Система и способ для подачи топлива в ракетный двигатель

Изобретение относится к области ракетных двигателей, более конкретно к системе подачи ракетного топлива в ракетный двигатель (2), включающей в себя первый бак (3), второй бак (4), первую систему питания (6), соединенную с первым баком (3), и вторую систему питания (7), соединенную со вторым баком (4). Для охлаждения ракетного топлива, содержащегося во втором баке (4), первая система питания (6) включает в себя ответвление (12), проходящее через первый теплообменник (14), встроенный во второй бак (4). Изобретение также относится к способу подачи ракетного топлива в ракетный двигатель (2). Изобретение обеспечивает поддержание давления внутри баков выше минимального предела. 2 н. и 12 з.п. ф-лы, 9 ил.

 

Область техники

Изобретение относится к области подачи жидкого ракетного топлива в ракетный двигатель.

В последующем описании понятия «расположенный выше по течению» и «расположенный ниже по течению» определены относительно нормального направления потока ракетного топлива в системах питания ракетного двигателя.

Предшествующий уровень техники

Система для подачи в ракетный двигатель жидкого ракетного топлива обычно включает в себя, для каждого жидкого ракетного топлива, бак и систему питания, соединенную с баком, для передачи ракетного топлива из бака по меньшей мере в одну камеру сгорания, в которой ракетное топливо смешивается и сгорает для создания силы тяги как реакции на ускорение продуктов сгорания в сопле.

Во время работы такого ракетного двигателя объем жидкого ракетного топлива постепенно снижается в каждом топливном баке. Чтобы обеспечить поток каждого ракетного топлива в системе питания к камере сгорания необходимо поддерживать давление внутри каждого бака выше минимального предела. Из уровня техники известны различные варианты для поддержания баков под давлением по мере их опорожнения, однако эти варианты имеют разные недостатки, касающиеся веса и уровня сложности.

Кроме того, часто также бывает важно избегать чрезмерного повышения давления внутри каждого бака, в частности, чтобы избежать разрыва бака. Тем не менее, по крайней мере, в случае криогенного ракетного топлива трудно избежать постепенного испарения жидкого ракетного топлива в баках в результате поглощения тепла через стенки баков, поскольку такое испарение вызывает повышение давления в баках. Попытка решить эту проблему путем усиления термоизоляции баков приводит к большим негативным факторам, в частности к значительному увеличению их веса.

Вместе с тем, постепенное нагревание ракетного топлива в баках приводит к другим негативным явлениям. В частности, повышение давления насыщенного пара каждого ракетного топлива по мере его нагревания снижает кавитационный запас в насосах, расположенных ниже по течению от баков, и, таким образом, повышает риск появления явления кавитации в баках.

Раскрытие изобретения

Системы и способы согласно изобретению направлены на устранение указанных недостатков. В частности, изобретение относится к системе подачи ракетного топлива в ракетный двигатель, включающей в себя первый бак, второй бак и первую систему питания, соединенную с первым баком, при этом первая система питания способствует охлаждению второго жидкого ракетного топлива, извлеченного из второго бака, в частности, для того, чтобы скорректировать любое постепенное нагревание второго ракетного топлива в баке.

По крайней мере, согласно одному варианту осуществления эта задача достигается тем, что первая система включает в себя также ответвление, проходящее через первый теплообменник, встроенный во второй бак, причем указанное ответвление соединено с первым баком, расположенным ниже по течению от указанного первого теплообменника.

Благодаря этим условиям и тому, что второе жидкое ракетное топливо имеет значительно более высокий предел насыщения, чем первое жидкое ракетное топливо, в первом теплообменнике можно передавать тепло от второго жидкого ракетного топлива к первому жидкому ракетному топливу с тем, чтобы первое жидкое ракетное топливо отводилось через ответвление и переходило в газообразное состояние в то время, как второе жидкое ракетное топливо будет охлаждаться. Кроме того, поток первого ракетного топлива, отведенный через ответвление, может быть, таким образом, обратно закачан в первый бак и, так как оно находится в газообразном состоянии, может способствовать поддержанию давления внутри первого бака по мере его опорожнения.

Согласно второму варианту указанная система подачи включает также вторую систему питания, соединенную со вторым баком и включающую в себя насос. Охлаждение второго ракетного топлива во втором баке посредством первого теплообменника способствует предотвращению явления кавитации в насосе второй системы питания.

Согласно третьему варианту указанное ответвление может также включать в себя перепускной канал, который обходит указанный первый теплообменник. Этот перепускной канал, который может включать в себя регуляторный клапан расхода, способствует тому, что часть первого ракетного топлива, отведенного через ответвление, обходит, по крайней мере, указанный первый теплообменник. Последующее смешение с первым ракетным топливом, выходящим из первого теплообменника, способствует понижению его температуры, прежде чем оно будет обратно закачано в первый бак. В частности, если этот перепускной канал включает в себя регуляторный клапан расхода, то становится возможным более точное регулирование изменения давления первого ракетного топлива в первом баке.

Для обеспечения обратного потока первого ракетного топлива в первый бак через указанное ответвление это ответвление может быть расположено ниже по течению от насоса, который также является частью первой системы питания. Таким образом, этот насос может также способствовать тому, что первое ракетное топливо будет одновременно течь в камеру сгорания, и, в качестве примера, он может быть в виде электрического насоса или турбонасоса. Тем не менее, система питания может быть, с другой стороны, выполнена таким образом, чтобы обеспечивать поток первого ракетного топлива в камеру сгорания другим способом, например посредством подачи под давлением из бака, расположенного выше по течению. Для обеспечения обратного течение первого ракетного топлива в первый бак через это ответвление даже в таких условиях это ответвление само может включать в себя устройство принудительного течения для влияния на первое ракетное топливо.

Согласно четвертому варианту указанный первый теплообменник может быть встроен в воронку выпуска из второго бака для того, чтобы охлаждать более конкретно второе ракетное топливо, когда оно выходит из второго бака, тем самым действуя более эффективно на устранение явления кавитации в любом насосе, присоединенном ниже по течению.

Согласно пятому варианту первая система питания может также включать в себя по меньшей мере один второй теплообменник, встроенный во второй бак для того, чтобы обеспечить лучшее охлаждение второго ракетного топлива, выходящего из второго бака. В частности, этот второй теплообменник может быть также встроен в воронку выпуска из второго бака, возможно в ту же воронку, что и первый теплообменник. Кроме того, указанная первая система питания может также включать в себя третий теплообменник, встроенный во второй бак и расположенный выше по течению от второго теплообменника, для того чтобы охлаждать второе ракетное топливо во втором баке и, таким образом, корректировать его постепенное нагревание ввиду поглощения тепла через стенки второго бака, тем самым избегая чрезмерного повышения давления внутри второго бака. В частности, когда температура насыщения второго ракетного топлива во втором баке становится значительно выше температуры насыщения первого ракетного топлива в первой системе питания, эти второй и третий теплообменники могут обеспечить большой объем дополнительного охлаждения без первого ракетного топлива, которое протекает через эти теплообменники, неизбежно переходя в газообразное состояние.

Согласно шестому варианту первая система питания может включать в себя, кроме того, еще один теплообменник, расположенный выше от указанного возвратного ответвления и который может быть соединен с источником тепла, таким, например, как топливная элемент, батарея, или электронную схему, тем самым обеспечивая ее охлаждение.

Изобретение относится также к способу подачи жидкого ракетного топлива в ракетный двигатель, который включает в себя этапы, на которых: извлекают поток первого жидкого ракетного топлива из первого бака через первую систему питания; отводят часть указанного потока первого жидкого ракетного топлива через ответвление первой системы питания; переводят первое жидкое ракетное топливо, отведенное через указанное ответвление, в газообразное состояние в теплообменнике, встроенном во второй бак, содержащий второе жидкое ракетное топливо при температуре выше температуры насыщения первого жидкого ракетного топлива в ответвлении; и извлекают поток второго жидкого ракетного топлива из второго бака через вторую систему питания. Дополнительно, по меньшей мере часть первого жидкого ракетного топлива, отведенного через указанное ответвление, может быть обратно закачана в газообразном состоянии в первый бак. Первым жидким ракетным топливом может быть жидкий водород, а вторым жидким ракетным топливом - кислород.

Краткое описание чертежей

Изобретение будет лучше понятно, и его преимущества будут более наглядны из последующего подробного описания изобретения на неограничивающих примерах вариантов его осуществления со ссылками на чертежи.

На фиг. 1 показано устройство, включающее в себя ракетный двигатель с системой питания, согласно первому варианту осуществления, схематичное изображение;

на фиг. 2 - воронка выпуска из топливного бака системы питания на фиг. 1, схематичное изображение;

на фиг. 3 - устройство, включающее в себя ракетный двигатель с системой питания, согласно второму варианту осуществления, схематичное изображение;

на фиг. 4 - воронка выпуска из топливного бака системы питания на фиг. 3, схематичное изображение;

на фиг. 5 - устройство, включающее в себя ракетный двигатель с системой питания, согласно третьему варианту осуществления, схематичное изображение;

на фиг. 6 - устройство, включающее в себя ракетный двигатель с системой питания, согласно четвертому варианту осуществления, схематичное изображение;

на фиг. 7 - устройство, включающее в себя ракетный двигатель с системой питания, согласно пятому варианту осуществления, схематичное изображение;

на фиг. 8 - устройство, включающее в себя ракетный двигатель с системой питания, согласно шестому варианту осуществления, схематичное изображение; и

на фиг. 9 - устройство, включающее в себя ракетный двигатель с системой питания, согласно седьмому варианту осуществления, схематичное изображение.

Варианты осуществления изобретения

Устройство 1, которое может быть, например, ступенью ракетоносителя, показано схематически на фиг. 1. Для приведения его в движение это устройство 1 имеет жидкостный ракетный двигатель 2 с системой подачи ракетного топлива, включающей в себя первый бак 3 для первого ракетного топлива, второй бак 4 для второго ракетного топлива, камеру сгорания 5 для сжигания смеси из двух ракетных топлив и для ускорения продуктов сгорания из смеси, первую систему питания 6, соединенную с основанием первого бака 3 и камерой сгорания 5 для подачи в нее первого ракетного топлива, и вторую систему питания 7, соединенную с основанием второго бака 4 и камерой сгорания 5 для подачи в нее второго ракетного топлива. Эти первое и второе ракетные топлива могут быть криогенными ракетными топливами, такими как жидкий водород и жидкий кислород, или они могут быть другими жидкими ракетными топливами, но при любых условиях температура насыщения второго ракетного топлива во втором баке 4 должна быть значительно выше температуры насыщения первого ракетного топлива в первой системе питания 6, расположенной ниже по течению от насоса 8. Каждая система питания 6 и 7 имеет соответствующий насос 8 и 9 для прокачки соответствующего ракетного топлива через каждую систему питания 6 и 7, а также выпускные клапаны 10 и 11 для открытия и закрытия потока ракетного топлива в камеру сгорания 5. В качестве примера, насосы 8 и 9 могут быть электрическими насосами или могут быть турбонасосами.

Ниже по течению от насоса 8 первая система питания 6 имеет возвратное ответвление 12, которое возвращается к верхней части первого бака 3. Это возвратное ответвление включает в себя клапан 13 и первый теплообменник 14, встроенный во второй бак 4. Кроме того, это ответвление включает в себя также перепускной канал 15, расположенный ниже по течению от клапана 13, имеющий клапан 16 и предназначенный для обхода первого теплообменника 14. Клапаны 13 и 16 могут быть регулируемыми клапанами расхода, тем самым позволяя более точно регулировать изменение расхода топлива, проходящего через ответвление 12 и перепускной канал 15.

Теплообменник 14 расположен рядом с местом соединения второго бака 4 и второй системы питания 7. Более конкретно, как показано на фиг. 2, теплообменник 14 встроен в воронку 30 выпуска из второго бака 4, направленную во вторую систему питания 7, для того чтобы способствовать передаче тепла от потока второго ракетного топлива, выходящего из второго бака 4, к потоку первого ракетного топлива, протекающего через теплообменник.

Расположенная ниже по течению от насоса 9 (см. фиг. 1) вторая система питания 7 также включает в себя возвратное ответвление 40, которое возвращается к верхней части второго бака 4 и проходит через другой теплообменник 41, расположенный вокруг камеры сгорания 5, чтобы нагреваться от ее тепла. Расположенное выше по течению от теплообменника 41 это ответвление 40 также включает в себя клапан 42, который может быть регулируемым клапаном расхода, что позволяет более точно регулировать расход топлива через ответвление 40.

В рабочем состоянии, когда оба насоса 8 и 9 перекачивают два ракетных топлива из соответствующих баков 3 и 4 и через соответствующие системы питания 6 и 7 в камеру сгорания 5, часть потока первого ракетного топлива отводится из первой системы питания 6 через ответвление 12.

Отводимый поток регулируется клапаном 13, который может управляться контрольным устройством (не показано) в виде функции разных физических характеристик, регистрируемых датчиками (не показаны), такими как, например, датчики давления и температуры, в двух баках 3 и 4.

Часть этого отводимого потока проходит через теплообменник 14, где он нагревается вторым ракетным топливом, тем самым способствуя переходу его в газообразное состояние. Другая часть этого отводимого потока, регулируемая клапаном 16, при этом обходит теплообменник 14 по перепускному каналу 15 и затем возвращается к оставшейся части отводимого потока, расположенного ниже по течению от теплообменника 14. Клапан 16 перепускного канала 15, управляемый контрольным устройством в качестве функции характеристик от датчиков, способствует, таким образом, регулированию температуры отводимого потока первого ракетного топлива до того, как он будет обратно закачан в первый бак 3, способствуя, в частности, предотвращению его обратной закачки при слишком высокой температуре. Обратная закачка этого отведенного потока в газообразном состоянии, тем не менее, способствует заполнению объема, оставшегося пустым от первого ракетного топлива, питающего камеру сгорания 5, тем самым поддерживая давление внутри первого бака 3.

Одновременно передача тепла в теплообменнике 14 охлаждает поток второго ракетного топлива, извлеченного из второго бака 4 через воронку 30. Таким образом, поток второго ракетного топлива, который достигает насоса 9, значительно охлаждается, тем самым способствуя снижению явления кавитации в насосе 9. Это охлаждение второго ракетного топлива, извлеченного из второго бака 4, обеспечивает поэтому больший предел температурных колебаний второго ракетного топлива во втором баке 4.

Таким образом, в качестве примера, для ракетного двигателя 2, питаемого жидким водородом и жидким кислородом и развивающим тягу F в 2 килоньютона (кН), переход в газообразное состояние в теплообменнике 14 отведенного потока жидкого водорода QLH2 для повышения давления в первом баке 3 поглощает тепловую мощность PV порядка 1 киловатта (квт). Расход жидкого кислорода QLOX, взятого из второго бака 4 через воронку 30 для подачи в камеру сгорания, равен порядка 0,4 килограмм в секунду (кг/с), поэтому его температура TLOX понижается примерно на 1,5 кельвина (K), что соответствует падению в его давлении насыщения PLOX, sat, находящегося на уровне 30 килопаскалей (кПа), до 40 кПа.

Одновременно часть потока второго ракетного топлива, извлеченного из второго бака 4 через воронку 30 и вторую систему питания 7, отводится через ответвление 40 и нагревается в теплообменнике 41 тепловым излучением от камеры сгорания 5 для того, чтобы перейти в газообразное состояние, прежде чем оно будет закачано во второй бак 4 для поддержания в нем внутреннего давления. Этот расход топлива регулируется с помощью клапана 42, который также может управляться вышеуказанным контрольным устройством как функцией физических характеристик, регистрируемых датчиками, такими как, например, датчики давления и температуры в двух баках 3 и 4.

Устройство 1 согласно второму варианту осуществления показано на фиг. 3. Система питания для ракетного двигателя 2 данного устройства 1 отличается от системы согласно первому варианту осуществления тем, что она включает в себя второй теплообменник 17 в первой системе питания 6. Другие элементы этого устройства 1, по существу, эквивалентны элементам согласно первому варианту осуществления и имеют такие же ссылочные обозначения. Второй теплообменник 17 представляет собой часть сегмента первой системы питания 6, которая в итоге проходит в камеру сгорания 5. Как показано на фиг. 4, он также расположен рядом с местом соединения второго бака 4 со второй системой питания 7 и, более конкретно, он встроен в воронку 30 выпуска из второго бака 4 во вторую систему питания 7 подобно первому теплообменнику 14 для того, чтобы обеспечить передачу тепла от потока второго ракетного топлива, выходящего из второго бака 4, к потоку первого ракетного топлива, протекающему через второй теплообменник 17.

Во время работы поток первого ракетного топлива, отведенного через ответвление 15, способствует повышению давления в первом баке таким же образом, как и в первом варианте осуществления. Тем не менее, одновременно поток первого ракетного топлива, который не отводится через ответвление 15, но продолжает протекать по первой системе питания 6 в камеру сгорания 5, тоже способствует охлаждению второго ракетного топлива посредством передачи тепла во второй теплообменник 17. Это дополнительное охлаждение увеличивает преимущества охлаждения второго ракетного топлива посредством первого теплообменника 14.

Устройство 1 согласно третьему варианту осуществления показано на фиг. 5. Система питания ракетного двигателя 2 в этом другом устройстве 1 отличается от системы питания согласно второму варианту тем, что она включает в себя третий теплообменник 18, расположенный непосредственно выше по течению от второго теплообменника 17 в первой системе питания 6. Другие элементы этого устройства 1, по существу, эквивалентны элементам согласно второму варианту осуществления, и они имеют такие же ссылочные обозначения.

Подобно первому и второму теплообменникам 14 и 17, этот третий теплообменник 18 тоже встроен во второй бак 4. Однако, в отличие от других теплообменников 14 и 17, он встроен не в воронку 30, а выше ее, чтобы обеспечить лучшее охлаждение второго ракетного топлива внутри второго бака 4 и лучшую корректировку его нагревания ввиду поглощения тепла через стенки второго бака 4.

Устройство 1 согласно четвертому варианту осуществления показано на фиг. 6. Это другое устройство 1 отличается от устройства согласно первому варианту осуществления тем, что оно тоже имеет топливную батарею 19, которая соединена с баками 3 и 4 через соответствующие системы питания 20 и 21, снабженные микронасосами 22 и 23. Таким образом, системы питания 20 и 21 служат для питания топливной батареи 19 частью ракетного топлива, содержащегося в баках 3 и 4, чтобы вырабатывать электричество для обеспечения электроэнергией оборудования на борту устройства 1. Так как химическая реакция ракетного топлива в топливной батарее 19 обычно тоже производит тепло, которое может помешать ее работе, если оно не будет правильно удаляться, топливная батарея 19 тоже снабжена системой охлаждения 24 с устройством принудительного течения 25. Из-за наличия внутреннего давления в баках 3 и 4 микронасосы 22 и 23 могут быть, тем не менее, по возможности заменены на регулируемые клапаны расхода, и это возможно, когда внутреннее давление в баках 3 и 4 является достаточным для обеспечения потока ракетного топлива в топливную батарею 19.

Система охлаждения 24 содержит охлаждающую жидкость, например, такую как гелий, и устройство принудительного течения 25 вынуждает эту жидкость течь, чтобы передавать тепло из топливной батареи 19 в теплообменник 26. Однако, в качестве альтернативы, может быть обеспечено другое средство для протекания охлаждающей жидкости в системе 24, например, такое как термосифон. Этот другой теплообменник 26 встроен в первую систему питания 6 ракетного двигателя 2 таким образом, чтобы передавать это тепло первому ракетному топливу. В показанном варианте осуществления этот другой теплообменник 26 встроен в буферный бак 27, расположенный выше по течению от ответвления 12, с объемом первого ракетного топлива, которое содержится в этом буферном баке 27, с большой способностью поглощения тепла, даже когда поток первого ракетного топлива в системе 6 прекращается. Объем Vt, равный 30 литрам (L) жидкого водорода, в буферном баке 27 может, таким образом, поглощать тепловую мощность Pc, равную 100 ватт (W), за один час с повышением температуры ΔT жидкого водорода только на 17K. Тем не менее, возможно выполнение другого расположения теплообменника 26 в первой системе питания 6. Другие элементы этого устройства 1, по существу, эквивалентны элементам согласно первому варианту осуществления, и они имеют такие же ссылочные обозначения.

В этих четырех вариантах осуществления, несмотря на то, что топливо поступает в камеру сгорания с помощью насосов, можно также использовать альтернативные методы, такие, например, как повышение давления топливного бака.

Таким образом, согласно пятому варианту осуществления, показанному на фиг. 7 и аналогичному первому варианту осуществления, насосы заменены на бак 31 со сжатым газом, например гелием, который соединен с топливными баками 3 и 4 через соответствующие клапаны 33 и 34. Поэтому во время работы давление гелия в баке 31 сжатого газа заставляет течь топливо через их соответствующие системы питания 6 и 7 в камеру сгорания 5. Для того чтобы обеспечить обратную закачку водорода, отведенного через ответвление 12, в газообразном состоянии в верхнюю часть первого бака 3, ответвление 12 включает в себя устройство принудительного течения 35, расположенное выше по течению от теплообменника 14 и от перепускного канала 15. В этом варианте осуществления, поскольку вторая система питания 7 не включает в себя насос, расположенный ниже по течению от второго бака 4, предотвращение кавитации уже не является приоритетной задачей в отличие от регулирования нагревания второго ракетного топлива во втором баке 4. Следовательно, в этом варианте осуществления теплообменник 14 не подходит для расположения в воронке выпуска из второго бака 4, но он может быть расположен ближе к центру во втором баке 4, чтобы быть более эффективным при охлаждении объема второго ракетного топлива, которое содержится во втором баке. Другие элементы этого устройства 1, по существу, эквивалентны элементам согласно первому варианту осуществления, и они имеют такие же ссылочные обозначения, даже если согласно этому варианту осуществления вторая система питания 7 не включает в себя возвратное ответвление, направленное к верхней части второго бака 4.

Согласно шестому варианту осуществления, показанному на фиг. 8 и, по существу, аналогичному второму варианту осуществления, насосы второго варианта осуществления тоже заменены баком 31 со сжатым газом, например гелием, который соединен с топливными баками 3 и 4 через соответствующие клапаны 33 и 34. Аналогично пятому варианту осуществления устройство принудительного течения 35, расположенное выше по течению от теплообменника 14 и перепускного канала 15, обеспечивает обратный поток первого ракетного топлива через ответвление 12 к первому баку 3. Теплообменники 14 и 17 тоже могут быть расположены внутри второго бака 4, а не в воронке выпуска. Другие элементы этого устройства 1, по существу, эквивалентны элементам согласно второму варианту осуществления, и они имеют такие же ссылочные обозначения, даже если согласно этому варианту осуществления вторая система питания 7 не включает в себя возвратное ответвление, направленное к верхней части второго бака 4.

Согласно седьмому варианту осуществления, показанному на фиг. 9 и, по существу, аналогичному четвертому варианту осуществления, насосы этого второго варианта осуществления тоже заменены баком 31 со сжатым газом, например гелием, который соединен с топливными баками 3 и 4 через соответствующие клапаны 33 и 34. Создание повышенного давления топлива в баках 3 и 4 тоже позволяет исключить микронасосы для подачи топлива в топливную батарею 19, и в этом варианте осуществления эта подача регулируется регулируемыми клапанами расхода 36 и 37 в системах питания 20 и 21. Аналогично пятому и шестому вариантам осуществления устройство принудительного течения 35, расположенное выше по течению от теплообменника 14 и перепускного канала 15, обеспечивает обратное течение первого ракетного топлива через ответвление 12 к первому баку 3. Теплообменник 14 тоже может быть расположен внутри второго бака 4, а не в воронке выпуска. Другие элементы этого устройства 1, по существу, эквивалентны элементам согласно четвертому варианту осуществления, и они имеют такие же ссылочные обозначения, даже хотя согласно этому варианту осуществления вторая система питания 7 не включает в себя возвратное ответвление к верхней части второго бака 4.

Несмотря на то, что изобретение раскрыто выше со ссылками на конкретные варианты осуществления, понятно, что разные модификации и изменения могут быть применены к этим вариантам осуществления в пределах общего объема изобретения, определяемого формулой изобретения. Кроме того, отдельные особенности разных вариантов осуществления могут быть объединены в дополнительных вариантах осуществления. Так, например, согласно седьмому варианту осуществления устройство может включать в себя ответвление для обратной закачки второго ракетного топлива в газообразном состоянии во второй бак, как в первых четырех вариантах осуществления, используя устройство принудительного течения для этого второго ракетного топлива в газообразном состоянии. Следовательно, описание и чертежи должны рассматриваться скорее как иллюстративные, чем ограничивающие.

1. Система подачи ракетного топлива в ракетный двигатель (2), включающая в себя:

- первый бак (3);

- второй бак (4);

- первую систему питания (6), соединенную с первым баком (3) для подачи первого жидкого ракетного топлива в ракетный двигатель (2) и содержащую ответвление (12), расположенное ниже по течению от указанного первого бака (3) и проходящее через первый теплообменник (14), встроенный во второй бак (4); и

- вторую систему питания (7), соединенную со вторым баком (4) для подачи второго жидкого ракетного топлива в ракетный двигатель (2), имеющего предел насыщения значительно выше первого жидкого ракетного топлива,

отличающаяся тем, что указанное ответвление (12) соединено также с указанным первым баком (3), расположенным ниже по течению от первого теплообменника (14).

2. Система подачи по п. 1, отличающаяся тем, что вторая система питания (7) включает в себя насос (9).

3. Система подачи по п. 1, отличающаяся тем, что указанное ответвление (12) дополнительно включает в себя перепускной канал (15), который обходит указанный первый теплообменник (14).

4. Система подачи по п. 1, отличающаяся тем, что указанная система питания (6) включает в себя насос (8), расположенный выше по течению от указанного ответвления (12).

5. Система подачи по п. 1, отличающаяся тем, что указанное ответвление (12) включает в себя устройство принудительного течения (35).

6. Система подачи по п. 1, отличающаяся тем, что указанный первый теплообменник (14) встроен в воронку (30) выпуска из второго бака (4).

7. Система подачи по п. 1, отличающаяся тем, что первая система питания (6) дополнительно включает в себя по меньшей мере один второй теплообменник (17), встроенный во второй бак (4).

8. Система подачи по п. 7, отличающаяся тем, что указанный второй теплообменник (17) встроен в воронку (30) выпуска из второго бака (4).

9. Система подачи по п. 8, отличающаяся тем, что указанная первая система питания дополнительно включает в себя третий теплообменник (18), встроенный во второй бак (4) и расположенный выше по течению от второго теплообменника (17).

10. Система подачи по п. 1, отличающаяся тем, что первая система питания (6) дополнительно включает в себя другой теплообменник (26), расположенный выше по течению от возвратного ответвления (12) и подходящий для соединения с источником тепла (19).

11. Система подачи по п. 10, отличающаяся тем, что указанная первая система питания (6) дополнительно включает в себя буферный бак (27), указанный другой теплообменник (26) встроен в указанный буферный бак (27).

12. Способ подачи жидкого ракетного топлива в ракетный двигатель (2), включающий в себя этапы, на которых:

- извлекают поток первого жидкого ракетного топлива из первого бака (3) через первую систему питания (6);

- отводят часть указанного потока первого жидкого ракетного топлива через ответвление (12) первой системы питания (6);

- переводят первое жидкое ракетное топливо, отведенное через указанное ответвление (12), в газообразное состояние в теплообменнике (14), встроенном во второй бак (4), содержащий второе жидкое ракетное топливо при температуре выше температуры насыщения первого жидкого ракетного топлива в ответвлении (12); и

- извлекают поток второго жидкого ракетного топлива из второго бака (4) через вторую систему питания (7).

13. Способ подачи по п. 12, в котором по меньшей мере часть первого жидкого ракетного топлива, отведенного через указанное ответвление (12), обратно закачивают в газообразном состоянии в первый бак (3).

14. Способ подачи по п. 12, в котором первое жидкое ракетное топливо представляет собой жидкий водород и второе жидкое ракетное топливо - жидкий кислород.



 

Похожие патенты:

Изобретение относится к ракетной технике, в которой создание жидкостных ракетных двигателей с донной тепловой защитой, предназначенной для уменьшения теплового и газодинамического воздействия продуктов сгорания работающих двигателей, является актуальной задачей.

Изобретение относится к устройствам для перемешивания и распыливания компонентов топлива жидкостного ракетного двигателя. Соосно-струйная форсунка, преимущественно для камеры жидкостного ракетного двигателя, содержит, наконечник с профилированным осевым каналом, соединяющим полость одного компонента топлива с полостью камеры сгорания, и втулку, охватывающую с кольцевым зазором наконечник и соединяющую полость другого компонента топлива с полостью камеры сгорания, при этом в выходной части наконечника выполнены пилоны, взаимодействующие с внутренней поверхностью втулки и центрирующие наконечник относительно втулки, причем на цилиндрической поверхности наконечника выполнены радиальные отверстия, равномерно расположенные по окружности и соединяющие осевой канал наконечника с внутренней полостью втулки.

Изобретение относится к энергетике. Устройство для нагрева текучей среды содержит первую горелку, обеспечивающую первое сгорание ограничивающего компонента топлива и избыточного компонента топлива, и первый модуль теплообменника, в котором первые газы сгорания, производимые в указанном первом сгорании, отдают тепло текучей среде.

Изобретение относится к жидкостным ракетным двигателям. Система подачи топлива в ракетном двигателе, содержащая контур (4) подачи топлива, дополнительно содержит устройство изменения объема газа в контуре (4), выполненное с возможностью изменения объема газа в контуре во время функционирования ракетного двигателя.

Изобретение относится к ракетно-космической технике. Уничтожаемая система подачи топлива для спутника включает работающий под давлением бак из алюминиевого сплава совместно с устройством управления топливом из алюминиевого сплава в нем.

Изобретение относится к области ракетного двигателестроения и может быть использовано в системах дренажа жидкостных ракетных двигателей (ЖРД) для удаления утечек топливных компонентов, паров и других отходов, выделяемых при функционировании агрегатов.

Изобретение относится к области жидкостных ракетных двигателей. В устройстве для защиты жидкостного ракетного двигателя от статического электричества, содержащем токопроводящие перемычки, закрепленные при помощи винтов и гаек одним концом к установочным элементам на корпусах пироклапанов, другим концом - к бобышкам на раме двигателя, пиропатроны, ввернутые в пироклапаны, бобышки заземления на раме, провода заземления, в котором согласно изобретению между резьбовой частью пиропатронов и ответной резьбой гнезда пироклапана, резьбой на корпусе пироклапана и резьбой тубуса пусковой ампулы газогенератора, а также в местах крепления перемычек и заземления нанесена токопроводящая эмаль, уменьшающая активное сопротивление электрической цепи и служащая одновременно средством контровки резьбовых соединений, с конструкциями узлов с пироклапанами соединены трубопроводы, к которым закреплены электрические перемычки, связанные с рамой двигателя при помощи крепежных элементов, на поперечной растяжке его рамы размещены по крайней мере две бобышки с подсоединенными к ним проводами заземления.

Изобретение относится к ракетно-космической технике и может быть использовано в жидкостных ракетных двигателях для монтажа 4 камер, ТНА, других агрегатов в единую двигательную установку и передачи создаваемой ею тяги на корпус ракеты.

Изобретение относится к ракетной технике и может быть использовано при изготовлении ракетных установок с четырехкамерным жидкостным ракетным двигателем. Жидкостный ракетный двигатель, включающий четыре камеры, закрепленные на раме, прикрепленный к раме турбонасосный агрегат, имеющий турбину, насосы окислителя и горючего, тепловую защиту, трубопроводы подачи окислителя и горючего в газогенератор и камеры двигателя, согласно изобретению, содержит раму, выполненную в виде цельносварной пространственной фермы, состоящей из привалочного и нижнего шпангоутов, соединенных между собой стержнями, при этом к нижнему шпангоуту прикреплены траверсы с подшипниками, в которые вставлены цапфы камер для их поворота вокруг оси качания, кроме того, двигатель содержит четыре изогнутых магистрали подачи окислительного газа, единый концевой коллектор которых соединен с выходом турбины, а восемь других колен - с соответствующими головками камер, причем в магистралях перпендикулярно оси качания камер расположены блоки гибких трубопроводов с сильфонами, одним стыком соединенные с неподвижной частью магистрали, а другим - с ее подвижной частью, входящей в качающийся в одной плоскости блок камеры.

Изобретение относится к ракетно-космической технике и может быть использовано для креплений разделительных устройств блоков ступеней ракет-носителей, устанавливаемых на теплозащитах двигателей.

Изобретение относится к ракетным двигателям малой тяги. Ракетный двигатель малой тяги на газообразных водороде и кислороде, состоящий из свечи зажигания топлива, смесительной головки, обеспечивающей смешение топлива и внутреннее охлаждение стенки камеры сгорания, камеры сгорания и сопла, в смесительной головке двигателя выполнены струйные форсунки типа струя в сносящем потоке кислорода, суммарные векторы потоков которых направлены в плоскости, перпендикулярной оси двигателя, навстречу друг другу.

Изобретение относится к двигателестроению и может быть использовано в конструкции жидкостных ракетных двигателей малой тяги (ЖРДМТ). ЖРДМТ, содержащий камеру 1, смесительную головку с внутренним днищем 2, осевую центробежную форсунку 3, периферийный пояс струйных форсунок 4, кольцевой конический дефлектор 5 между ними, при этом срез 6 центробежной форсунки углублен от выходной кромки 7 образующей поверхности дефлектора в сторону периферийного пояса струйных форсунок 4, полость камеры сгорания 8 над наружной поверхностью 9 дефлектора и полость 10 под внутренней поверхностью 11 дефлектора и внутренним днищем смесительной головки сообщены между собой каналами 12, которые смещены относительно отверстий форсунки на полшага (α/2).

Изобретение относится к жидкостным ракетным двигателям, работающим с дожиганием генераторного газа. Камера сгорания ЖРД, работающего с дожиганием генераторного газа, содержащая газовод, смесительную головку со смесительными элементами, корпус камеры и магистрали подвода компонентов топлива, согласно изобретению в районе минимального сечения камеры выполнен газовод тороидальной формы, полость которого с помощью оребренного тракта, выполненного на наружной стенке корпуса камеры и наружного днища головки, соединена со смесительными элементами головки.

Изобретение относится к области ракетных двигателей малой тяги (РДМТ), работающих на газообразных водороде (Н2) и кислороде (О2) в качестве исполнительных органов систем управления объектов ракетно-космической техники.

Изобретение относится к области ракетных двигателей малой тяги (РДМТ). Ракетный двигатель малой тяги, состоящий из головки двигателя, свечи зажигания топлива, системы подачи компонентов топлива в зону электроискрового разряда и в камеру сгорания с внутренним охлаждением, при этом в камере сгорания установлены центробежная форсунка водорода и не менее шести периферийных струйных форсунок кислорода с возможностью активного взаимодействия потока водорода и струй кислорода, при этом форсунки расположены равномерно по окружности на поверхности головки, и оси которых направлены под углом 35°-45° к оси двигателя.

Изобретение относится к области ракетных двигателей малой тяги (РДМТ), работающих на газообразных водороде (Н2) и кислороде (О2) в космическом пространстве в качестве исполнительных органов систем управления объектов ракетно-космической техники.

Изобретение относится к ракетным двигателям малой тяги. Двигатель содержит свечу зажигания поверхностного разряда 1, разрядную полость 2 свечи зажигания, диафрагму 3, каналы 4, соединяющие разрядную полость 2 свечи зажигания и ступень воспламенения устройства 5 (вторую ступень), первую ступень 6 двигателя с каналами 7 подачи водорода, вторую ступень 5 с каналами 8 подачи кислорода, третью ступень 9 с каналами 10 подачи водорода, четвертую ступень 11 с каналами 12 подачи кислорода и с каналами 13 для подачи кислорода в четвертую ступень 11 с целью охлаждения стенок камеры сгорания, образованной ступенями двигателя, и дозвуковой части сопла 14.

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании безгазогенераторных жидкостных ракетных двигателей (ЖРД), работающих на криогенных компонентах топлива.

Изобретение относится к устройствам для перемешивания и распыливания компонентов топлива жидкостного ракетного двигателя. Соосно-струйная форсунка, преимущественно для камеры жидкостного ракетного двигателя, содержит, наконечник с профилированным осевым каналом, соединяющим полость одного компонента топлива с полостью камеры сгорания, и втулку, охватывающую с кольцевым зазором наконечник и соединяющую полость другого компонента топлива с полостью камеры сгорания, при этом в выходной части наконечника выполнены пилоны, взаимодействующие с внутренней поверхностью втулки и центрирующие наконечник относительно втулки, причем на цилиндрической поверхности наконечника выполнены радиальные отверстия, равномерно расположенные по окружности и соединяющие осевой канал наконечника с внутренней полостью втулки.

Изобретение относится к области ракетной техники, а именно камерам жидкостных ракетных двигателей (ЖРД), и может быть использовано при создании высокоэкономичных смесительных головок и камер ЖРД для перспективных средств выведения.

Изобретение относится к жидкостным ракетным двигателям, в частности, к устройству для создания избыточного давления в первом резервуаре (2), содержащему по меньшей мере второй резервуар (3), выполненный с возможностью содержать в себе криогенную текучую среду, первый контур (13) создания избыточного давления для обеспечения сообщения между вторым резервуаром (3) и первым резервуаром (2), причем первый контур (13) создания избыточного давления содержит по меньшей мере первый теплообменник (15) для нагрева потока криогенной текучей среды, отводимого от второго резервуара (3) через первый контур (13) создания избыточного давления, и второй контур (14) создания избыточного давления с компрессором (31b), ответвляющийся от первого контура (13) создания избыточного давления и сообщающийся со вторым резервуаром (3).

Изобретение относится к области ракетных двигателей, более конкретно к системе подачи ракетного топлива в ракетный двигатель, включающей в себя первый бак, второй бак, первую систему питания, соединенную с первым баком, и вторую систему питания, соединенную со вторым баком. Для охлаждения ракетного топлива, содержащегося во втором баке, первая система питания включает в себя ответвление, проходящее через первый теплообменник, встроенный во второй бак. Изобретение также относится к способу подачи ракетного топлива в ракетный двигатель. Изобретение обеспечивает поддержание давления внутри баков выше минимального предела. 2 н. и 12 з.п. ф-лы, 9 ил.

Наверх