Инфракрасный световод с большим диаметром поля моды



Инфракрасный световод с большим диаметром поля моды
Инфракрасный световод с большим диаметром поля моды

 


Владельцы патента RU 2634492:

Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

Изобретение относится к фотонно-кристаллическим световодам для волоконной оптики среднего инфракрасного диапазона спектра, конкретно к медицинским СО2 лазерам. Инфракрасный световод с большим диаметром поля моды содержит сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке. При этом сердцевина диаметром 92,5-97,5 мкм содержит центральный стержень диаметром 10,6-11,7 мкм, оболочка выполнена диаметром 0,3-0,5 мм, а стержни в оболочке того же диаметра, что и центральный стержень, расположены на расстоянии 52,7-58,3 мкм между их центрами, кроме того, центральный стержень выполнен из кристаллов твердых растворов хлорид-бромида серебра. Технический результат – минимизация апертуры выходящего лазерного излучения и обеспечение стабильного и контролируемого режима работы медицинского СО2 лазера. 1 ил.

 

Изобретение относится к фотонно-кристаллическим световодам для волоконной оптики среднего инфракрасного диапазона спектра, конкретно к медицинским СО2 лазерам, снабженным волоконным кабелем для передачи электромагнитного излучения на длине волны 10,6 мкм.

При воздействии лазерного излучения на органические ткани важными параметрами являются: плотность мощности лазерного излучения, глубина его проникновения, числовая апертура (NA) при одномодовом режиме работы. Особую значимость эти параметры приобретают при выполнении инвазивных операций. Щадящий режим воздействия на ткани излучения углекислотного лазера, глубина проникновения которого составляет от 20 до 50 мкм, делает его использование предпочтительным при выполнении сложных хирургических операций, по сравнению с другими лазерами, работающими в видимой и ближней инфракрасной области спектра. Излучение этих лазеров передается по кварцевому волокну и значительно глубже проникает в органическую ткань, в том числе здоровую, травмируя ее. Например глубина проникновения в органические ткани излучения гольмиевого ИАГ-лазера с длиной волны 2,09 мкм составляет 0,5 мм, излучение диодных лазеров с длиной волны 0,81 мкм проникает на глубину от 4 до 6 мм [A.M. Шулутко, А.А. Овчинников, и др. Лазерные эндохирургические операции. http://medbe.ru/materials/khirurgiya-trakhei-i-bronkhov/lazernye-endokhirurgicheskie-operatsii/©medbe.ru].

Известен одномодовый двухслойный кристаллический инфракрасный световод (ИК) [Патент РФ 2340920 от 10.12.2008 / Жукова Л.В., Жуков В.В., Примеров Н.В., Чазов А.И., Корсаков А.С.] на основе твердых растворов хлорид-бромида серебра, легированных йодидом одновалентного таллия, который имеет сердцевину диаметром 15-45 мкм и содержит ингредиенты при следующем соотношении в мас. %: хлорид серебра 19,5-15,0; бромид серебра 80,0-82,0; йодид одновалентного талия 0,5-3,0. Оболочка диаметром 700-1000 мкм выполнена из твердых растворов хлорид-бромида серебра при следующем соотношении в мас. %: хлорид серебра 19,0-21,0; бромид серебра 81,0-79,0. Световод предназначен для работы в спектральном диапазоне от 5 до 30 мкм.

Недостатком световода является содержание в составе токсичных галогенидов таллия, что недопустимо для медицинского применения.

Известен одномодовый кристаллический инфракрасный световод [Патент РФ №2340921 от 10.12.2008. Бюл. №34 // Жукова Л.В., Жуков В.В., Примеров Н.В., Чазов А.И., Корсаков А.С.] на основе твердых растворов хлорид-бромида серебра, который имеет сердцевину диаметром 20-110 мкм и содержит ингредиенты при следующем соотношении в мас. %: хлорид серебра 19,0-21,0; бромид серебра 81,0-79,0. Оболочка диаметром 700-900 мкм содержит те же ингредиенты при соотношении в мас. %: хлорид серебра 25,0-35,0; бромид серебра 75,0-65,0. Световод предназначен для работы в спектральном диапазоне 3-30 мкм.

Недостатком световода является малый диаметр сердцевины световода - от 20 до 39 мкм при работе на длине волны 10,6 мкм (СО2 лазер), что затрудняет стыковку лазера со световодом при изготовлении взаимозаменяемых оптических компонентов. Замена световодов связана с процедурой их стерилизации и дезинфекции после использования.

Известен одномодовый двухслойный кристаллический инфракрасный световод [Патент РФ №2413257 от 27.02.2011. Бюл. №6 // Жукова Л.В., Жуков В.В., Чазов А.И., Корсаков А.С.] сердцевина которого, диаметром от 10 до 130 мкм, выполнена из твердых растворов бромида серебра, легированных иодидом одновалентного таллия при следующем соотношении ингредиентов в мас. %: бромид серебра 97,0-90,0; йодид одновалентного таллия 3,0-10,0, а оболочка выполнена двухслойной, при этом первый слой оболочки диаметром от 100 до 300 мкм выполнен из твердых растворов бромида серебра - йодида одновалентного таллия при следующем соотношении ингредиентов в мас. %: бромид серебра 99,5-97,0; йодид одновалентного таллия 0,5-3,0, а второй слой оболочки диаметром от 0,9 до 1,15 мм выполнен из твердых растворов бромида серебра - йодида одновалентного таллия при следующем соотношении ингредиентов в мас. %: бромид серебра 94,0-98,0; йодид одновалентного таллия 6,0-2,0.

Недостатком световода является содержание в составе токсичных ингредиентов галогенидов таллия, что недопустимо для медицинского применения.

Известен также одномодовый двухслойный кристаллический инфракрасный световод [Патент РФ №2504806 от 20.01.2014 // Корсаков А.С., Жукова Л.В., Кортов C.B., Врублевский Д.С.], включающий сердцевину и оболочку диаметром 10-250 мкм с содержанием твердого раствора бромид-иодида одновалентного таллия (ТlВr0.46I0.54).

Недостатком данного световода, несмотря на удовлетворительный диаметр поля моды - 100 мкм на длине волны 10,6 мкм, также является содержание в составе токсичных галогенидов таллия, что недопустимо для медицинского применения.

Известен одномодовый фотонно-кристаллический световод [Аrno Millo, Lilya Lobachinsky, Abraham Katzir Single-mode octagonal photonic crystal fibers for the middle infrared. Appliede physics letters vol. 92 021112(2008)] с диаметром оболочки 0,9 мм, выполненный из твердых растворов хлорид-бромида серебра при следующем соотношении ингредиентов в мас. %: хлорид серебра 30%, бромид серебра 70%; и содержащий 80 вставок диаметром 25 мкм состава хлорид серебра 70%; бромид серебра 30%. расположенных четырьмя рядами в октогональном порядке с шагом в пределах ряда 42 мкм и шагом между рядами в 55 мкм. Диаметр эффективной сердцевины, обеспечивающий одномодовый режим распространения электромагнитного излучения на длине волны в 10,6 мкм, составляет 110 мкм.

Недостатком данного световода является сложность в изготовлении профиля микроструктуры, т.е. изготовление инфракрасного световода с большим диаметром поля моды. Кроме того, световод имеет большой диаметр оболочки, т.е. 0,9 мм, что ограничивает его применение для внутриполостных операций.

Наиболее близким техническим решением является инфракрасный световод с большим диаметром поля моды [патент РФ №2506615 от 10.02.2014 // Корсаков А.С., Жукова Л.В., Жуков В.В., Врублевский Д.С.]. Световод включает сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке. Сердцевина диаметром 98-112 мкм выполнена из кристаллов на основе бромида серебра, содержащего твердый раствор бромид-йодида одновалентного таллия (ТlВr0.46I0.54), при следующем соотношении компонентов, мас. %: бромид серебра 91,0-61,0; твердый раствор (ТlВr0.46I0.54). 9,0-39,0. В оболочке расположены стержни диаметром 42-48 мкм на расстоянии 70-80 мкм между их центрами при следующем соотношении компонентов их состава, мас. %: бромид серебра 92,0-64,5; твердый раствор (ТlВr0.46I0.54) 8,0-35,5.

Недостатком инфракрасного световода является содержание в его составе токсичных галогенидов одновалентного таллия (ТlВr0.46I0.54), что недопустимо для медицинского применения.

Задачей изобретения является получение инфракрасного световода с большим диаметром поля моды, работающего на длине волны 10,6 мкм, содержащего сердцевину с центральным стержнем (на рисунке граница изображена пунктиром), и оболочку диаметром 0,3-0,5 мм, отделенную от сердцевины кольцом из шести стержней. Сердцевина, оболочка, центральный стержень в сердцевине и шесть стержней в оболочке изготовлены из кристаллов на основе твердых растворов системы хлорид - бромид серебра, но имеющих различный состав (см. чертеж). ИК-световод предназначен для медицинских СО2 лазеров.

Поставленная задача решается за счет того, что инфракрасный световод с большим диаметром поля моды, включающий сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке, отличающийся тем, что сердцевина диаметром 92,5-97,5 мкм содержит центральный стержень диаметром 10,6-11,7 мкм, оболочка выполнена диаметром 0,3-0,5 мм, а стержни в оболочке того же диаметра, что и центральный стержень, расположены на расстоянии 52,7-58,3 мкм между их центрами, при этом центральный стержень выполнен из кристаллов твердых растворов хлорид-бромида серебра при следующем соотношении компонентов, мас. %:

Хлорид серебра 13,1-12,3
Бромид серебра 86,9-87,7

сердцевина и оболочка выполнены из кристаллов твердых растворов при следующем соотношении компонентов, мас. %:

Хлорид серебра 14,8-13,9
Бромид серебра 85,2-86,1

стержни в оболочке имеют состав при следующем соотношении компонентов, мас. %:

Хлорид серебра 20,7-19,8
Бромид серебра 79,3-80,2

В ИК-световодах, имеющих такую структуру и состав, в сердцевине распространяется максимум электромагнитного излучения, т.е. только одна мода низшего порядка, в пределах фундаментальной запрещенной зоны, какой является оболочка, где электромагнитное излучение не распространяется (см. чертеж). На чертеже представлена схема инфракрасного светового с большим диаметром поля моды (MFD)=95,0±2,5 мкм. Центральный стержень и шесть стержней в оболочке имеют диаметр (d)=11,1±0,6 мкм, стержни в оболочки расположены на расстоянии Δ=55,5±2,8 мкм между их центрами. Оболочка имеет диаметр (D)=0,4±0,1 мкм.

Новый световод с большим диаметром поля моды предназначен в основном для медицинского СО2 лазера, изготовлен методом экструзии из нетоксичных кристаллов хлорид-бромид серебра, а в прототипе световод содержит токсичные галогениды таллия (ТlВr0.46I0.54).

Новая фотонная структура световода изготовлена методом экструзии из кристаллов на основе твердых растворов хлорид-бромид серебра и состоит из сердцевины определенного состава с центральным стержнем диаметром от 10,6 до 11,7 мкм другого состава, имеющего больший показатель преломления, чем составы сердцевины, оболочки и шести стержней в оболочке. В оболочке диаметром от 0,3 до 0,5 мм расположены в гексагональном порядке шесть стержней того же диаметра, что и центральный стержень, на расстоянии между их центрами от 52,7 до 58,3 мкм, что позволяет получать большой диаметр поля моды от 92,5 до 97,5 мкм при сохранении одномодового режима работы на длине волны 10,6 мкм (СО2 лазер).

Благодаря совокупности отличительных признаков, а именно сложной структуре ИК-световодов и определенным химическим составам сердцевины и оболочки, а также центрального стержня, расположенного в сердцевине, и наличию шести стержней в оболочке, режим работы инфракрасного световода является одномодовым в пределах фундаментальной запрещенной зоны.

Пример 1

Методом экструзии из кристаллов на основе твердых растворов хлорид-бромида серебра изготовлены световоды с диаметром сердцевины 95,0 мкм, в которую помещен центральный стержень, диаметром 11,1 мкм. Состав сердцевины в мас. %:

Хлорид серебра - 14,4;

Бромид серебра - 85,6.

Состав центрального стержня в мас. %:

Хлорид серебра - 12,7;

Бромид серебра - 87,3.

Оболочка световода диаметром 0,4 мм имеет состав сердцевины. В нее помещены в гексагональном порядке шесть стержней диаметром 11,1 мкм на расстоянии 55,0 мкм между их центрами, имеющие состав в мас. %:

Хлорид серебра - 20,3

Бромид серебра - 79,7.

При такой структуре световода отношение диаметра стержней в оболочке к расстоянию между их центрами составляет 11,1/55,0=0,2. Проведена съемка торца световода при мощности выходящего излучения 0,5 Вт, что соответствует плотности мощности 7,05 кВт/см2 на длине волны 10,6 мкм. Излучение имеет вид гауссовской функции. Оно распространяется под углом 7,7° при числовой апертуре NA=0,134, что указывает на существование одной фундаментальной моды низшего порядка, т.е. подтверждается одномодовый режим работы ИК-световода.

Пример 2

Получен одномодовый световод для работы на длине волны 10,6 мкм (СО2 лазер). Сердцевина световода имеет диаметр 92,5 мкм и изготовлена из кристаллов состава в мас. %:

Хлорид серебра - 14,8;

Бромид серебра - 85,2,

в которую помещена центральный стержень диаметром 10,6 мкм состава в мас. %:

Хлорид серебра - 13,1;

Бромид серебра - 86,9.

Оболочка диаметром 0,3 мм состава сердцевины в мас. %:

Хлорид серебра - 14,8;

Бромид серебра - 85,2.

имеет в своем составе шесть стержней диаметром 10,6 мкм, расположенных на расстоянии 52,7 мкм между их центрами. Стержни выполнены из кристаллов состава в мас. %:

Хлорид серебра - 20,7;

Бромид серебра - 79,3.

Отношение диаметра стержней в оболочке к расстоянию между их центрами составляет 10,6/52,7=0,2. При мощности выходящего из световода лазерного излучения в 0,5 Вт под углом 8,1° и при NA=0,143 плотность мощности составляет 8,17 кВт/см2 для работы СО2 лазера. В световоде распространяется одна мода низшего порядка.

Пример 3

Для передачи электромагнитного излучения медицинского СО2 лазера изготовили световод из нетоксичных кристаллов системы AgCl-AgBr. Световод состоит из сердцевины диаметром 97,5 мкм и состава в мас. %:

Хлорид серебра - 13,9;

Бромид серебра - 86,1.

В сердцевине расположен центральный стержень диаметром 11,7 мкм и состава в мас. %:

Хлорид серебра - 12,3;

Бромид серебра - 87,7.

Оболочка световода диаметром 0,5 мм состава сердцевины имеет шесть стержней того же диаметра, что и центральный стержень, т.е. 11,7 мкм, расположенных в гексагональном порядке на расстоянии между их центрами 58,3 мкм, имеющих состав в мас. %:

Хлорид серебра - 19,8;

Бромид серебра - 80,2.

Диаметра стержней в оболочке к расстоянию между их центрами составляет 11,7/58,3=0,2. При съемке торца световода, работающего на длине волны 10,6 мкм, излучение имеет гауссовскую функцию при мощности выходящего из световода излучения в 0,5 Вт под углом 7,4°, NA=0,130 и плотности мощности 6,7 кВт/см2. Световод такой структуры является одномодовым в пределах фундаментальной запрещенной зоны.

При изготовлении инфракрасного световода, имеющего состав сердцевины и оболочки менее 85,2 мас. % или более 86,1 мас. % бромида серебра в твердом растворе хлорид-бромида серебра при диаметре сердцевины менее 92,5 мкм или более 97,5 мкм, а также при изготовлении центрального стержня и шести стержней в оболочке диаметром менее 10,6 мкм или более 11,7 мкм и на расстоянии между центрами стержней в оболочке менее 52,7 мкм или более 58,3 мкм при составе центрального стержня менее 86,9 мас. % или более 87,7 мас. % бромида серебра в твердом растворе хлорид бромида серебра и составе стержней в оболочке менее 79,3 мас. % или более 80,2 мас. % бромида серебра в твердом растворе, не удается достигнуть одномодового режима работы инфракрасного световода. Кроме того, диаметр оболочки не должен быть менее 0,3 и более 0,5 мм.

Технический результат

Схема структуры световода и распределение Z-компоненты светового вектора представлены на чертеже. Основная часть плотности светового потока S в сердцевине удовлетворяет условию S≤Smax/e2 и приходится на площадь в 7088 мкм2, что соответствует диаметру в 95,0±2,5 мкм. Исходя из последнего заданы параметры микроструктуры: диаметр стержней в оболочке d=11.1±0.6 мкм и шаг микроструктуры Δ=55,5±2,8 мкм, т.е. расстояние между их центрами.

В центре сердцевины расположен стержень состава с большим показателем преломления, чем составы сердцевины, оболочки и шести стержней в оболочке. За счет этого вклад в поддержание моды дает не только механизм фотонных запрещенных зон, но и механизм полного внутреннего отражения.

Одномодовый режим работы световода при передаче излучения СО2 лазера позволяет минимизировать апертуру выходящего лазерного излучения, а расширение поля моды от 92,5 до 97,5 мкм позволяет передавать плотность мощности энергии от 6,7 до 8,17 кВт/см2, что обеспечивает стабильный и контролируемый режим работы медицинского СО2 лазера. При этом глубина проникновения лазерного излучения в органическую ткань составляет от 20 до 50 мкм. Кроме того, существует возможность создания взаимозаменяемых, легко стыкующихся волоконно-оптических компонентов для лазерного медицинского оборудования на длине волны 10,6 мкм.

Инфракрасный световод с большим диаметром поля моды, включающий сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке, отличающейся тем, что сердцевина диаметром 92,5-97,5 мкм содержит центральный стержень диаметром 10,6-11,7 мкм, оболочка выполнена диаметром 0,3-0,5 мм, а стержни в оболочке того же диаметра, что и центральный стержень, расположены на расстоянии 52,7-58,3 мкм между их центрами, при этом центральный стержень выполнен из кристаллов твердых растворов хлорид-бромида серебра при следующем соотношении компонентов, мас. %:

Хлорид серебра 13,1-12,3
Бромид серебра 86,9-87,7

сердцевина и оболочка выполнены из кристаллов твердых растворов при следующем соотношении компонентов, мас. %:

Хлорид серебра 14,8-13,9
Бромид серебра 85,2-86,1

стержни в оболочке имеют состав при следующем соотношении компонентов, мас. %:

Хлорид серебра 20,7-19,8
Бромид серебра 79,3-80,2



 

Похожие патенты:

Изобретение относится к системе и способу передачи одномодового света по многомодовому оптическому волокну и может быть использовано в соединенной волокном системе с датчиком газа.

Изобретение относится к волоконно-оптической технике связи и может быть использовано для компенсации дифференциальной модовой задержки многомодовой волоконно-оптической линии в режиме передачи маломодовых сигналов.

Изобретение относится к волоконно-оптической технике связи. .

Изобретение относится к волоконно-оптической технике связи и может быть использовано для идентификации многомодового оптического волокна с повышенными значениями дифференциальной модовой задержки при отборе оптических волокон для линий передачи локальных сетей и сетей доступа, предназначенных для работы со скоростью передачи Гбит/с и более.

Изобретение относится к волоконно-оптической технике связи и может быть использовано для компенсации дифференциальной модовой задержки и увеличения пропускной способности многомодовой волоконно-оптической линии передачи.

Изобретение относится к волоконной оптике и может использоваться при создании резонатора ПП лазера, обеспечивает расширение функциональных возможностей фильтра за счет увеличения длины акустооптического взаимодействия на однородной периодической структуре и области однородности упругих колебаний.
Наверх