Способ и устройство для определения местонахождения однофазного замыкания на землю в распределительной сети на основе вейвлет-преобразования переходных сигналов

Изобретение относится к автоматизации энергетических систем для определения нахождения однофазного замыкания на землю в распределительной сети. Сущность: способ содержит этапы, на которых захватывают переходные сигналы тока нулевой последовательности, которые опережают и запаздывают на 2 периода от начального значения с помощью терминалов, установленных в различных местонахождениях на линии электропередачи. Производят вейвлет-преобразование и восстановление переходного сигнала тока нулевой последовательности с помощью терминалов. Анализируют секцию, где находится место повреждения согласно интегрированному значению коэффициентов аппроксимации восстановленных компонентов детализации. Устройство содержит основную станцию и терминалы. Терминалы устанавливаются на башенной опоре воздушной линии электропередачи или внутри шкафа кабельной сети с кольцевой организацией и соединены с основной станцией через волоконно-оптическую связь или мобильную связь. Терминалы принимают сигналы фазного тока и вырабатывают сигналы тока нулевой последовательности. Основная станция, которая включает в себя модуль волоконно-оптической связи и модуль мобильной связи, устанавливается в помещении подстанции или диспетчерского центра и принимает сигналы, передаваемые терминалами. Технический результат: повышение точности. 2 н.п. ф-лы, 6 ил., 1 табл.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится, в общем, к технологии автоматизации энергетических систем и, в частности, к способу и устройству для определения местонахождения секции однофазного замыкания на землю в распределительной сети. Настоящее изобретение пригодно для сети 3–60 кВ, чьи нейтральные точки представляют собой неэффективное заземление, и позволяет точно определить местонахождение поврежденной секции сразу после возникновения однофазного замыкания на землю.

УРОВЕНЬ ТЕХНИКИ

В Китае в распределительной сети 3~60 кВ широко используется неэффективная система заземления нейтральной точки, известная также как система заземления при малых токах. Наиболее распространенным повреждением системы заземления при малых токах является однофазное замыкание на землю. При возникновении однофазного замыкания на землю ток заземления является очень маленьким. Хотя энергетическая система может продолжать свою работу в течение 1–2 часов в ситуации повреждения такого рода, необходимо как можно скорее отыскать место повреждения. Таким образом, существует потребность в способе определения местонахождения повреждения.

В течение длительного времени проблема определения местонахождения повреждения не имела хорошего решения. До сих пор все еще используется способ физического патрулирования на месте эксплуатации, который не только требует большого количества рабочей силы, но также приводит к продолжительному прекращению подачи электроэнергии и, таким образом, влияет на безопасность электроснабжения. В настоящее время существует три вида способа автоматического определения местонахождения повреждения на месте эксплуатации. Один способ состоит в подаче высокочастотного сигнала из РТ в систему и в дальнейшем обнаружении сигнала вдоль линии электропередачи с целью определения места повреждения. В связи с распределенной емкостью линии электропередачи образуется путь для высокочастотного сигнала, и результат не является точным в ситуации заземления через сопротивление. Второй способ состоит в использовании индикатора повреждения. Из-за того что индикатор повреждения может только измерять фазный ток, но не ток нулевой последовательности, этот способ лучше использовать для нахождения повреждения, связанного с коротким замыканием, чем для однофазного замыкания на землю с точки зрения точности определения местонахождения. Третий способ состоит в установке интеллектуального переключателя со встроенным трансформатором тока (СТ). Хотя этот способ позволяет измерять ток нулевой последовательности, на практике алгоритм терминала и основной станции является простым. Он позволяет только оценить превышение током нулевой последовательности в установившемся состоянии установленного значения и имеет очень низкую точность для нейтральной точки с использованием системы заземления с дугогасительной катушкой.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Основная задача настоящего изобретения состоит в том, чтобы преодолеть недостатки существующих технологий с целью выполнения нового способа определения местонахождения и устройства для определения местонахождения повреждения в распределительной сети. Способ позволяет определить местонахождение повреждения за счет полного использования компонентов переходного тока нулевой последовательности. Так как компоненты переходного тока нулевой последовательности не только содержат ценный признак повреждения, но также имеют большую амплитуду и, таким образом, удобны для дальнейшей оценки, настоящее изобретение позволяет быстро и точно определить поврежденную секцию. Настоящее изобретение пригодно как для системы с незаземленной нейтралью, так и для нейтральной точки с использованием системы заземления с дугогасительной катушкой, и может применяться во многих ситуациях, связанных с повреждениями, такими как металлическое заземление, дуговое заземление и заземление переходного сопротивления.

Техническая схема настоящего изобретения состоит в следующем:

Способ определения местонахождения секции однофазного замыкания на землю в распределительной сети на основе вейвлет-преобразования переходного сигнала содержит этапы, на которых:

(1) обнаруживают в реальном времени токи нулевой последовательности, создаваемые искусственным путем в цепи вторичной обмотки трансформатора тока, в многочисленных местонахождениях линий электропередачи с помощью терминалов, установленных на них;

(2) захватывают переходные сигналы тока нулевой последовательности, которые опережают и запаздывают на 2 периода предварительно установленного начального значения непосредственно после того, как ток нулевой последовательности, обнаруженный с помощью какого-либо терминала, превысит начальное значение;

(3) производят вейвлет-преобразование над переходными сигналами тока нулевой последовательности четырех периодов на основании алгоритма Малла, в котором переходные сигналы тока нулевой последовательности разлагаются на третий масштаб, чтобы получить максимум модуля коэффициентов детализации в различных масштабах, где j – подстрочный индекс масштаба; k – различные точки максимума модуля на масштабе j; используя максимум модуля коэффициентов детализации в первом и втором масштабах, записывают данные этих двух точек и затем выбирают точку с наибольшим модулем путем сравнения, при этом момент времени в выбранной точке представляет собой время T0 повреждения;

(4) выбирая T0 в качестве начальной точки для интегрирования и 10 мс в качестве интервала интегрирования, интегрируют компонент аппроксимации переходных сигналов тока нулевой последовательности на первом масштабе, затем отправляют интегрированное значение в основную станцию;

(5) сравнивают знаки интегрированных значений, загруженных из отдельных терминалов, и затем производят оценку согласно следующим различным ситуациям:

i) если знаки интегрированного значения, загруженного из всех терминалов, являются одинаковыми, повреждение возникает в других линиях электропередачи без установленного терминала одной и той же шины;

ii) если знаки интегрированных значений, загруженных из одного или более терминалов на линии электропередачи, не соответствуют знакам из других терминалов линий электропередачи и количество одного или более терминалов меньше, чем количество других терминалов, повреждение возникает в секциях линии электропередачи, в которых находится один или несколько терминалов; маркируют секции линии электропередачи как секции линии электропередачи с возможным повреждением и производят последовательный поиск, начиная с терминала, расположенного ближе всего к шине, в секциях линии электропередачи с возможным повреждением до тех пор, пока не будут обнаружены два соседних терминала с различными знаками интегрированных значений, затем определяют повреждение, которое возникло в секции линии электропередачи между двумя соседними терминалами;

iii) если результат поиска на этапе ii) показывает, что знаки интегрированных значений, загруженных из всех терминалов на линиях электропередачи с возможными повреждениями, являются согласующимися, то определяется, что повреждение возникло ниже по ходу терминала на линии электропередачи с повреждением, которое располагается дальше всего от шины, то есть находится в секции линии электропередачи между наиболее отдаленным терминалом и нагрузкой.

В настоящем изобретении также раскрыто устройство для определения местонахождения секции однофазного замыкания на землю в распределительной сети, где устройство содержит две части: основную станцию и терминалы, причем:

терминалы устанавливаются на башенной опоре воздушной линии электропередачи или внутри шкафа кабельной сети с кольцевой организацией и соединены с основной станцией через волоконно-оптическую связь или мобильную связь, принимают сигналы фазного тока с вторичной стороны CT в распределительной цепи на своих входах и вырабатывают сигналы фазного тока, синтезированные таким образом, чтобы получить токовые сигналы нулевой последовательности;

основная станция устанавливается в помещении подстанции или диспетчерского центра, принимающего сигналы, которые передаются терминалами.

Предпочтительно, терминалы включают в себя последовательно соединенный преобразователь тока, модуль аналого-цифрового преобразования, модуль CPU, модуль волоконно-оптической связи и модуль мобильной связи.

Предпочтительно, основная станция представляет собой промышленный компьютер управления и включает в себя модуль волоконно-оптической связи и модуль мобильной связи, принимающий данные, переданные с помощью терминалов.

Устройство настоящего изобретения позволяет определить местонахождение повреждения следующим образом:

терминалы устанавливаются на башенной опоре воздушной линии электропередачи или внутри шкафа кабельной сети с кольцевой организацией и поддерживают связь с основной станцией через волоконно-оптическую связь или мобильную связь, принимают сигналы фазного тока с вторичной стороны CT в распределительной цепи (содержащей воздушную линию электропередачи и кабель) на своих входах и вырабатывают сигналы фазного тока, синтезированные таким образом, чтобы получить сигналы тока нулевой последовательности; терминалы производят вейвлет-преобразование над переходными сигналами тока нулевой последовательности четырех периодов, в котором переходные сигналы тока нулевой последовательности разлагаются на третий масштаб; используя максимум модуля коэффициентов детализации в первом и втором масштабах, определяют время T0 повреждения;

упомянутая основная станция устанавливается в помещении подстанции или диспетчерского центра, принимающего сигналы, которые передаются терминалами; во время нормальной работы терминалы вычисляют амплитуду тока, и результат отправляется и отображается с помощью основной станции; после возникновения повреждения основная станция сравнивает знаки интегрированных значений, загруженных из отдельных терминалов, которые интегрируются из компонентов аппроксимации тока нулевой последовательности в первом масштабе:

i) если знаки интегрированного значения, загруженного из всех терминалов, являются одинаковыми, повреждение возникает в других линиях электропередачи без установленного терминала одной и той же шины;

ii) если знаки интегрированных значений, загруженных из одного или более терминалов на линии электропередачи, не соответствуют знакам из других терминалов линий электропередачи и количество одного или более терминалов меньше, чем количество других терминалов, повреждение возникает в секциях линии электропередачи, в которых находится один или несколько терминалов; маркируют секции линии электропередачи как секции линии электропередачи с возможным повреждением и производят последовательный поиск, начиная с терминала, расположенного ближе всего к шине, в секциях линии электропередачи с возможным повреждением до тех пор, пока не будут обнаружены два соседних терминала с различными знаками интегрированных значений, затем определяют повреждение, которое возникло в секции линии электропередачи между двумя соседними терминалами;

iii) если результат поиска на этапе ii) показывает, что знаки интегрированных значений, загруженных из всех терминалов на линиях электропередачи с возможными повреждениями, являются согласующимися, то определяется, что повреждение возникло ниже по ходу терминала на линии электропередачи с повреждением, которое располагается дальше всего от шины, то есть находится в секции линии электропередачи между отдаленным терминалом и нагрузкой.

Преимущества данной заявки заключаются в следующем:

1. Использование переходных компонентов тока нулевой последовательности после возникновения повреждения с целью определения местонахождения; по сравнению с традиционным способом сравнения статического измерения, характеристики амплитуды и фазы в переходном сигнале являются очевидными, таким образом, переходной сигнал имеет очевидные преимущества при локализации.

2. Принятие на вооружение способа вейвлет-анализа, чтобы иметь дело с переходным токовым сигналом и сформировать критерий совместно с теорией максимума модуля в теории вейвлетов, тем самым признак повреждения после обработки становится очевидным и позволяет легко выбрать поврежденную секцию.

3. Возможность точного определения местонахождения секции, где находится место повреждения, чем меньше промежуток между терминалами, тем больше точность определения местонахождения.

4. Терминалы устанавливаются на линиях электропередачи, и отсутствует необходимость физического патрулирования вдоль линии электропередачи.

5. Возможность точного определения местонахождения повреждения тогда, когда система работает с повреждением, тем самым повышая надежность работы системы.

6. Технология является совершенной, обладает высокой надежностью и пригодна для систем с незаземленной нейтралью 3 ~ 60 кВ или для нейтральной точки с использованием системы заземления с дугогасительной катушкой в распределительной сети и применима ко многим видам ситуаций, связанных с повреждениями, такими как металлическое заземление, дуговое заземление, заземление через переходное сопротивление и т.д.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 показана структура устройства для определения местонахождения однофазного замыкания на землю согласно настоящему изобретению.

На фиг. 2 показано распределение переходного тока нулевой последовательности при наличии однофазного замыкания на землю.

На фиг. 3 показана блок-схема последовательности операций способа определения местонахождения однофазного замыкания на землю в распределительной сети на основе импульсного сигнала вейвлет-преобразования согласно настоящему изобретению.

На фиг. 4 показан первоначальный токовый сигнал нулевой последовательности.

На фиг. 5 показаны компоненты детализации и аппроксимации первоначального тока нулевой последовательности после вейвлет-преобразования.

На фиг. 6 показан схематичный вид терминала.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Далее приводится подробное описание настоящего изобретения посредством конкретных вариантов осуществления со ссылками на фигуры.

В данной заявке предложен новый способ определения местонахождения, в котором производят вейвлет-преобразование над сигналами тока нулевой последовательности, измеренными с помощью отдельных терминалов, когда линии электропередачи работают с однофазным замыканием на землю, и используют разность между токовыми сигналами отдельных терминалов после преобразования для реализации определения местонахождения повреждения.

Терминалы устанавливаются на башенной опоре воздушной линии электропередачи или внутри шкафа кабельной сети с кольцевой организацией и поддерживают связь с основной станцией через волоконно-оптическую связь или мобильную связь, принимают фазные токовые сигналы с вторичной стороны CT в распределительной цепи (содержащей воздушную линию электропередачи и кабель) на своих входах и вырабатывают сигналы фазного тока, синтезированные таким образом, чтобы получить сигналы тока нулевой последовательности.

Упомянутая основная станция устанавливается в помещении подстанции или диспетчерского центра, принимающего сигналы, которые передаются терминалами; во время нормальной работы терминалы вычисляют амплитуду тока, и результат отправляется в и отображается с помощью основной станции; после возникновения повреждения основная станция сравнивает знаки интегрированных значений, загруженных из отдельных терминалов, которые интегрируются из компонентов аппроксимации тока нулевой последовательности в первом масштабе:

i) если знаки интегрированного значения, загруженного из всех терминалов, являются одинаковыми, то повреждение возникает в других линиях электропередачи без установленного терминала одной и той же шины;

ii) если знаки интегрированных значений, загруженных из одного или более терминалов в линии, не соответствуют знакам из других терминалов линий электропередачи и количество одного или более терминалов меньше, чем количество других терминалов, повреждение возникает в секциях линии электропередачи, в которых находится упомянутый один или несколько терминалов; маркируют секции линии электропередачи как секции линии электропередачи с возможным повреждением и производят последовательный поиск, начиная с терминала, расположенного ближе всего к шине, в секциях линии электропередачи с возможным повреждением до тех пор, пока не будут обнаружены два соседних терминала с различными знаками интегрированных значений, затем определяют повреждение, которое возникло в секции линии электропередачи между двумя соседними терминалами;

iii) если результат поиска на этапе ii) показывает, что знаки интегрированных значений, загруженных из всех терминалов на линиях электропередачи с возможными повреждениями, являются согласующимися, то определяется, что повреждение возникло ниже по ходу терминала на линии электропередачи с повреждением, которое располагается дальше всего от шины, то есть находится в секции линии электропередачи между отдаленным терминалом и нагрузкой.

Как показано на фиг. 1, устройство для определения местонахождения состоит из CT C воздушной линии электропередачи розеточного типа (который обозначен C-1, C-2, …, C-n, когда существуют многочисленные наборы CT воздушной линии электропередачи розеточного типа), Терминала B (который обозначен B-1, B-2, …, B-n, когда существуют многочисленные наборы соответствующих терминалов с CT) и Основной станции A, причем в данном случае терминалы совпадают с воздушной линией электропередачи CT и устанавливаются в многочисленных позициях на линиях электропередачи. Воздушная линия электропередачи CT представляет собой открытую структуру ферромагнитного типа, и ее можно разделить на две части и затем вставить в розетку на воздушных линиях электропередачи. Поэтому предотвращается разъединение воздушных линий электропередачи при возведении конструкции; точность СТ может достичь степени 1, что полностью гарантирует точность измерений. Терминал представляет собой подходящее микрокомпьютерное устройство с малой потребляемой мощностью для работы вне помещения, которое устанавливается на башенной опоре воздушной линии электропередачи, используется вместе с высокоточным CT воздушной линии электропередачи, который устанавливается на трех фазах ABC. Терминал, который состоит из датчика тока, аналого-цифрового преобразователя, модуля мобильной связи и модулей с подзарядкой от солнечной батареи, измеряет фазный ток и токовый сигнал нулевой последовательности и передает информацию о повреждении в основную станцию. Основная станция, установленная на подстанции или диспетчерском центре, представляет собой промышленный компьютер управления, который включает в себя модуль волоконно-оптической связи и модуль мобильной связи и используется для приема информации из терминала и вычисления местонахождения повреждения.

Распределение тока нулевой последовательности при наличии однофазного замыкания на землю показано на фиг. 2. При возникновении повреждения в точке f в связи с наличием распределенной емкости вдоль линии электропередачи ток нулевой последовательности протекает из места повреждения на землю. Поэтому ток нулевой последовательности можно обнаружить перед или после места повреждения и на неповрежденных ответвлениях. Значение тока нулевой последовательности неповрежденной линии электропередачи равно сумме этих всех неповрежденных линий электропередачи, и фаза тока нулевой последовательности, расположенного выше по ходу места повреждения, которая равна 180 градусам, отличается от фазы тока нулевой последовательности ниже по ходу неповрежденного места. Измерение токов ,,,, нулевой последовательности в пяти терминалах ①②③④⑤, и направление протекания тока нулевой последовательности показано стрелками. Так как ток нулевой последовательности протекает через емкость земли, линия является емкостной, в данном случае напряжение нулевой последовательности шины определяется как опорный сигнал, и направление протекания от шины к линии электропередачи устанавливается в качестве положительного направления. Поэтому обнаруженный с помощью терминала ток имеет разность 180 градусов по фазе относительно обнаруженных ,,, с помощью терминалов. Это является теоретической основой критерия, который используется в настоящем изобретении.

Теперь, в связи с блок-схемой последовательности операций, показанной на фиг. 3, будет подробно рассмотрен способ определения местонахождения однофазного замыкания на землю в распределительной сети согласно настоящему изобретению.

Способ включает в себя следующие этапы, на которых:

(1) обнаруживают в реальном времени токи нулевой последовательности, создаваемые искусственным путем в цепи вторичной обмотки трансформатора тока, в многочисленных местонахождениях линий электропередачи с помощью терминалов, установленных на них;

(2) захватывают переходные сигналы тока нулевой последовательности, которые опережают и запаздывают на 2 периода предварительно установленного начального значения непосредственно после того, как ток нулевой последовательности, обнаруженный с помощью какого-либо терминала, превысит начальное значение;

(3) производят вейвлет-преобразование над переходными сигналами тока нулевой последовательности четырех периодов, в котором переходные сигналы тока нулевой последовательности разлагаются на третий масштаб, чтобы получить максимум Mj,k модуля коэффициентов детализации в различных масштабах, где j – подстрочный индекс масштаба; k – различные точки максимума модуля на масштабе j; используя максимум модуля коэффициентов M1,1 и M2,1 детализации и в первом и втором масштабах, определяют время T0 повреждения;

В данном документе вейвлет-преобразование базируется на алгоритме Малла в теории вейвлетов. Таким образом, чтобы выполнить двойную фильтрацию канала в отношении входных сигналов и выходной сигнал фильтра соответствовал низкочастотному профилю и высокочастотным деталям входных сигналов, низкочастотный профиль сигналов называется компонентами аппроксимации, а высокочастотные сигналы детализации называются компонентами детализации. Принцип состоит в следующем:

Для функции f(x) ∈ L2(R), L2(R) можно разложить на прямую сумму ряда пространства {Wj}, то есть

(1)

Здесь

,

причем – дополнительное пространство Wj-1 относительно пространства Vj называется масштабируемым пространством {Vj}, пространство {Wj} называется вейвлет-пространством масштаба j.

Для произвольной функции f(x)∈ V0 L2(R), можно выполнить разложение на часть V-1 аппроксимации и часть W-1 детализации, в дальнейшем продолжается разложение V-1, и этапы, приведенные выше, повторяются. Можно получить часть аппроксимации и часть детализации с любыми масштабами.

В заключение, до тех пор пока функция f(x) проецируется на масштабируемое пространство Vj, можно получить аппроксимирующий сигнал с масштабом j.

(2)

В данном случае называется коэффициентом увеличения масштаба.

Аналогичным образом, проецируя функцию f(x) на вейвлет-пространство Wj с различными масштабами, можно получить ее сигналы детализации с различными масштабами.

(3)

В данном случае, известна как коэффициент увеличения вейвлета.

В формуле (2) аппроксимирующий сигнал функции вычисляется через основание ϕj,k(x) масштабируемого пространства Vj; в формуле (3) сигналы детализации функции на различных масштабах вычисляются через основание ψj,k(x) вейвлет-пространства Wj. Формула (2) и формула (3) называются формулами разложения дискретного вейвлет-преобразования.

Из приведенной выше формулы разложения можно увидеть, что разложение на сигналы полностью определяется последовательностями {cj,k} и {dj,k} коэффициентов. Алгоритм, в котором cj,k и dj,k вычисляются из cj+1,k, тогда как j называется как алгоритм разложения; и алгоритм, в котором cj+1,k получается из cj,k и dj,k, как алгоритм восстановления. Это способ был предложен Маллом, поэтому он также называется алгоритмом Малла.

В настоящем изобретении фактический процесс разложения представляет собой: фильтрацию первоначальных сигналов по двум каналам и разделение диапазона между 0 и f на низкочастотную часть 0-f/2 и высокочастотную часть f/2-f, которые отражают, соответственно, профиль и детализацию сигналов и называются компонентами аппроксимации и компонентами детализации. "Двухстадийное извлечение" используется в процессе разложения, который должен выводить каждую другую входную последовательность, таким образом формируется новая последовательность с половинной длиной. Раскладывая низкочастотную часть, полученную после каждого разложения итерационным способом, всего три раза, в результате формируются, соответственно, компонент аппроксимации на первом масштабе и три компонента детализации на первом, втором и третьем масштабах.

Способ определения времени повреждения на основе максимума модуля содержит этапы, на которых: сначала обнаруживают точки M1,1 и M2,1 максимума модуля коэффициентов детализации на первом и втором масштабах (где максимум модуля упоминается как максимальное значение в определенном интервале сигнала), записывают данные этих двух точек, затем определяют точку с более высоким модулем посредством сравнения, при этом момент времени, соответствующий этой точке, представляет собой время T0 повреждения.

(4) выбирая T0 в качестве начальной точки для интегрирования и 10 мс в качестве интервала интегрирования, интегрируют компоненты аппроксимации тока нулевой последовательности на первом масштабе, затем передают интегрированное значение в основную станция;

(5) основная станция сравнивает знаки интегрированных значений, загруженных из отдельных терминалов, и затем производится оценка в соответствии со следующими различными ситуациями:

i) если знаки интегрированного значения, загруженного из всех терминалов, являются одинаковыми, то повреждение возникает в других линиях электропередачи без установленного терминала одной и той же шины;

ii) если знаки интегрированных значений, загруженных из одного или более терминалов в линии, не соответствуют знакам из других терминалов линий электропередачи и количество одного или более терминалов меньше, чем количество других терминалов, повреждение возникает в секциях линии электропередачи, в которых находится один или несколько терминалов; маркируют секции линии электропередачи как секции линии электропередачи с возможным повреждением и производят последовательный поиск, начиная с терминала, расположенного ближе всего к шине, в секциях линии электропередачи с возможным повреждением до тех пор, пока не будут обнаружены два соседних терминала с различными знаками интегрированных значений, затем определяют повреждение, которое возникло в секции линии электропередачи между двумя соседними терминалами;

iii) если результат поиска на этапе ii) показывает, что знаки интегрированных значений, загруженных из всех терминалов на линиях электропередачи с возможными повреждениями, являются согласующимися, то определяется, что повреждение возникло ниже по ходу терминала на линии электропередачи с повреждением, которое располагается дальше всего от шины, то есть находится в секции линии электропередачи между отдаленным терминалом и нагрузкой.

Далее приводится объяснение извлечения признака сигнала и процесса определения местонахождения повреждения совместно с временной диаграммой сигналов для измеренного тока нулевой последовательности.

На фиг. 4 показан сигнал тока нулевой последовательности измеренной линии электропередачи, где пунктирная линия показывает поврежденную линию электропередачи. На фиг. 5 показаны коэффициент детализации и коэффициенты аппроксимации тока нулевой последовательности после вейвлет-преобразования, где пунктирная линия показывает поврежденную линию электропередачи. В реальном переходном процессе упомянутое фазовое соотношение часто не является очевидным из-за высоких гармонических компонентов в отдельных величинах, таким образом легко произвести ошибочную оценку. В настоящем изобретении фаза измеренного тока нулевой последовательности подвергаются вейвлет-преобразованию, таким образом, компонент конкретного частотного диапазона отделяется от первоначального сигнала, который содержит много гармоник. Интегральный способ, начиная со времени повреждения, выбран для определения местонахождения повреждения путем выбора периода дискретизации 1/4 в качестве интервала интегрирования и сравнения знака интегрированных значений. Тем самым характерная фазовая зависимость токового сигнала нулевой последовательности получается более ясной и интуитивной с тем, чтобы можно было более точно определить местонахождение повреждения.

Из первого слоя d1 и второго слоя d2 коэффициентов детализации, показанных на фиг. 5, большая амплитуда сигнала появляется между 80-й точкой дискретизации и 120-й точкой дискретизации. В этой области точки с наибольшими абсолютными значениями в d1 и d2 представляют собой точки 86 и 87 соответственно, в данном случае эти две точки называются точкой максимума модуля, и значение этих двух точек называется максимумом модуля. Точка максимума модуля соответствует скачку сигнала, и размер максимума модуля соответствует интенсивности скачка, поэтому точка 86, соответствующая d1, с бóльшим максимумом модуля рассматривается как начальная точка интеграла, и 1/4 периода рассматривается как интервал интегрирования коэффициентов а1 аппроксимации. В связи с тем, что значения дискретизации являются дискретными, интеграл в данном случае также относится к суммированию значений коэффициентов а1 аппроксимации в 15 точках дискретизации, начиная с точки 86, при этом формула суммирования имеет вид:

После того как данные тока нулевой последовательности семи терминалов, показанных на фиг. 2, были обработаны и вычислены так, как показано выше, суммирование выполняется следующим образом:

Таблица 1
Суммарное значение коэффициентов аппроксимации тока нулевой последовательности в каждом терминале
№ Терминала 1 2 3 4 5 6 7
s -375,2629 10,3702 1,3788 143,7300 11,9298 0,8706 0,5846

Из таблицы 1 хорошо видно, что только интегрированное значение терминала 1 является отрицательным, поэтому можно определить, что место повреждения находится на линии электропередачи с обнаруженным местоположением терминала 1 и ниже по ходу терминала 1. Затем согласно известной установке терминала, путем нахождения соседнего терминала с противоположным знаком, который определяет местоположение на одной и той же линии электропередачи с терминалом 1, можно определить, что повреждение возникает между этими двумя терминалами, тем самым достигая точного определения местонахождения повреждения.

В настоящей заявке также выполнено устройство для определения местонахождения секции однофазного замыкания на землю в распределительной сети, причем устройство содержит две части: основную станцию и терминалы, где:

терминалы устанавливаются на башенной опоре воздушной линии электропередачи или внутри шкафа кабельной сети с кольцевой организацией и поддерживают связь с основной станцией через волоконно-оптическую связь или мобильную связь, принимают сигналы фазного тока с вторичной стороны CT в распределительной цепи на своих входах и вырабатывают сигналы фазного тока, синтезированные таким образом, чтобы получить сигналы тока нулевой последовательности;

основная станция устанавливается в помещении подстанции или диспетчерского центра, принимающего сигналы, которые передаются терминалами.

Принцип действия терминала показан на фиг. 6, который включает в себя CPU, преобразователь тока, аналого-цифровой преобразователь, модуль мобильной связи и модули оптических приемопередатчиков. Преобразователь тока, который состоит из трансформатора малого тока и резистора Rz, преобразует в сигнал переменного тока с напряжением 0–5 В, который затем подается на вход операционного усилителя OP07. OP07, источник опорного напряжения AD584 и резисторы R1, R2, Rf образуют сумматор коэффициентов. Выход входного операционного усилителя OP07 соединен с выводом P1.0 на 8051F120, который содержит внутренний АЦП и дополнительный источник опорного напряжения, и производит аналого-цифровую дискретизацию над аналоговым сигналом, и после этого признак сигнала можно вычислить с помощью CPU. 8051F120 соединен с 15 контактами порта Sub HD Pin15 модуля M1206 мобильной связи с помощью P4,0–P4,7 и контактов P5,0–P5,6 двух портов P4 и P5 ввода/вывода для возбуждения модуля M1206 мобильной связи, который передает данные характеристик в основную станцию через мобильную связь. HFBR14 представляет собой модуль волоконно-оптической передачи, HFBR24 - модуль оптического приемника, и микросхема 8051F120 подсоединена к модулю оптического приемопередатчика через UART0 и передает данные характеристик в основную станцию через волоконно-оптическую связь.

1. Способ определения местонахождения секции однофазного замыкания на землю в распределительной сети на основе вейвлет-преобразования переходного сигнала, содержащий этапы, на которых:

(1) обнаруживают в реальном времени токи нулевой последовательности, создаваемые искусственным путем в цепи вторичной обмотки трансформатора тока, в многочисленных местонахождениях линий электропередачи с помощью терминалов, установленных на них;

(2) захватывают переходные сигналы тока нулевой последовательности, которые опережают и запаздывают на 2 периода от предварительно установленного начального значения непосредственно после того, как ток нулевой последовательности, обнаруженный с помощью какого-либо терминала, превысит начальное значение;

(3) производят вейвлет-преобразование над переходными сигналами тока нулевой последовательности четырех периодов на основании алгоритма Малла, в котором переходные сигналы тока нулевой последовательности разлагаются на третий масштаб, чтобы получить максимум модуля Mj,k коэффициентов детализации в различных масштабах, где j – подстрочный индекс масштаба; k – различные точки максимума модуля на масштабе j; используя максимум модуля коэффициентов М1,1 и М2,1 детализации в первом и втором масштабах, записывают данные этих двух точек и затем выбирают точку с бóльшим модулем путем сравнения, при этом момент времени в выбранной точке представляет собой время T0 повреждения;

(4) посредством выбора T0 в качестве начальной точки для интегрирования и 10 мс в качестве интервала интегрирования интегрируют компонент аппроксимации переходных сигналов тока нулевой последовательности на первом масштабе и затем передают интегрированное значение в основную станцию;

(5) сравнивают знаки интегрированных значений, загруженных из отдельных терминалов, причем знаки включают в себя положительный и отрицательный знак интегрированных значений, и затем производят оценку в соответствии со следующими различными ситуациями:

i) если знаки интегрированного значения, загруженного из всех терминалов, являются одинаковыми, повреждение возникает в других линиях без установленного терминала одной и той же шины;

ii) если знаки интегрированных значений, загруженных из одного или более терминалов в линии, не соответствуют знакам из других терминалов линий и количество одного или более терминалов меньше, чем количество других терминалов, повреждение возникает в секциях линии, в которых находится упомянутый один или несколько терминалов; маркируют секции линии как секции линии с возможным повреждением и производят последовательный поиск, начиная с терминала, расположенного ближе всего к шине, в секциях линии с возможным повреждением до тех пор, пока не будут обнаружены два соседних терминала с различными знаками интегрированных значений, затем определяют, что повреждение возникло в секции линии между двумя соседними терминалами;

iii) если результат поиска на этапе ii) показывает, что знаки интегрированных значений, загруженных из всех терминалов на линиях с возможным повреждением, являются согласующимися, то определяется, что повреждение возникло ниже по ходу от терминала на линии с повреждением, которое располагается дальше всего от шины, то есть находится в секции линии между наиболее отдаленным терминалом и нагрузкой.

2. Устройство для определения местонахождения секции однофазного замыкания на землю в распределительной сети, причем устройство содержит две части: основную станцию и терминалы, причем

терминалы устанавливаются на башенной опоре воздушной линии электропередачи или внутри шкафа кабельной сети с кольцевой организацией и соединены с основной станцией через волоконно-оптическую связь или мобильную связь,

а основная станция устанавливается в помещении подстанции или диспетчерского центра,

причем терминалы 1) обнаруживают в реальном времени токи нулевой последовательности, создаваемые искусственным путем в цепи вторичной обмотки трансформатора тока, в многочисленных местонахождениях линий электропередачи с помощью терминалов, установленных на них; 2) захватывают переходные сигналы тока нулевой последовательности, которые опережают и запаздывают на 2 периода от предварительно установленного начального значения непосредственно после того, как ток нулевой последовательности, обнаруженный с помощью какого-либо терминала, превысит начальное значение; 3) производят вейвлет-преобразование над переходными сигналами тока нулевой последовательности четырех периодов на основании алгоритма Малла, в котором переходные сигналы тока нулевой последовательности разлагаются на третий масштаб, чтобы получить максимум модуля Mj,k коэффициентов детализации в различных масштабах, где j – подстрочный индекс масштаба; k – различные точки максимума модуля на масштабе j; используя максимум модуля коэффициентов М1,1 и М2,1 детализации в первом и втором масштабах, записывают данные этих двух точек и затем выбирают точку с бóльшим модулем путем сравнения, при этом момент времени в выбранной точке представляет собой время T0 повреждения; 4) посредством выбора T0 в качестве начальной точки для интегрирования и 10 мс в качестве интервала интегрирования интегрируют компонент аппроксимации переходных сигналов тока нулевой последовательности на первом масштабе и затем передают интегрированное значение в основную станцию;

причем основная станция сравнивает знаки интегрированных значений, загруженных из отдельных терминалов, причем знаки включают в себя положительный и отрицательный знак интегрированных значений, и затем производит оценку в соответствии со следующими различными ситуациями: i) если знаки интегрированного значения, загруженного из всех терминалов, являются одинаковыми, повреждение возникает в других линиях без установленного терминала одной и той же шины; ii) если знаки интегрированных значений, загруженных из одного или более терминалов в линии, не соответствуют знакам из других терминалов линий и количество одного или более терминалов меньше, чем количество других терминалов, повреждение возникает в секциях линии, в которых находится упомянутый один или несколько терминалов; маркирует секции линии как секции линии с возможным повреждением и производит последовательный поиск, начиная с терминала, расположенного ближе всего к шине, в секциях линии с возможным повреждением до тех пор, пока не будут обнаружены два соседних терминала с различными знаками интегрированных значений, затем определяет, что повреждение возникло в секции линии между двумя соседними терминалами; iii) если результат поиска на этапе ii) показывает, что знаки интегрированных значений, загруженных из всех терминалов на линиях с возможным повреждением, являются согласующимися, то определяется, что повреждение возникло ниже по ходу от терминала на линии с повреждением, которое располагается дальше всего от шины, то есть находится в секции линии между наиболее отдаленным терминалом и нагрузкой.



 

Похожие патенты:

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения.

Использование: в области электротехники. Технический результат: повышение надежности защиты параллельных линий.

Изобретение относится к контролю электрической сети. Сущность: устройство содержит средства (51a-52b) обнаружения электрических сигналов (S1a, S1b) и дополнительных сигналов (S2a, S2b), создаваемых в электрической сети (3).

Использование: в области электротехники. Технический результат - достоверное определение поврежденной линии среди других линий сети, позволяющее создать селективную защиту электрических сетей от однофазного замыкания на землю в распределительных сетях напряжением 6-35 кВ с изолированной или резонансно компенсированной нейтралью.

Изобретение относится к обнаружению коротких замыканий в системе распределения энергии. Сущность: устройство (10) для обнаружения направления короткого замыкания (7) на землю в многофазной энергосистеме содержит средства (14), (14’) для приема сигналов, представляющих собой ток каждой из фаз и ток нулевой последовательности (I0), средство (30) обработки сигналов тока, содержащее средство (34) для вычисления нормализованных коэффициентов корреляции и средство (36) для вычисления среднего значения (μ) и среднеквадратичного отклонения (σ) между вычисленными коэффициентами корреляции, средство для интерпретации результатов обработки сигналов, содержащее средство для сравнения среднего значения (μ) и среднеквадратичного отклонения (σ) для определения, расположено ли короткое замыкание со стороны линии или со стороны нагрузки от устройства (10).

Группа изобретений относится к линиям электроснабжения транспортных средств на электротяге. Способ определения расстояния до места короткого замыкания контактной сети заключается в том, что в момент короткого замыкания измеряют на смежных подстанциях значение токов (), напряжений () и фазовых углов () между ними.

Техническое решение относится к области железнодорожной автоматики и телемеханики для контроля рельсовых цепей. Способ основан на создании замкнутого через потенциал «Земля» электрического контура постоянного тока, в который включены пары жил кабеля рельсовых цепей, в контуре формируют постоянный ток определенной величины и осуществляют контроль за уменьшением величины тока, протекающего через элементы, соединяющие пары жил кабеля или пару жил кабеля и потенциал «Земля» ниже допустимого значения.

Изобретение относится к измерениям в электротехнике и может быть использовано для определения места короткого замыкания на длинных многоцепных воздушных линиях электропередачи с распределенными параметрами напряжением 220 кВ и выше.

Использование: в области электротехники. Технический результат – обеспечение автоматической локализации неисправных светильников без их отключения и сокращение времени на проведение диагностики.

Изобретение относится к измерениям в электроэнергетике и может быть использовано для определения места короткого замыкания на длинных воздушных линиях электропередачи с распределенными параметрами напряжением 220 кВ и выше на основе измерения параметров аварийного режима с двух концов линии.

Группа изобретений относится к направленному обнаружению замыкания на землю, в частности, в энергосистеме со скомпенсированной нейтралью и, в конкретном случае, с изолированной нейтралью. В частности, изобретение относится к способу обнаружения замыкания на землю в энергосистеме, дополнительно предоставляющему возможность определения, располагается ли замыкание на стороне линии или на стороне нагрузки от точки обнаружения. Предложены способ направленного обнаружения замыкания на землю в многофазной энергосистеме, устройство для реализации указанного способа, указатель протекания тока короткого замыкания на землю, содержащий устройство направленного обнаружения замыкания, реле защиты заземления, содержащее указатель замыкания. Способ направленного обнаружения замыкания на землю в многофазной энергосистеме среднего напряжения, в частности со скомпенсированной нейтралью и/или изолированной нейтралью, включает этапы: обнаружения замыкания посредством изменения напряжения (V0) нулевой последовательности; определения направленности, определенной по разности фаз, в частности посредством угла или знака произведения, между производной тока нулевой последовательности (dI0/dt) и напряжением (V0) нулевой последовательности, при условиях непрерывного замыкания. Технический результат заключается в снижении влияния помех, в упрощении процедуры измерений, упрощении расчетов, в частности в возможности обнаружения при малой дискретизации. 5 н. и 10 з.п. ф-лы, 4 ил.

Использование: в области электротехники. Технический результат – повышение точности определения места короткого замыкания в тяговой сети многопутного участка. Согласно способу в момент короткого замыкания измеряют напряжение на шинах тяговой подстанции, ток питающей линии секции контактной сети с коротким замыканием, фазовый угол, вычисляют значение индуктивного сопротивления петли короткого замыкания и сравнивают его с заранее рассчитанными значениями с заданным шагом индуктивных сопротивлений мест короткого замыкания на всех путях секции. Судят о месте повреждения, принимая в качестве места короткого замыкания то место, для которого измеренное индуктивное сопротивление петли короткого замыкания совпадает с рассчитанным. При этом предварительно внутри секции исключают параллельное соединение контактной сети путем установки дополнительных секционных изоляторов и шлейфов, обеспечивающих единственный путь протекания тока короткого замыкания последовательно по каждому пути секции станции к точке короткого замыкания. 2 ил.

Изобретение относится к электроэнергетике и может быть использовано для дистанционного определения места однофазного замыкания на землю (ОЗЗЗ) на ЛЭП, находящихся под рабочим напряжением, в распределительных электрических сетях 6-35 кВ, работающих с изолированной нейтралью, компенсацией емкостных токов или заземлением нейтрали через высокоомный резистор, имеющих радиальную структуру. Сущность заявленного метода заключается в том, что в способе дистанционного определения места однофазного замыкания на землю путем одностороннего замера переходного напряжения u(t) на поврежденной фазе на шинах контролируемого объекта и переходного тока нулевой последовательности 3i0(t) поврежденной линии, дополнительно регистрируют скорость изменения переходного тока , фиксируют все моменты t0k переходов тока 3i0(t) через нулевое значение, где k - порядковый номер перехода тока через нулевое значение, при этом определяют и фиксируют соответствующие моментам времени t0k мгновенные значения напряжения на поврежденной фазе u(t0k), скорости изменения тока , а затем по зафиксированным значениям напряжения на поврежденной фазе u(t0k), скорости изменения тока и справочному значению погонной индуктивности для поврежденной линии Lп определяют расстояние lз до места однофазного замыкания на землю в соответствии с выражением При этом при наличии нескольких переходов тока нулевой последовательности поврежденной линии через нулевое значение расстояние до места однофазного замыкания на землю определяют как среднее из нескольких значений lЗk. Технический результат, наблюдаемый при реализации заявленного решения, заключается в повышении точности способа определения расстояния до места ОЗЗ на ЛЭП. 6 ил.

Предлагаемое изобретение относится к электроэнергетике и направлено на решение задачи по созданию технологий, позволяющих повысить эффективность электроснабжения. На предварительной стадии формируют полную модель линии, в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линии и землей. При возникновении короткого замыкания измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии до и в момент короткого замыкания. Регистрация нескольких периодов предаварийного режима токов и напряжений производится в цифровых регистраторах аварийных процессов. Далее разбивают модель линии на равные участки, например от опоры до опоры, формируют предаварийные напряжения в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Формируют предаварийные токи в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, регистрируют модули фазных напряжений в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. По модулям предаварийных напряжений строят графики с осями с двух сторон зависимости модулей напряжений от номера участка (от расстояния). Проверяют степень отклонения друг от друга полученных кривых распределения модулей напряжений с одного конца линии и с другого конца линии, уточняют коэффициент поправки, формируют новые значения собственных и взаимных продольных сопротивлений фаз участков линии. Получают значения измеренных при КЗ фазных напряжений на шинах и токов с двух концов линии. Формируют напряжения при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, формируют токи при КЗ в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, регистрируют модули фазных напряжений в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. По модулям напряжений при КЗ строят графики с осями с двух сторон зависимости модулей напряжений от номера участка (от расстояния). Точка пересечения графиков с одного и другого концов линии соответствует точке короткого замыкания. Технический результат заключается в повышении точности места обнаружения повреждения. 4 ил.

Изобретение относится к области электроизмерительной техники. Способ измерения расстояния до места замыкания на землю в высоковольтных электрических сетях содержит следующие этапы. В поврежденную фазу подается высокочастотный сигнал с длиной волны, значительно большей длины отходящей линии от подстанции; одновременно измеряют векторные значения напряжений поврежденной фазы в различных точках и с использованием известных значений комплексных сопротивлений между этими точками определяют фазные токи на этих участках. Определяют расстояние до точки замыкания на землю от ближайшей к ней точки измерения напряжения как отношение реактивной составляющей его к току. Технический результат: повышение точности измерения расстояния до места замыкания на землю в разветвленных высоковольтных линиях. Отличительными особенностями изобретения являются: при отсутствии ответвлений между точками замера напряжений погрешности в измерении тока практически отсутствуют; по относительно высокому уровню высокочастотного тока передающим устройством легко определить поврежденное ответвление и отстроиться от помехи с частотой 50 Гц; активное сопротивление в месте замыкания на землю не вносит погрешности в определение расстояния. 5 ил.

Изобретение относится к электроэнергетике и предназначено для диагностики состояния и пространственного положения следующих элементов: грозозащитного троса, силовых проводов, элементов конструкции опоры, подвесного зажима и анкерного крепежа грозозащитного троса, крепежа изоляторов, гирлянды изоляторов, гасителей вибрации и другого оборудования. Устройство для диагностики воздушных линий электропередач содержит летательный аппарат 2 вертолетного типа, систему управления, блоки контроля 3, 4 воздушных линий электропередач и источник питания 5, размещенное в корпусе 6 средство перемещения, состоящее из двигателя 7, связанного с ходовыми роликами 8, и прижимного ролика 9 с приводом 10, служащего для прижатия исследуемого троса 11 к ходовым роликам 8. При этом на боках корпуса 6 закреплены направляющие 12, облегчающие совмещение ходовых роликов 8 с исследуемым тросом 11. Направляющие 12 в узкой их части выполнены прямолинейными, а привод 10 прижимного ролика 9 закреплен на корпусе 6 так, что плоскость перемещения прижимного ролика 9 размещена перпендикулярно к исследуемому тросу Техническим результатом изобретения является упрощение технологии изготовления направляющих и устранение нежелательных боковых колебаний троса и всего устройства при его посадке и взлете с троса, а также уменьшены размер и вес корпуса. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники, а именно к средствам обработки информации в электротехнике, и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи (ЛЭП). Технический результат - повышение точности определения места повреждения на линии электропередачи в условиях наличия в мгновенных значениях токов и напряжений высокочастотных и апериодической составляющей. Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений заключается в том, что измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов времени , передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие, осуществляют сдвиг сигналов фазы B на угол 120°и фазы C на угол 240°. Далее производят фильтрацию мгновенных значений напряжений и токов с применением дискретного преобразования Фурье и получают комплексные составляющие фазных напряжений и токов, зафиксированных в начале и конце линии. Расчет расстояния до места короткого замыкания l1 реализуют согласно выражению ,где i – мнимая единица; – коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; – коэффициент изменения фазы электромагнитной волны; ZB – волновое сопротивление линии; L – длина линии. 1 ил., 10 табл.

Изобретение относится к электротехнике и предназначено для решения технической проблемы, касающейся определения мест повреждений разветвленной воздушной линии электропередачи (ЛЭП) в виде появления гололеда на проводах с точностью до участка ЛЭП. Способ определения мест повреждений разветвленной воздушной линии электропередачи в виде появления гололеда на проводах, заключающийся в том, что в начале ЛЭП и в конце каждого ответвления и в узлах разветвления ЛЭП устанавливают устройства контроля тока и напряжения. Каждое устройство регистрирует время прихода переднего фронта скачка напряжения в единой шкале времени, синхронизированной от спутниковых сигналов глобальной системы позиционирования. Все устройства передают зарегистрированные времена в диспетчерский центр для их автоматической обработки. Техническим результатом является повышение скорости, удобства и точности определения мест повреждений. 2 ил.

Изобретение относится к электротехнике и предназначено для решения технической проблемы, касающейся определения мест повреждений разветвленной воздушной линии электропередачи (ЛЭП) в виде появления гололеда на проводах с точностью до участка ЛЭП. Способ определения мест повреждений разветвленной воздушной линии электропередачи в виде появления гололеда на проводах, заключающийся в том, что в начале ЛЭП и в конце каждого ответвления и в узлах разветвления ЛЭП устанавливают устройства контроля тока и напряжения. Каждое устройство регистрирует время прихода переднего фронта скачка напряжения в единой шкале времени, синхронизированной от спутниковых сигналов глобальной системы позиционирования. Все устройства передают зарегистрированные времена в диспетчерский центр для их автоматической обработки. Техническим результатом является повышение скорости, удобства и точности определения мест повреждений. 2 ил.

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и повышение достоверности способа локации повреждений. Способ заключается в фиксации отсчетов токов и напряжений, наблюдаемых в линии в текущем и в предшествующем режимах, преобразовании отсчетов в комплексы токов и напряжений текущего и предшествующего режимов, использовании передающей модели, преобразующей комплексы наблюдаемых токов и напряжений предшествующего и текущего режимов в комплексы напряжений и токов соответствующих режимов в месте предполагаемого повреждения, преобразовании комплексов напряжения и тока предшествующего и текущего режимов этого места в комплекс основного замера и определении с его использованием координаты места повреждения линии электропередачи. Согласно способу комплексы электрических величин в месте предполагаемого повреждения преобразуют еще и в комплекс дополнительного замера, используют имитационную модель линии электропередачи для обучения передающей модели интервальному определению места повреждения, для чего воспроизводят в имитационной модели режимы повреждения линии и определяют в этих режимах области отображения комплексов основного и дополнительного замеров на соответствующих плоскостях. При наблюдении линии электропередачи определяют для разных мест предполагаемого повреждения отображения комплексов основного и дополнительного замеров на соответствующих плоскостях, фиксируют те места линии, для которых отображения как основного замера, так и дополнительного попадают в соответствующие области, и объединяют указанные места в интервал повреждения линии электропередачи. 1 з.п. ф-лы, 17 ил.

Изобретение относится к автоматизации энергетических систем для определения нахождения однофазного замыкания на землю в распределительной сети. Сущность: способ содержит этапы, на которых захватывают переходные сигналы тока нулевой последовательности, которые опережают и запаздывают на 2 периода от начального значения с помощью терминалов, установленных в различных местонахождениях на линии электропередачи. Производят вейвлет-преобразование и восстановление переходного сигнала тока нулевой последовательности с помощью терминалов. Анализируют секцию, где находится место повреждения согласно интегрированному значению коэффициентов аппроксимации восстановленных компонентов детализации. Устройство содержит основную станцию и терминалы. Терминалы устанавливаются на башенной опоре воздушной линии электропередачи или внутри шкафа кабельной сети с кольцевой организацией и соединены с основной станцией через волоконно-оптическую связь или мобильную связь. Терминалы принимают сигналы фазного тока и вырабатывают сигналы тока нулевой последовательности. Основная станция, которая включает в себя модуль волоконно-оптической связи и модуль мобильной связи, устанавливается в помещении подстанции или диспетчерского центра и принимает сигналы, передаваемые терминалами. Технический результат: повышение точности. 2 н.п. ф-лы, 6 ил., 1 табл.

Наверх