Способ получения деталей газотурбинных двигателей из титанового псевдо -β - сплава с лигатурой ti-al-mo-v-cr-fe

Изобретение относится к получению деталей газотурбинных двигателей из титанового псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe. Проводят дополнительное легирование титанового сплава псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe редкоземельным металлом. Осуществляют последующую вакуумно-дуговую плавку с получением заготовки. Производят сверхпластическую деформацию упомянутой заготовки при температуре от 850 до 950°C и скорости деформации 10-4 с-1 с последующей выдержкой 400…550°C. В результате улучшаются механические, технологические и эксплуатационные характеристики готовых деталей газотурбинных двигателей.

 

Изобретение относится к области металлургии, преимущественно к способам получения деталей или изделий с регламентированной структурой, и может быть использовано для оптимизации технологического процесса сверхпластической деформации (формовки) изделий сложной формы.

Титановые сплавы, обладающие высокой удельной конструкционной прочностью и коррозионной стойкостью, используются для изготовления широкой номенклатуры изделий, а технологический процесс, основанный на эффекте сверхпластичности, позволяет существенно расширить область применения новых титановых сплавов.

Некоторые из высокопрочных жаропрочных титановых сплавов применяются в изготовлении деталей компрессора газотурбинных двигателей (лопатки, диски, рабочие колеса, валы), в частности для самолетов серии «ИЛ-96-300», «Сухой-100». К ним предъявляются повышенные требования по износостойкости, снижению коэффициента трения, улучшению адгезии и т.д. В связи с этим разрабатываются новые методы и средства для повышения срока службы деталей газотурбинных двигателей (ГТД), выполненных из титановых псевдо-β-сплавов.

Псевдо-β-титановые сплавы относятся к высоколегированным сплавам, в которых суммарное содержание легирующих элементов доходит до 25% и более.

К недостаткам псевдо-β-титановых сплавов (ВТ15, ВТ19, ВТ32 и др.) относятся:

- невысокая термическая стабильность, в результате чего их нельзя применять при температурах выше 500°С;

- неудовлетворительная свариваемость, обусловленная сильным ростом зерна в околошовной зоне и ликвацией легирующих элементов в сварном шве;

- большой разброс механических свойств, вызванный химической неоднородностью сплавов из-за ликвации и большой чувствительностью процесса старения к содержанию примесей внедрения;

- сильно выраженное отрицательное влияние примесей внедрения на пластичность сплавов;

- сравнительно высокая плотность.

Вышеперечисленные недостатки псевдо-β-титановых сплавов перекрываются существенными преимуществами этих сплавов, главные среди которых:

- высокая технологичность в закаленном состоянии;

- большой эффект термического упрочнения из-за пересыщения закаленной β-фазы легирующими элементами;

- высокая вязкость разрушения при значительных прочностных характеристиках.

Вместе с тем высокая чувствительность титановых сплавов к типу и параметрам структуры позволяет на одном сплаве получать различное сочетание прочностных, пластических и служебных свойств.

Известны способы изготовления деталей компрессора ГТД из эвтектоидных титановых сплавов (ВТ3-1, ВТ6, ВТ22 и др.) методом сверхпластической деформации (формовки) и диффузионной сварки (А.с. СССР №1577378, C22F 1/04, 1988; А.с. СССР №1759583, B23K 20/14, 1990; патент США №4582244, 1985; European Patent №0568201, 1993).

Наиболее близким по набору существенных признаков является техническое решение по патенту РФ №2569441, B23K 20/14, 2015, которое было принято авторами за ближайший аналог.

Недостатком данного способа является то, что при использовании заготовок из титанового псевдо-β-сплава применяемая технология изготовления деталей компрессора ГТД не позволяет добиться необходимой прочности готовых изделий (предел выносливости, длительная прочность, недостаточная вязкость разрушения при увеличении механических нагрузок). Это связано с недостаточной коррозионной стойкостью и сопротивления окислению ликвацией твердорастворной α-фазы при повышенных температурах эксплуатации.

Технической задачей является улучшение механических, технологических и эксплуатационных характеристик готовых изделий ГТД (лопатки, диски, рабочие колеса, валы компрессора и т.д.) из псевдо-β-титанового сплава за счет выбора оптимального состава количества α- и β-стабилизаторов и обеспечение постоянства фазового состава.

Способ осуществляется следующим образом:

1. Экспериментальным путем выбирается состав высокопрочного титанового псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe с дополнительным легированием редкоземельным металлом.

2. Методом вакуумно-дуговой плавки производятся готовые слитки или заготовки для последующей операции сверхпластической деформации (формовки).

3. Сверхпластическую деформацию (формовку) производят при температуре от 850 до 950°С и скоростях деформации 10-4 c-1 с последующей выдержкой 400-550°С.

Таким образом, путем оптимального выбора количества α- и β-стабилизаторов (соблюдение степени легирования в определенных пределах) обеспечивается постоянство химического и фазового состава титанового псевдо-β-сплава, тем самым улучшаются механические, технологические и эксплуатационные характеристики.

Способ получения деталей газотурбинных двигателей из титанового псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe, отличающийся тем, что проводят дополнительное легирование упомянутого титанового сплава редкоземельным металлом, последующую вакуумно-дуговую плавку с получением заготовки и осуществляют сверхпластическую деформацию упомянутой заготовки при температуре от 850 до 950°C и скорости деформации 10-4 с-1 с последующей выдержкой 400…550°C.



 

Похожие патенты:
Изобретение может быть использовано для изготовления лопатки компрессора из высокопрочного титанового сплава ВТ6 на основе эвтектоидной системы легирования. Проводят горячую газовую формовку слитка со сверхпластической деформацией при температуре от 870 до 1000°С и скорости деформации 10-4c-1.

Изобретение может быть использовано для получения сварных конструкций из разнородных металлических материалов, в частности переходника титан-алюминий. Заготовка для проведения последующей диффузионной сварки в условиях горячего изостатического прессования содержит размещенные в капсуле титановую и алюминиевую заготовки.

Изобретение может быть использовано для получения сварных конструкций из разнородных металлических материалов, в частности из титановых сплавов и нержавеющей стали.

Изобретение может быть использовано для изготовления биметаллического изделия, выполненного из литого интерметаллидного сплава на основе Ni3Al и дисперсионно-твердеющего никелевого сплава.

Термическая печь может быть использована для формирования композиционных материалов и изделий путем диффузионной сварки стеклянного и металлического узлов заготовок.

Изобретение может быть использовано для высокотемпературной обработки стержневых деталей, в том числе для формирования композиционных, например стеклометаллических, материалов и изделий путем диффузионной сварки стеклянного и металлического узлов-заготовок.

Изобретение может быть использовано для изготовления многослойных труб, в том числе тонкостенных, в частности биметаллических труб из драгоценных металлов. Трубчатую заготовку с меньшей температурой плавления выполняют из первого металлического сплава, компоненты которого образуют твердый раствор с низкоплавкой эвтектической фазой.
Изобретение может быть использовано для получения ультрамелкозернистых сверхпластичных листов титано-алюминиевых сплавов при изготовлении сложных деталей методом сверхпластической формовки и диффузионной сварки.

Изобретение может быть использовано при изготовлении сваркой давлением с подогревом многослойных панелей из титановых сплавов, в частности, для аэрокосмического машиностроения.

Изобретение может быть использовано для получения биметалла из меди и низкоуглеродистой стали при изготовлении деталей, применяемых в конструкциях установок для электролиза алюминия.

Изобретение может быть использовано для производства двухслойных изделий. Осуществляют нагрев в камере двух уложенных друг на друга листовых заготовок и их диффузионную сварку за счет приложения давления газа на внешние поверхности с обеих сторон заготовок. В качестве упомянутого газа используют продукты сгорания топливной смеси, которую подают под давлением в камеру с заготовками и производят ее зажигание. Состав топливной смеси выбирают из условия получения температуры продуктов ее сгорания выше температуры плавления одной из заготовок. Нагрев одной из свариваемых заготовок осуществляют до температуры выше температуры плавления второй заготовки. В процессе нагрева заготовок производят совместную их вытяжку за счет получения разности давления топливной смеси с одной и другой стороны свариваемых заготовок. Способ обеспечивает управление процессом нагрева заготовок с учетом их толщины за счет выбора давления топливной смеси при сокращении времени сварки. 2 з.п. ф-лы, 3 ил.

Изобретение может быть использовано при изготовлении диффузионной сваркой приборов фотоники, в частности при соединении пьезокристаллических преобразователей и акустооптических кристаллов. На основании установлен колпак с образованием вакуумной камеры и смонтирован каркас, содержащий нижний элемент, верхний элемент и соединяющие их стойки. Средство для позиционирования одной из свариваемых деталей установлено на подвижном элементе, снабженном средствами его перемещения. Средство для позиционирования второй детали смонтировано на нижнем элементе каркаса. Средство испарения металла состоит из неподвижной и подвижной частей, на последней из которых закреплен испарительный элемент, и снабжено приводом, обеспечивающим перемещение подвижной части между свариваемыми деталями при нанесении металлической прослойки. Техническим результатом является повышение точности фиксации свариваемых деталей относительно друг друга, повышение точности регулирования и поддержания усилия сжатия во время процесса сварки, уменьшение градиентов деформации оптических кристаллов и высокая повторяемость результатов диффузионной сварки. 2 ил.
Наверх