просветляющее тонкопленочное покрытие на основе оксидных соединений кремния(IV) и висмута(III) содержит пленкообразующий раствор на основе этилового спирта, тетраэтоксисилан в присутствии добавки соляной кислоты.

Изобретение относится к упрочняющим и защитным покрытиям для силикатного стекла и может быть использовано в стекольной промышленности. Техническим результатом изобретения является разработка способа получения стекла с упрочняющим покрытием на основе аморфного диоксида кремния.
Изобретение относится к тонкопленочным интерференционным покрытиям для просветления оптических элементов. .

Изобретение относится к структуре стеклопакета с высоким термическим коэффициентом полезного действия. .

Изобретение относится к антифрикционным покрытиям, наносимым на стеклянные контейнеры. Описано покрытое стеклянное изделие, включающее стеклянный корпус, включающий первую поверхность и вторую поверхность, противоположную первой поверхности, причем первая поверхность представляет собой внешнюю поверхность стеклянного изделия, и антифрикционное покрытие, расположенное по меньшей мере на части первой поверхности стеклянного корпуса, причем антифрикционное покрытие включает полимерное химическое соединение, антифрикционное покрытие имеет толщину, равную или составляющую менее чем 1 мкм, и коэффициент трения, равный или составляющий менее чем 0,7 по отношению к аналогичному покрытому стеклянному изделию, причем полимерное химическое соединение выбрано из группы, содержащей полиимиды, фторполимеры, полимеры на силсесквиоксановой основе, кремнийорганические полимеры; покрытое стеклянное изделие сохраняет термическую устойчивость после депирогенизации при температуре, составляющей по меньшей мере 280°С, в течение 30 минут на воздухе; пропускание света через покрытое стеклянное изделие равно или составляет более чем 55% пропускания света через непокрытое стеклянное изделие при длине волны, составляющей от 400 нм до 700 нм; и антифрикционное покрытие имеет потерю массы, составляющую менее чем 5% его массы, при нагреве от температуры 150°С до 350°С при скорости нагревания, составляющей 10°С/мин. Описаны также другие покрытые стеклянные изделия. Технический результат: получены стеклянные изделия с повышенным сопротивлением к механическим повреждениям. 4 н. и 14 з.п. ф-лы, 1 табл., 21 пр., 46 ил.

Изобретение относится к способу получения просветляющих покрытий. Технический результат – повышение интегрального коэффициента светопропускания. Готовят пленкообразующий раствор, содержащий ТЭОС-Н2O-С2Н5ОН-HCl с мольным соотношением компонентов 1:3:2,5:1⋅10-3 путем его перемешивания в течение 30 минут при температуре 35-40°С. После в ПОР вводят модифицирующую органическую добавку – композицию холодного покрытия КХП-19 или КХП-23 в количестве 0,5-1,5 от массы ПОР. Перед нанесением покрытия на подложку ПОР разбавляют этиловым спиртом в соотношении 1: и перемешивают в течение 30 минут. Термообработку подложки с покрытием проводят при температуре 350°С в течение 15 минут. 1 з.п. ф-лы, 4 пр., 2 ил.

Наверх