Способ определения места повреждения воздушных линий в распределительных сетях

Изобретение относится к электроизмерительной технике и может быть использовано для оперативного определения места однофазного замыкания на землю в распределительных сетях с изолированной или компенсированной нейтралью. Технический результат – расширение функциональных возможностей на основе определения места однофазного замыкания на землю в линии электропередачи при любом переходном сопротивлении в месте повреждения, не требующего при своей реализации стационарно установленной сложной системы. Для этого обеспечивают поочередную генерацию высокочастотного синусоидального сигнала в поврежденную и неповрежденную фазы с последующим определением резонансной частоты каждой из них. На основании поученных данных производят расчет расстояния до места повреждения по выражению: где ƒ1 - резонансная частота одной из неповрежденных фаз линии, Гц; ƒ2 - частота, определенная для поврежденной фазы линии, Гц; - длина неповрежденной фазы отходящей линии электропередачи, км. 3 ил.

 

Изобретение относится к электроизмерительной технике и может быть использовано для оперативного определения места однофазного замыкания на землю в распределительных сетях.

Известен способ определения мест повреждения линий электропередач распределительных сетей (см. патент РФ №2368912, кл. G01R 31/11, опубл. 27.09.2009 г.), основанный на том, что в исследуемую линию генерируют зондирующие импульсы, в качестве которых используют дискретно-кодированные сигналы. Принимают отраженные сигналы. Место повреждения определяют по отсутствию отраженного импульса с информационным признаком, индивидуализирующим, по меньшей мере, конкретное ответвление. В качестве информационного признака используют согласованную фильтрацию дискретно-кодированного сигнала на соответствующих концах линии.

К недостаткам известного способа можно отнести: малое напряжение зондирующего импульса, недостаточное для выявления дефектов изоляции; подверженность импульса явлениям затухания и искажения формы; непригодность применения при неустойчивых повреждениях линии и чувствительность к высокочастотным помехам.

Известен способ определения места повреждения на воздушных линиях электропередачи (см. патент РФ №2426998, кл. G01R 31/11, опубл. 20.08.2011 г.) по значениям мгновенного напряжения Uc на поврежденной фазе в момент возникновения однофазного замыкания на землю, суммарной емкости С0 нулевой последовательности всех линий, подключенных к шинам, максимальной амплитуде тока нулевой последовательности I0,max на поврежденной линии после возникновения однофазного замыкания на землю и погонному индуктивному сопротивлению Lпогонное нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, в соответствии с выражением .

Недостаткам известного способа можно отнести: повышенные требования к величине переходного сопротивления в месте повреждения; непригодность применения при неустойчивых повреждениях линии и чувствительность к высокочастотным помехам.

Наиболее близким по технической сущности заявляемого технического решения является способ, предложенный в патенте «Способ определения места повреждения изоляции в силовой линии электропередачи», патент RU 2413234, опубл. 27.02.2011 г.

В данном способе воздействуют высоковольтным зондирующим напряжением на исследуемую фазу одного из концов предварительно отключенной исследуемой силовой линии, создают колебательный контур из фазного провода линии и предварительно заряженного высоковольтного накопительного конденсатора и определяют расстояние до места повреждения изоляции по измеренному временному интервалу, кратному периоду возбужденного в линии колебательного процесса при известной емкости высоковольтного накопительного конденсатора, удельной индуктивности и активного сопротивления петли «фазный провод - земля» или по отношению временных интервалов поврежденной и неповрежденной фаз при известной длине линии.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа, заключаются в том, что при определении места повреждения производят сравнение на предварительно отключенной линии поврежденной и неповрежденной фаз при известной длине линии.

Основным отличием предложенного метода является использование высокочастотного генератора (например, выполненный на базе микросхемы AD9850 фирмы Analog Devices с подключением через настраиваемый каскад усилителей с частотным диапазоном от 1 кГц до 200 кГц) вместо заряженного конденсатора для создания условий резонанса. Компактные габариты высокочастотного генератора позволяют использовать данный способ в переносном устройстве и он может использоваться оперативными бригадами.

Недостатками прототипа являются: необходимость использования сложной стационарной системы, состоящей из предварительно заряженного конденсатора, коммутирующего устройства и системы диагностирования, что не позволяет использовать данный способ в переносном устройстве.

Задача изобретения - разработка способа определения места повреждения в силовой линии электропередачи при металлическом замыкании фазы на землю, не требующего при своей реализации стационарно установленной сложной системы.

Технический результат достигается за счет применения способа определения места однофазного замыкания на землю в распределительных сетях, заключающегося в поочередной генерации высокочастотного синусоидального сигнала в поврежденную и неповрежденную фазы с последующим определением резонансной частоты каждой из них, на основании которых происходит расчет расстояния до места повреждения по выражению

где x - расстояние от подстанции до места повреждения фазы линии, км;

ƒ1 - резонансная частота одной из неповрежденных фаз ВЛ, Гц;

ƒ2 - частота, определенная для поврежденной фазы ВЛ, Гц;

- длина неповрежденной фазы отходящей линии электропередачи, км.

Подключение высокочастотного генератора к неповрежденной фазе с известной длиной линии вызвана необходимостью определения параметров воздушной линии и в, частности, уточнения фазовой скорости распространения волны. Так, например, для воздушной линии 35 кВ на опорах У35-1Т+5 фазовая скорость распространения волны равна 281183 км/с. Поэтому, если при определении места повреждения фазы принять скорость распространения волны равной скорости света, то погрешность составит 6,27%. При длине линии 10 км диапазон нахождения места замыкания на землю составит примерно 600 метров. Сканирование высокой частотой неповрежденной фазы сокращает диапазон нахождения места повреждения до 50 м.

На фиг. 1 рассмотрена схема замещения длинной линии, где ег - электродвижущая сила высокочастотного генераторы, В; L0 - удельная индуктивность линии электропередачи, Гн/км; С0 - удельная емкость линии, Ф/км; Zн - комплексное сопротивление нагрузки, Ом.

На фиг. 2 представлен график распределения напряжения и тока вдоль линии, где U - огибающая амплитуд напряжения при частоте 28 118 Гц, В; I - огибающая амплитуд тока при частоте 28 118 Гц, А; x - расстояние до точки измерения, км. Кривая имеет ярко выраженный максимум, по которому и определяется место повреждения.

На фиг. 3 построена зависимость амплитудного значения тока I в начале линии от частоты источника питания ƒ1.

При синусоидальном напряжении источника питания напряжение в любой точке длинной линии можно представить в виде суммы двух слагаемых,

где - комплексная амплитуда прямой волны напряжения, В;

- комплексная амплитуда обратной волны напряжения, В;

γ - постоянная распространения.

Длина воздушных линий электропередачи напряжением 6-35 кВ находится в пределах 1-30 км. Поэтому для сканирования линий такой длины используется генератор, частота которого изменяется в пределах (200-1) кГц. При таких частотах воздушные линии электропередачи проявляют себя как линии с распределенными параметрами. При металлическом замыкании фазы на землю уравнения, описывающие электромагнитные процессы, имеют следующий вид

где - напряжение в начале линии;

- ток в начале линии;

- волновое сопротивление линии;

x - координата линии, отсчитывающая от ее начала;

- коэффициент фазы;

L0 - удельная индуктивность линии электропередачи, Гн/км;

С0 - удельная емкость линии, Ф/км.

В связи с тем, что удельное индуктивное сопротивление линии X0 во много раз больше удельного активного сопротивления линии R0 (X0>>R0), а удельная емкостная проводимость линии В0 во много раз больше удельной активной проводимости линии G00>>G0), то характеристики линии близки к характеристикам линии без потерь. Поэтому амплитуда отражения волны, примерно, равна амплитуде падающей волны, которые при наложении образуют стоячие волны. Ток в начале линии будет иметь максимальное значение, когда между длиной волны λ и расстоянием до места замыкания провода на землю x будет следующее соотношение

В связи с тем, что между частотой и длиной волны существует следующее соотношение

при изменении частоты и достижении при этом максимального значения тока в начале линии фактически определяется расстояние x до места замыкания фазы.

Предположим, что в воздушной линии, длина которой l=5 км, произошло однофазное замыкание на землю. Определим резонансную частоту неповрежденной фазы, при которой возникает эффект стоячих волн, и построим графики распределения напряжения и тока в линии при следующих параметрах линии:

удельное активное сопротивление - R0=0,6 Ом/км;

удельная активная проводимость - G0=0,000002 См/км;

удельная индуктивность линии - L0=0,00136 Гн/км;

удельная емкость линии - С0=9,3⋅10-9 Ф/км.

На основании уравнений (3-5) резонансная частота для воздушной линии длиной равна

В связи с тем, что фазовая скорость распространения волны вдоль линии неизвестна (зависит от параметров линии) для определения расстояния до места замыкания фазы на землю, необходимо провести два измерения. Первое измерение проводится для неповрежденной фазы, чтобы определить фазовую скорость распространения волны вдоль линии. Второе измерение проводится на поврежденной фазе с целью определения места замыкания по определенной ранее фазовой скорости распространения волны. Предположим, что при проведении измерений на поврежденной фазе получилась частота равная 36700 Гц.

Расстояние до места замыкания будет равно

Построим графики распределения тока и напряжения вдоль линии при частоте ƒРЕЗ=28118 Гц. Максимальные значения огибающих амплитуд напряжения и тока при частоте 28118 Гц соответственно равны: Um=50 В и Im=0,3 А.

Огибающие амплитудных значений напряжения и тока вдоль линии при частоте ƒ1=28118 Гц представлены на фиг. 2, что характерно режиму резонанса на неповрежденной фазе. При этом амплитудное значение тока в начале линии достигает максимального значения в результате того, что входное сопротивление линии при резонансной частоте ƒ1=28 118 Гц минимально. Напряжение, ток и входное сопротивление вдоль линии изменяются по периодическому закону с периодом λ/2. В связи с этим огибающая амплитудных значений напряжения при этом сдвинута относительно кривой тока на λ/4 и достигает своего максимального значения, когда амплитудное значение тока минимально.

На фиг. 3 представлена зависимость значения тока в начале линии от частоты источника питания, подключаемого в начале линии I=ƒ(ƒ1). Ток в начале линии достигает максимального значения при достижении режима резонанса ƒ1рез.

В предлагаемом способе отсутствует необходимость использовать сложные стационарные системы, что делает устройство простым в применении. Фактически устройство является переносным, подключается к поврежденной линии после ее отключения и может быть использовано оперативным персоналом.

Способ определение места однофазного замыкания на землю воздушных линий в распределительных сетях с изолированной или компенсированной нейтралью, заключающийся в отключении линии с однофазным замыканием на землю и поочередном сравнении неповрежденной и поврежденной фаз, отличающийся тем, что в каждой фазе определяют резонансную частоту с использованием генератора высокочастотного синусоидального сигнала, на основании полученных данных осуществляют расчет расстояния до места повреждения по выражению: ,

где

- резонансная частота одной из неповрежденных фаз линии, Гц;

- частота, определенная для поврежденной фазы линии, Гц;

- длина неповрежденной фазы отходящей линии электропередачи, км.



 

Похожие патенты:

Изобретение относится к электроэнергетике и может быть применено для оперативного получения сведений о грозовой обстановке и интенсивности грозовой деятельности на трассах высоковольтных воздушных линий электропередач (ВЛ).

Изобретение относится к электротехнике и предназначено для поиска участка с пониженным сопротивлением изоляции на землю в цепях постоянного оперативного тока электрических станций и подстанций.

Изобретение относится к электротехнике и может быть использовано для определения мест повреждения на кабельных линиях электропередачи и связи. Сущность: устройство содержит импульсный измеритель, радиотелефон, источник радиоактивного излучения, который установлен в центре свинцового контейнера в расположенном по его оси симметрии вертикальном канале.

Изобретение относится к контрольно-измерительной технике, в частности к способам контроля качества электрических контактов. Способ может быть использован для проведения диагностики и оценки качества электрических контактов в электрических цепях.

Изобретение относится к электроэнергетике и может быть использовано при создании приборов для определения места повреждений линий электропередачи и связи. Технический результат: обеспечение возможности обнружения слабых дефектов, расположенных вблизи основного дефекта.

Изобретение относится к электротехнике, в частности может быть применено для построения автоматических локационных показателей места повреждения ЛЭП. Технический результат: повышение точности.

Изобретение относится к электроизмерительной технике, и может быть использовано для генерирования гармонических сигналов в составе измерительного комплекса для реализации индукционного метода поиска и диагностики подземных коммуникаций.

Изобретение относится к электротехнике и направлено на поиск мест повреждения изоляции монтажа в сетях. Устройство включает генератор звуковой частоты, включенный между «землей» и проводом с пониженным сопротивлением изоляции, электроизмерительные клещи, подключенные к селективному приемнику. При этом генератор звуковой частоты содержит преобразователь частоты и фазы тока, имеет физическую линию связи, а селективный приемник дополнительно включает в себя приемник сигнала, передаваемого через физическую линию связи, компенсатор искажения фазы, устройство сравнения, индикаторы направления. Технический результат заключается в возможности определения направления места с поврежденной изоляцией монтажа в сетях при разветвленной схеме монтажа, при закольцованных системах питания и в случае ненулевого (до 100 кОм) сопротивления изоляции визуально. 1 ил.
Изобретение относится к электротехнике и может быть использовано для определения мест повреждения на кабельных линиях электропередачи и связи. Устройство содержит импульсный измеритель, радиотелефон, источник радиоактивного излучения, установленный в центре свинцового контейнера в расположенном по его оси симметрии вертикальном канале. В нижней части контейнера установлено затворное устройство, состоящее из крышки, по центру которой выполнен вертикальный узконаправленный выходной канал. При этом затвор своей правой торцевой частью упруго связан с крышкой распорной пружиной. На контейнере закреплен блок автономного управления, состоящий из реле времени, кнопки включения реле времени и аккумуляторной батареи, а к крышке жестко прикреплен выталкивающий электромагнит, состоящий из радиационно стойкой обмотки, подключенной к выходу реле времени, и стального стержня-якоря, жестко прикрепленного к левой стороне затвора, а в нижней правой части крышки установлен упор, расстояние от которого до оси симметрии вертикального канала контейнера выполнено равным расстоянию от оси симметрии вертикального проходного канала до правого края затвора. Техническим результатом является возможность снижения радиационного воздействия радиоактивного излучения на организм оператора, а также повышение точности определения места повреждения кабеля. 2 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для оперативного определения места однофазного замыкания на землю в распределительных сетях с изолированной или компенсированной нейтралью. Технический результат – расширение функциональных возможностей на основе определения места однофазного замыкания на землю в линии электропередачи при любом переходном сопротивлении в месте повреждения, не требующего при своей реализации стационарно установленной сложной системы. Для этого обеспечивают поочередную генерацию высокочастотного синусоидального сигнала в поврежденную и неповрежденную фазы с последующим определением резонансной частоты каждой из них. На основании поученных данных производят расчет расстояния до места повреждения по выражению: где ƒ1 - резонансная частота одной из неповрежденных фаз линии, Гц; ƒ2 - частота, определенная для поврежденной фазы линии, Гц; - длина неповрежденной фазы отходящей линии электропередачи, км. 3 ил.

Наверх