Способ управления подвесом ротора электростатического гироскопа

Изобретение относится к гироскопической технике, а именно к способам управления подвесами роторов электростатических гироскопов (ЭСГ). Сущность изобретения заключается в том, что способ управления подвесом ротора электростатического гироскопа дополнительно содержит этапы, на которых после раскрутки ротора до рабочей частоты вращения величину начального напряжения на электродах устанавливают равной нулю, а приращение напряжения подают только на электрод подвеса, от которого удаляется ротор, кроме того, для создания момента сил, стабилизирующих вращение ротора на рабочей частоте, коэффициент усиления К1 напряжения, пропорционального смещению по осям подвеса, увеличивают на величину ΔK

где ΔK - коэффициент увеличения коэффициента К1;

U0 - начальное напряжение на электродах подвеса до раскрутки ротора;

Um - амплитуда переменной составляющей приращения напряжения до установки значения начального напряжения равного нулю. Технический результат – повышение точности ЭСГ.

 

Изобретение относится к гироскопической технике, а именно к способам управления подвесом ротора электростатического гироскопа (далее ЭСГ), используемого для высокоточных измерений навигационных параметров подвижных объектов.

Известен резонансный способ управления подвесом ротора ЭСГ [1]. Элементами подвеса при этом является емкость силового электрода и индуктивность катушки, которые образуют последовательный резонансный контур. При этом подают на контур переменное синусоидальное напряжение с частотой, превышающей резонансную частоту резонансного контура. В случае увеличения расстояния от ротора до силового электрода уменьшается емкость силового электрода, возрастает резонансная частота контура, растет амплитуда переменного напряжения на силовом электроде, растет сила, действующая со стороны электрода на ротор, и ротор возвращается в первоначальное положение, таким образом подвес ротора осуществляется автоматически.

Недостатком такого способа является низкая точность поддержания положения ротора в подвесе, зависящая от величины добротности резонансного контура.

Известен способ управления подвесом ротора ЭСГ [1], согласно которому преобразуют смещение ротора из центра подвеса в постоянное напряжение; производят частотную коррекцию полученного напряжения для создания опережения по фазе; усиливают результат коррекции; затем складывают результат усиления с опорным напряжением. Результат сложения подают на один силовой электрод подвеса, также результат усиления вычитают из опорного и полученное напряжение подают на другой силовой электрод подвеса.

Недостатком такого способа является наличие операций сложения и вычитания высоковольтных напряжений, которые подают на силовые электроды. Данные напряжения составляют по величине 1-2 кВ, что трудно реализовать на современной электронике.

Известен способ управления подвесом ротора ЭСГ [2], взятый за прототип, согласно которому ротор с радиальным дисбалансом располагают в вакуумированном корпусе между электродами, установленными по его ортогональным осям попарно с противоположных сторон ротора. На электроды подают начальное напряжение. Затем измеряют смещение ротора из центра подвеса по каждой оси, измеренное смещение преобразуют в напряжение. Результат преобразования усиливают, получают приращение напряжения, на которое уменьшают начальное напряжение на электроде, к которому приближается ротор, и увеличивают начальное напряжение на противоположном электроде; при этом создают результирующую силу со стороны электродов, возвращающую ротор в центр подвеса. Раскручивают ротор до рабочей частоты вращения, при этом у напряжений, поданных на электроды, возникают за счет дисбаланса ротора переменные составляющие. Затем подвергают эти напряжения фазовой фильтрации на частоте, равной частоте вращения ротора. В результате создают момент сил, который стабилизирует скорость вращения ротора, ускоряет вращение ротора при снижении частоты вращения или тормозит ротор при повышении частоты вращения. Затем выделяют переменные составляющие в направлениях, пропорциональных смещению ротора. По соотношению амплитуд и фаз переменных составляющих рассчитывают ориентацию вектора кинетического момента ротора.

Недостатком способа является низкая точность гироскопа, обусловленная постоянным присутствием на электродах начального напряжения, которое создает результирующую силу, пропорциональную величине напряжения на электродах, удерживающую (возвращающую) ротор в центре подвеса. При ее воздействии на ротор возникает уводящий момент, обусловленный неидеальной формой ротора, который ухудшает точность гироскопа.

Заявляемое изобретение решает задачу совершенствования способа управления подвесом ротора ЭСГ с радиальным дисбалансом в условиях движения объекта, на котором установлен гироскоп в невесомости.

Техническим результатом заявляемого изобретения является повышение точности гироскопа с электростатическим подвесом ротора, имеющего радиальный дисбаланс.

Для решения поставленной задачи в способе управления подвесом ротора ЭСГ, согласно которому ротор с радиальным дисбалансом располагают в вакуумированном корпусе между электродами, установленными по его ортогональным осям попарно с противоположных сторон ротора; подают на электроды начальное напряжение; измеряют смещение ротора из центра подвеса по каждой оси; измеренное смещение преобразуют в напряжение; результат преобразования усиливают К1 раз, получают приращение напряжения, на которое уменьшают начальное напряжение на электроде, к которому приближается ротор; увеличивают начальное напряжение на противоположном электроде; создают результирующую силу со стороны электродов, возвращающую ротор в центр подвеса; раскручивают ротор до рабочей частоты вращения, при этом у напряжений, поданных на электроды, создают за счет дисбаланса ротора переменные составляющие, затем подвергают эти напряжения фазовой фильтрации на частоте, равной частоте вращения ротора, в результате чего создают момент сил, который стабилизирует скорость вращения ротора, ускоряет вращение ротора при снижении частоты вращения или тормозит ротор при повышении частоты вращения, а сами переменные составляющие напряжения используют для определения направления вектора кинетического момента ротора в пространстве ортогональной системы координат электродов подвеса; дополнительно, после раскрутки ротора до рабочей частоты вращения, величину начального напряжения на электродах устанавливают равной нулю, а приращение напряжения подают только на электрод подвеса, от которого удаляется ротор, кроме того, для создания момента сил, стабилизирующих вращение ротора на рабочей частоте, значение коэффициента К1, пропорционального смещению по осям подвеса, увеличивают на величину ΔK, равную:

где U0 - начальное напряжение на электродах подвеса до раскрутки ротора (далее - начальное напряжение);

Um - амплитуда переменной составляющей приращения напряжения до установки значения начального напряжения, равного нулю (далее - переменная составляющая).

Работа устройства по предлагаемому способу происходит следующим образом. Ротор с радиальным дисбалансом располагают в вакуумированном корпусе между электродами, установленными по его ортогональным осям, попарно с противоположных сторон ротора. Подают на электроды начальное напряжение U0, величина которого определяется из условия надежного взвешивания ротора и предотвращения возможности касания упоров при его раскручивании. Измеряют смещение ротора из центра подвеса по каждой оси. Измеренное смещение преобразуют в напряжение. Результат преобразования усиливают в К1 раз. Получают приращение напряжения ΔU (для каждой пары электродов свое приращение), на которое уменьшают начальное напряжение на электроде, к которому приближается ротор, и увеличивают начальное напряжение на противоположном электроде, в результате создают результирующую силу ΔF

где F1, F2 – силы, действующие со стороны противоположных электродов;

Co - емкость электродов;

m - масса ротора;

δ - зазор между ротором и электродами.

Раскручивают ротор до рабочей частоты вращения. При этом у напряжений, поданных на электроды, создают за счет дисбаланса ротора переменные составляющие Um. Подвергают переменные составляющие фазовой фильтрации на частоте, равной частоте вращения ротора. В результате чего создают силу F3

которая создает момент, стабилизирующий скорость вращения ротора; ускоряет вращение ротора при снижении частоты вращения или тормозит ротор при повышении частоты вращения.

После раскрутки ротора величину начального напряжения U0 на электродах устанавливают равной нулю. Увеличивают коэффициент усиления К1 на величину ΔK.

Измеряют смещение ротора. В условиях отсутствия ускорения эти смещения определяются только периодическими смещениями ротора от действия его дисбаланса. При этом амплитуда переменной составляющей Um2 по сравнению с переменной составляющей Um возрастает в ΔK раз. Приращение напряжения подают только на электрод подвеса, от которого удаляется ротор. При этом со стороны подвеса на ротор действует сила F4, образующая момент, стабилизирующий частоту вращения ротора, равная

Сами переменные составляющие напряжения используют для определения направления вектора кинетического момента ротора в пространстве ортогональной системы координат электродов подвеса.

Выражение ΔK получено после простейших преобразований из условия равенства сил F4=F3.

Форма напряжения на электроде после установления U0 = 0 соответствует положительной полуволне синусоидального сигнала с амплитудой переменной составляющей Um2. Со стороны электродов формируется возмущающая сила F5, возвращающая ротор в центр подвеса

где Тр - длительность периода вращения ротора,

t - текущее время.

При наличии напряжения U0 величина возмущающей силы со стороны электродов составляла бы

Из отношения

следует, что момент сил, приводящий к уходу гироскопа (с неидеальной формой ротора), при U0 = 0 уменьшается, т.к. Um2≤U0.

Таким образом, по сравнению со способом-прототипом, точность гироскопа с ротором, имеющим радиальный дисбаланс и неидеальную форму, повышается. Повышение происходит за счет:

- увеличения амплитуды переменной составляющей Um2, определяющей ориентацию ротора относительно корпуса;

- уменьшения момента возмущения от действия сил подвеса на ротор, имеющий неидеальную форму;

- сохранения условий стабильного вращения ротора на рабочей частоте.

Поставленная цель достигнута.

На предприятии предлагаемый способ проверен путем натурных испытаний в условиях действия силы земного притяжения и моделирования функционирования гироскопа в условиях невесомости. Испытания проведены для гироскопа с параметрами:

Fp=3000 Гц - рабочая частота вращения ротора;

Co = 10-11 Ф;

m = 10-3 кг;

δ=30⋅10-6 м;

Δδ=0,05⋅10-6 м - перемещение ротора за счет радиального дисбаланса.

Результаты испытаний:

При U0 = 200 В;

Um = 25B;

При U0 = 0 B:

Um2 = 141 В.

ΔК=5,65.

При сравнении напряжений Um и Um2, для приведенного гироскопа при определении ориентации оси вращения ротора, видим возрастание полезного сигнала в 5,65 раз, что повышает точность определения положения оси ротора и соответственно точность гироскопа.

При сравнении сил F5 и F6, действующих со стороны подвеса на ротор приведенного гироскопа с неидеальной формой поверхности, следует, что момент сил, приводящий к уходу гироскопа в условиях его применения в невесомости, при U0 = 0 уменьшается примерно в 8 раз.

В настоящее время разрабатывается техническая документация для использования предлагаемого способа при производстве гироскопа с электростатическим подвесом ротора, работающего в условиях невесомости.

Используемая литература

1. П.И. Малеев. Новые типы гироскопов. - //Л.: Судостроение, 1971, стр. 15, 17.

2. Некрасов Я.А., Фрезинский B.C. Активные электростатические подвесы. - //Л: ЦНИИ «Румб», 1987, стр. 104-107.

Способ управления подвесом ротора электростатического гироскопа, согласно которому ротор с радиальным дисбалансом располагают в вакуумированном корпусе между электродами, установленными по его ортогональным осям, попарно с противоположных сторон ротора, подают на электроды начальное напряжение, измеряют смещение ротора из центра подвеса по каждой оси, измеренное смещение преобразуют в напряжение, результат преобразования усиливают в К1 раз, получают приращение напряжения, на которое уменьшают начальное напряжение на электроде, к которому приближается ротор, и увеличивают начальное напряжение на противоположном электроде, создают сумму сил со стороны электродов, возвращающих ротор в центр подвеса, раскручивают ротор до рабочей частоты вращения, при этом у напряжений, поданных на электроды, создают за счет дисбаланса ротора переменные составляющие, затем подвергают эти напряжения фазовой фильтрации на частоте, равной частоте вращения ротора, в результате чего создают момент сил, который стабилизирует скорость вращения ротора, ускоряет вращение ротора при снижении частоты вращения, тормозит ротор при повышении частоты вращения, а сами переменные составляющие напряжения используют для определения направления вектора кинетического момента ротора в пространстве ортогональной системы координат электродов подвеса, отличающийся тем, что после раскрутки ротора до рабочей частоты вращения величину начального напряжения на электродах устанавливают равной нулю, а приращение напряжения подают только на электрод подвеса, от которого удаляется ротор, кроме того, для создания момента сил, стабилизирующих вращение ротора на рабочей частоте, коэффициент усиления К1 напряжения, пропорционального смещению по осям подвеса, увеличивают на величину ΔK

где ΔK - коэффициент увеличения коэффициента К1;

U0 - начальное напряжение на электродах подвеса до раскрутки ротора;

Um - амплитуда переменной составляющей приращения напряжения до установки значения начального напряжения равного нулю.



 

Похожие патенты:
Изобретение относится к гироскопической технике, а именно к способам управления подвесами роторов электростатических гироскопов (ЭСГ). Способ управления подвесом ротора электростатического гироскопа, согласно которому в начале процесса взвешивания создают временную паузу, преобразуют величину смещения ротора из центра подвеса вдоль каждой из его осей в эквивалентную величину электрического напряжения, которое подвергают частотной коррекции, результат коррекции складывают с опорным напряжением, результат сложения усиливают, полученное высоковольтное напряжение подают на силовой электрод подвеса, одновременно результат коррекции вычитают из опорного напряжения, результат вычитания усиливают, полученное высоковольтное напряжение подают на другой силовой электрод подвеса, введены операции, согласно которым перед взвешиванием ротора гироскоп ориентируют в положение, при котором одна из ортогональных осей подвеса вертикальна, а в течение временной паузы на силовые электроды подвеса подают только опорные напряжения, в результате чего прижимают ротор к упорам, расположенным вокруг нижнего силового электрода, центрируя его в зазоре между силовыми электродами, оси которых расположены в горизонтальной плоскости.

Изобретение относится к области приборостроения и может быть использовано в системах ориентации и навигации подвижных объектов (самолет, корабль, автомобиль), в инклинометрах (для подземной навигации) и других устройствах, где требуется информация об угловых скоростях, получаемая с помощью микромеханического гироскопа.

Изобретение относится к области приборостроения и может быть использовано в системах ориентации, навигации и управления различных подвижных объектов. Предложенный электростатический гироскоп содержит ротор, основной статор с поддерживающими электродами на цилиндрической рабочей поверхности, два дополнительных статора с электродами и привод вращения ротора, ротор выполнен в виде кольца со сферической наружной (внешней) поверхностью, дополнительные статоры, прилегающие к основному центральному статору, выполнены с электродами на сферических рабочих поверхностях или на конических поверхностях, касательных к сферической поверхности ротора, а привод вращения ротора выполнен в виде обращенного статора с обмотками и внешней рабочей поверхностью, расположенной напротив внутренней цилиндрической поверхности кольца ротора.

Изобретение относится к области приборостроения и может быть использовано в системах ориентации, навигации и управления подвижными объектами (ПО). Гироскоп-акселерометр с электростатическим подвесом ротора и полной первичной информацией дополнительно содержит измерительные цепочки, электроды, фазочувствительные выпрямители (ФЧВ), сумматоры, масштабирующие элементы.

Изобретение относится к области приборостроения и может быть использовано в неконтактных гироскопах, акселерометрах и магнитных подшипниках. Предложенный неконтактный подвес ротора содержит пары диаметрально противоположно расположенных поддерживающих ротор элементов в виде электромагнитов или электродов, подключенных к выходам фазоинвертора, вход которого соединен с источником переменного напряжения, и один общий настроечный элемент в виде конденсатора или катушки индуктивности, примененный для каждой пары поддерживающих элементов и включенный между общей точкой соединения пары поддерживающих элементов и общей точкой фазоинвертора.

Изобретение относится к области прецизионного приборостроения и может быть использовано при производстве и эксплуатации электростатических гироскопов со сферическим ротором и оптической системой съема информации об угловом положении оси ротора относительно корпуса.

Изобретение относится к области прецизионного приборостроения и может быть использовано при производстве и эксплуатации инерциальных систем на электростатических гироскопах.
Изобретение относится к гироскопической технике, а именно к способам управления подвесами роторов электростатических гироскопов (ЭСГ), которые используются для высокоточного измерения навигационных параметров движущихся объектов.
Изобретение относится к гироскопической технике, а именно, к способам управления подвесами роторов электростатических гироскопов (ЭСГ), которые используются для высокоточного измерения навигационных параметров движущихся объектов.

Изобретение относится к области точного приборостроения и может быть использовано в составе навигационных комплексов. .

Использование: для производства криогенных гироскопов со сферическим ротором. Сущность изобретения заключается в том, что криогенный гироскоп содержит герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, комбинированный подвес ротора, включающий систему сверхпроводящих экранов, установленных в корпусе попарно вдоль осей подвеса с противоположных сторон ротора и формирующих магнитное поле в рабочем зазоре подвеса, рабочая поверхность каждого из сверхпроводящих формирующих экранов, обращенная к ротору, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора переменный рабочий зазор, обеспечивающий равномерную плотность магнитного потока в зазоре, катушки возбуждения магнитного подвеса, установленные над экранами, схему управления магнитным подвесом, формирующую токи, протекающие в катушках возбуждения, схему управления электростатическим подвесом, формирующую электрический потенциал на поверхности сверхпроводящих формирующих экранов, на профилированную рабочую поверхность каждого сверхпроводящего формирующего экрана установлен дополнительный экран, имеющий электрический контакт со сверхпроводящим формирующим экраном из материала, не обладающего сверхпроводящими свойствами, рабочая поверхность которого выполнена в виде части сферы и образует со сферической поверхностью ротора равномерный зазор, что обеспечивает равномерность плотности электрических сил в зазоре. Технический результат: обеспечение возможности повышения точности криогенного гироскопа. 2 ил.
Наверх