Способ ремонтно-изоляционных работ в скважине

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения ремонтно-изоляционных работ в скважине. Способ включает приготовление и закачивание изоляционной композиции в скважину, содержащей 25,0-60,0 мас.% ацетоноформальдегидной смолы и 15,0-25,0 мас.% 10%-ного раствора гидроксида натрия. При этом изоляционная композиция дополнительно содержит 25,0-50,0 мас.% омыленной древесной смолы. При этом сначала перемешивают ацетоноформальдегидную и омыленную древесную смолы, затем добавляют 10%-ный раствор гидроксида натрия и повторно перемешивают. Техническим результатом является повышение эффективности ремонтно-изоляционных работ, расширение технологических возможностей его применения за счет увеличения времени структурирования изоляционной композиции, ее высокой фильтруемости и сохранения проницаемости по нефти. 3 пр., 1 табл.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения ремонтно-изоляционных работ (РИР) в скважине.

Известен способ изоляции и ограничения водопритока в скважины [Патент RU №2349731, МПК Е21В 33/13, опубл. 20.03.2009 г., бюл. №8], включающий закачивание в скважину изоляционной композиции, содержащей формальдегидную смолу и инициатор отверждения при следующем соотношении компонентов, мас. %:

карбамидоформальдегидная или
ацетоноформальдегидная смола 20,0-70,0
оксиэтилированные изононилфенолы,
оксиэтилированные моноалкилфенолы или их смесь 0,5-4,0
натуральный или синтетический каучук или их смесь 0,05-50,0
инициатор полимеризации 0,5-3,0
вода остальное

В качестве инициаторов полимеризации для смол могут быть использованы, например, карбоновые кислоты и их соли - щелочной сток производства капролактама. Изоляционная композиция может содержать наполнители (минеральные порошки по ГОСТ 52129-2003, атактический пропилен по ГОСТ 23001-88, мел, глинопорошок по ТУ 5751-002-58156178-2002, портландцемент по ГОСТ 1581-96, древесную муку по ГОСТ 16361-87, сажу по ГОСТ 7885-86, эпоксидную смолу по ГОСТ 10587-93, резиновую крошку по ТУ 38-105590-84, серу по ГОСТ 127.1-93 и др.) и добавки (порошкообразный полиакриламид по ТУ 6-16-2532-810, полиакриламид DP9 81-77, полиэтиленоксид, карбоксиметилцеллюлозу, оксиэтилцеллюлозу, лигносульфонат по ТУ 61-04-225-79, изопропанол по ГОСТ 9805-76, этиловый спирт и реагент на основе метилового спирта (СНПХ-ИПГ-11 по ТУ 39-05765670-ОП-179-93), кубовые остатки производства бутиловых спиртов по ТУ 38.1021167-85).

Недостатками известного способа являются короткое время отверждения при температуре 25°С (до 5 ч 50 мин), а также то, что входящая в изоляционную композицию карбамидоформальдегидная смола имеет короткий срок хранения (два месяца со дня изготовления (ГОСТ 14231-88)).

Наиболее близким по технической сущности к заявляемому предложению является способ РИР, включающий закачивание в скважину ацетоноформальдегидной смолы (АЦФ), карбамидоформальдегидной смолы и отвердителя. В качестве отвердителя используют гидроксид натрия [Патент RU №2333347, МПК Е21В 33/138, опубл. 10.09.2008 г., бюл. №25]. Предлагаемую композицию закачивают в скважину при соотношении АЦФ к карбамидоформальдегидной смоле соответственно 1:0,02÷0,5 и щелочного отвердителя при следующем содержании компонентов, мас. %:

ацетоноформальдегидная смола 60-93
карбамидоформальдегидная смола 1,86-30
щелочной отвердитель 0,4-2
вода остальное

Недостатком известного способа является то, что входящая в изоляционную композицию карбамидоформальдегидная смола имеет короткий срок хранения (два месяца со дня изготовления (ГОСТ 14231-88)). Недостатком способа является и то, что он применим в основном для герметизации эксплуатационной колонны, так как при структурировании изоляционной композиции образуется твердая тампонажная масса, из-за низкой фильтруемости которой невозможно создать изоляционный экран большого радиуса, что отрицательно сказывается на качестве изоляции и сужает технологические возможности применения способа.

Техническими задачами предложения являются повышение эффективности ремонтно-изоляционных работ, расширение технологических возможностей его применения за счет увеличения времени структурирования изоляционной композиции, ее высокой фильтруемости и сохранения проницаемости по нефти.

Технические задачи решаются способом ремонтно-изоляционных работ в скважине, включающим приготовление и закачивание изоляционной композиции в скважину, содержащей ацетоноформальдегидную смолу и 10%-ный раствор гидроксида натрия.

Новым является то, что изоляционная композиция дополнительно содержит омыленную древесную смолу при следующем содержании компонентов, мас. %:

ацетоноформальдегидная смола 25,0-60,0
омыленная древесная смола 25,0-50,0
10%-ный раствор гидроксида натрия 15,0-25,0,

причем сначала перемешивают ацетоноформальдегидную и омыленную древесную смолы, затем добавляют 10%-ный раствор гидроксида натрия и повторно перемешивают.

Реагенты, применяемые в предложении:

- АЦФ, получаемая путем конденсации ацетона с формальдегидом, представляет собой водорастворимую однородную жидкость от светлого до коричневого цвета с массовой долей сухого остатка не менее 75%, с массовой долей свободного формальдегида не более 1,5%, плотностью не менее 1200 кг/м3;

- омыленная древесная смола (ОДС) - продукт лесохимического производства, производится путем омыления щелочью частично конденсированной (термообработанной) древесной смолы (натриевой соли абиетиновой кислоты), образующейся в процессе пиролиза древесины, представляет собой подвижную жидкость темного цвета с массовой долей основного вещества 50% и рН=11-12. Основным компонентом ОДС является смесь натриевых солей органических кислот;

- гидроксид натрия по ГОСТ Р 55064-1012 Натр едкий технический. Технические условия.

Сущность предложения заключается в следующем. До начала РИР в скважине определяют приемистость изолируемого интервала. Непосредственно перед закачиванием готовится изоляционная композиция: в первую половину мерника цементировочного агрегата ЦА-320М затаривают АЦФ, во вторую половину мерника - ОДС, содержимое двух половин мерника перемешивают в течение 10 мин и добавляют 10%-ный раствор гидроксида натрия, далее композицию перемешивают в течение 10 мин. Необходимое количество закачиваемой композиции зависит от удельной приемистости изолируемого интервала. Закачивают изоляционную композицию, например, по предварительно спущенным в скважину насосно-компрессорным трубам (НКТ) через пакер-ретейнер или с учетом оставления в скважине моста высотой не менее 20 м, продавливают ее, например, сточной водой, затем оставляют скважину на время структурирования композиции в течение 48 ч.

В изоляционной композиции роль АЦФ заключается в структурировании и увеличении адгезионных свойств. ОДС выполняет роль пластификатора и придает пластичность композиции. 10%-ный раствор гидроксида натрия является инициатором структурирования (полимеризации) изоляционной композиции. При структурировании композиции происходит процесс образования геля, что позволяет использовать его для изоляции притока воды.

Эффект ограничения притока воды от применения предлагаемого способа достигается не только от структурирования композиции, но и за счет влияния пластовой минерализованной воды, при контактировании с которой вязкость композиции возрастает и композиция увеличивается в объеме.

Требуемое количество компонентов и их соотношение в изоляционной композиции установлено опытным путем и представлено в таблице. Для подтверждения возможности осуществления предлагаемого изобретения в лабораторных условиях были проведены эксперименты по оценке времени структурирования изоляционной композиции. Время структурирования композиции определялось от момента смешивания компонентов композиции до момента потери ее подвижности (см. таблицу).

Для сравнения длительности структурирования в таблице представлены составы изоляционной композиции по наиболее близкому аналогу, содержащие АЦФ, с самым большим временем структурирования 8 ч 45 мин (№4) и самым коротким временем структурирования - 50 мин (№1). Составы изоляционной композиции предлагаемого способа по длительности структурирования (от 4 ч 10 мин до 20 ч 00 мин) превосходят составы по наиболее близкому аналогу (от 0 ч 50 мин до 8 ч 45 мин).

С целью подтверждения возможности использования предлагаемого способа РИР и его изолирующей способности были проведены модельные испытания на моделях пласта длиной 30 см и внутренним диаметром 2,7 см, заполненных кварцевым песком фракции 0,2-0,3 мм, которые позволяют моделировать закачку реагентов в пласт и вести непрерывный контроль за их расходом по схеме: «скважина-пласт» и «пласт-скважина». Первоначально у модели пласта, наполненной кварцевым песком, по формуле Дарси определяли исходную проницаемость моделей. Далее в модель пласта закачивали изоляционную композицию по предлагаемому способу или композицию, используемую в способе по наиболее близкому аналогу в объеме, равном поровому объему модели пласта. Модель оставляли на 48 ч с целью структурирования композиции. После этого определяли проницаемость по нефти и воде и вычисляли коэффициент изоляции через 48 ч, который характеризует степень закупоривания пор и снижение проницаемости модели. В таблице представлены результаты исследования водоизолирующей способности изолирующей композиции по заявленному способу и его наиболее близкого аналога, из которых следует, что наиболее оптимальные соотношения композиции в заявленном способе, имеющие высокие значения коэффициента изоляции водопритока и низкие по нефти, представлены в опытах №№2-7. Композиции №№1 и 8-10 не вошли в заявляемый диапазон ввиду непригодности для применения в РИР (№1 и №8-9 жидкие, т.е. структурирования не произошло, а №10 имеет очень короткий срок структурирования - 1 ч 20 мин).

По результатам, представленным в таблице, был выбран оптимальный диапазон изоляционной композиции при следующем содержании компонентов, мас. %:

ацетоноформальдегидная смола 25,0-60,0
омыленная древесная смола 25,0-50,0
10%-ный раствор гидроксида натрия 15,0-25,0

Композиция по предлагаемому способу применима не только для герметизации эксплуатационной колонны и ликвидации заколонного перетока, но и при этом эффективно изолирует водоприток, в отличие от изоляционной композиции по наиболее близкому аналогу проницаемость по нефти сохраняется.

Примеры практического применения.

Пример 1. Изоляция межпластового перетока по трещинам.

Способ осуществили в скважине с обсадной колонной диаметром 168 мм, интервал перфорации эксплуатационной колонны в скважине - 1033-1036 м. В скважину на глубину 1003 м спустили колонну НКТ с условным диаметром 73 мм. Определили приемистость скважины, которая составила 2,5 м3/(ч⋅МПа). Приготовление изоляционной композиции проводили с использованием цементировочного агрегата ЦА-320М. В первую половину мерника агрегата закачали 1 м3 (25 мас. %) АЦФ. Во вторую половину мерника агрегата закачали 2 м3 (50 мас. %) ОДС, содержимое обеих половин мерника агрегата перемешали и закачали туда же 1 м3 (25 мас. %) 10%-ного раствора гидроксида натрия. Далее в течение 10 мин перемешали и закачали полученную изоляционную композицию в скважину, после чего закачали 5,0 м3 сточной воды с целью продавливания композиции в интервал перфорации эксплуатационной колонны. Оставили скважину на реагирование в течение 48 ч. Далее провели контрольную промывку скважины от возможных остатков продуктов полимеризации изоляционной композиции со спуском колонны НКТ до забоя, освоили скважину, спустили подземное оборудование и ввели скважину в эксплуатацию. В результате проведенных работ обводненность продукции скважины снизилась на 19%, дебит нефти увеличился в 1,5 раза.

Пример 2. Герметизация эксплуатационной колонны.

Способ осуществили в скважине с обсадной колонной диаметром 146 мм, интервалом перфорации эксплуатационной колонны 1616-1618 м и нарушением целостности эксплуатационной колонны в интервале 1580-1581 м. Удельная приемистость нарушения составила 1,05 м3/(ч⋅МПа). Провели отключение интервала перфорации установкой пакера-пробки. В скважину на глубину 1550 м спустили колонну НКТ с условным диаметром 73 мм. Приготовление изоляционной композиции проводили с использованием цементировочного агрегата ЦА-320М. В первую половину мерника агрегата закачали 2,5 м3 (50 мас. %) АЦФ. Во вторую половину мерника агрегата закачали 1,5 м3 (30 мас. %) ОДС, содержимое обеих половин мерника агрегата перемешали и закачали туда же 1 м3 (20 мас. %) 10%-ного раствора гидроксида натрия. Далее в течение 10 мин перемешали и закачали полученную изоляционную композицию в скважину, после чего закачали 4,4 м3 сточной воды с целью продавливания композиции в нарушение. Оставили скважину на реагирование в течение 48 ч. Разбурили мост из изоляционного материала и пакер-пробку. Далее провели контрольную промывку скважины от возможных остатков продуктов полимеризации изоляционной композиции со спуском колонны НКТ до забоя, освоили скважину, спустили подземное оборудование и ввели скважину в эксплуатацию. В результате проведенных работ обводненность продукции скважины снизилась на 70%, дебит нефти увеличился в 3 раза.

Пример 3. Ликвидация заколонного перетока.

Способ осуществили в скважине с обсадной колонной диаметром 168 мм, интервалом перфорации эксплуатационной колонны 980-983 м и заколонным перетоком с глубины 998 м. Провели перфорацию специальных технологических отверстий в интервале 990-991 м. Удельная приемистость специальных отверстий составила 1,3 м3/(ч⋅МПа), сообщение между интервалом перфорации и специальными отверстиями отсутствовало. В скважину на колонне НКТ с условным диаметром 73 мм спустили пакер-ретейнер и посадили его на глубине 986 м. Изоляционную композицию приготовили с использованием цементировочного агрегата ЦА-320М. В первую половину мерника агрегата закачали 2 м3 (40 мас. %) АЦФ, во вторую - 2 м3 (40 мас. %) ОДС, содержимое обеих половин мерника агрегата перемешали и закачали туда же 1 м3 (20 мас. %) 10%-ного раствора гидроксида натрия. Далее в течение 10 мин перемешали и закачали полученную изоляционную композицию в скважину, после чего закачали 2,7 м3 сточной воды с целью продавливания композиции. Извлекли из пакера посадочное устройство, провели контрольную промывку и подняли колонну НКТ с посадочным устройством из скважины полностью. Оставили скважину на реагирование в течение 48 ч. Далее провели контрольную промывку скважины со спуском колонны НКТ до забоя, освоили скважину, спустили подземное оборудование и ввели скважину в эксплуатацию. В результате проведенных работ обводненность продукции скважины снизилась на 67%, дебит нефти увеличился в 1,2 раза.

Таким образом, применение способа позволяет повысить эффективность РИР, расширить технологические возможности его применения за счет увеличения времени структурирования изоляционной композиции, ее высокой фильтруемости и сохранения проницаемости по нефти.

Способ ремонтно-изоляционных работ в скважине, включающий приготовление и закачивание изоляционной композиции в скважину, содержащей ацетоноформальдегидную смолу и 10%-ный раствор гидроксида натрия, отличающийся тем, что изоляционная композиция дополнительно содержит омыленную древесную смолу при следующем содержании компонентов, мас.%:

ацетоноформальдегидная смола 25,0-60,0
омыленная древесная смола 25,0-50,0
10%-ный раствор гидроксида натрия 15,0-25,0,

причем сначала перемешивают ацетоноформальдегидную и омыленную древесную смолы, затем добавляют 10%-ный раствор гидроксида натрия и повторно перемешивают.



 

Похожие патенты:
Изобретение относится к области строительных материалов, в частности к составам комплексных добавок, используемых в производстве бетонов, строительных растворов, бетонных и железобетонных изделий, включая процессы цементирования нефтяных и газовых скважин.

Изобретение может найти применение в газовой и нефтяной промышленности при цементировании обсадных колонн эксплуатационных и глубоких разведочных скважин, при наличии в разрезе горных пород, склонных к гидроразрыву.

Изобретение относится к нефтедобывающей промышленности, в частности к реагентам для изоляции водопритоков в добывающих скважинах и блокады обводненных пластов в нагнетательных скважинах с целью повышения нефтеотдачи.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при заканчивании скважин для повышения продуктивности пласта, сложенного карбонатными коллекторами с трудноизвлекаемыми запасами нефти.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для снижения интенсивности притока воды в скважину. Технический результат - упрощение способа и повышение его экономической эффективности.

Изобретение относится к газовой промышленности, в частности к способам повышения продуктивности эксплуатационных скважин подземных хранилищ газа и снижения водонасыщенности призабойной зоны пласта с использованием физико-химических методов воздействия на пласт-коллектор.

Изобретение относится к газодобывающей промышленности, в частности к сухим смесям для приготовления состава для селективной водоизоляции в газовом пласте. Сухая смесь для приготовления состава для селективной водоизоляции в газовом пласте содержит, мас.

Изобретение относится к нефтяной промышленности, в частности к составам для ограничения водопритока в добывающей скважине, и может найти применение для выравнивания профиля приемистости нагнетательной скважины.

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности кислотной обработки карбонатных нефтяных коллекторов.

Изобретение относится к нефтегазовой промышленности, в частности к тампонажным смесям, и может быть использовано при одноступенчатом цементировании протяженных (более 2500 м) обсадных колонн, перекрывающих интервалы проницаемых пластов и пластов с низкими градиентами гидроразрыва при нормальных, умеренных и повышенных температурах.

Группа изобретений относится к скважинным жидкостям. Технический результат – повышение вязкости скважинной жидкости.
Изобретение относится к области строительных материалов, в частности к составам комплексных добавок, используемых в производстве бетонов, строительных растворов, бетонных и железобетонных изделий, включая процессы цементирования нефтяных и газовых скважин.

Настоящее изобретение относится к высококонцентрированным безводным аминным солям углеводородполиалкоксисульфатов, причем эти соли выбраны из группы замещенных аминов, предпочтительно - алканоламинов.

Изобретение может найти применение в газовой и нефтяной промышленности при цементировании обсадных колонн эксплуатационных и глубоких разведочных скважин, при наличии в разрезе горных пород, склонных к гидроразрыву.

Изобретение относится к нефтяной промышленности, в частности к способам выравнивания профиля приемистости нагнетательных скважин, и направлено на увеличение нефтеотдачи месторождений с карбонатными и терригенными коллекторами с повышенным содержанием карбонатов.

Изобретение относится к буровым растворам, используемым при бурении нефтяных скважин. Технический результат - повышение технологической эффективности бурового раствора и повышение качества вскрытия продуктивных терригенных коллекторов нефти и газа.

Настоящее изобретение относится к способам и композициям для ингибирования коррозии металлов, конкретно нержавеющих и дуплексных сталей. Коррозия металлических трубопроводов составами ингибиторов гидратообразования, в частности локализованная коррозия, уменьшается, когда состав ингибитора гидратообразования содержит эффективное количество по меньшей мере одной гидроксикислоты или эквивалента, выбранной из группы, состоящей из гидроксикислот, имеющих от 2 до 20 атомов углерода и по меньшей мере одну гидроксильную группу, и по меньшей мере один ион неорганического галогенида, а также не содержит метанол.

Изобретение относится к композиции и к способу цементирования обсадной колонны в стволе буровой скважины, с использованием водной цементирующей композиции, включающей: (а) воду, (b) цементирующую композицию, включающую (i) гидравлический цемент, (ii) гидрофобно-модифицированный полимер, (iii) диспергатор и необязательно (iv) одну или многие другие добавки, обычно добавляемые в водные цементирующие композиции, применимые для цементирования обсадных колонн в стволах буровых скважин.
Изобретение относится к способу извлечения битума из битуминозных песков. Способ извлечения битума включает стадию обработки битуминозных песков с помощью простого эфирамина гликоля, где обработка предназначена для битуминозных песков, извлеченных с помощью добычи на поверхности или добычи in situ, причем простой эфирамин гликоля имеет следующую структурную формулу: R-(OC2H4)x-NH2 или R-(OCH2CH(CH3))y-NH2, где R представляет собой С1-C6 алкильную или фенильную группу и x и y независимо равны 1-3.

Изобретение относится к композиции на основе поверхностно-активных веществ - ПАВ, ее получению и ее использованию при добыче нефти третичными методами. Композиция на основе ПАВ включает катионное ПАВ и анионо-неионогенное ПАВ и обладает значительно повышенной активностью на поверхности раздела фаз и стабильностью по сравнению с известными композициями.
Изобретение относится к производству проппантов - гранулированных расклинивающих агентов, используемых для проведения гидравлического разрыва нефтегазоносных пластов. Технический результат - уменьшение растворимости в смеси кислот, использование низкосортного железистого боксита и техногенных отходов производства, увеличение эффективности производства. Шихта для получения проппанта в виде гранул, включающая обожженный железистый боксит и спекающую добавку - по крайней мере один компонент из: известь негашеная или гидратная, доломит, мел, содержит указанный боксит с содержанием Fe2O3 5,5-35,0 мас. % и дополнительно - техногенные отходы производства проппанта: некондиционные высушенные и некондиционные обожженные гранулы и уловленную аспирационной системой и электрофильтрами пыль, при следующем соотношении компонентов, мас. %: указанный боксит с содержанием Fe2O3 5,5-35,0 мас. % - 10,0-75,0, некондиционные высушенные гранулы - 3,0-60,0, некондиционные обожженные гранулы 5,0-30,0, указанная пыль 5,0-40,0, указанная спекающая добавка 0,1-5,0. Способ получения проппанта в виде гранул с размерами 0,15-4,0 мм из указанной выше шихты, включающий помол шихты при подаче спекающей добавки в размольный агрегат со скоростью 0,5-10 кг/мин, определяемой частотой 3,0-50,0 Гц, гранулирование в смесителе-грануляторе со связующим, сушку полученных гранул, их рассев, обжиг, охлаждение и рассев на товарные фракции. Изобретение развито в зависимых пунктах формулы. 2 н. и 4 з.п.ф-лы, 1 ил., 1 табл., 12 пр.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения ремонтно-изоляционных работ в скважине. Способ включает приготовление и закачивание изоляционной композиции в скважину, содержащей 25,0-60,0 мас. ацетоноформальдегидной смолы и 15,0-25,0 мас. 10-ного раствора гидроксида натрия. При этом изоляционная композиция дополнительно содержит 25,0-50,0 мас. омыленной древесной смолы. При этом сначала перемешивают ацетоноформальдегидную и омыленную древесную смолы, затем добавляют 10-ный раствор гидроксида натрия и повторно перемешивают. Техническим результатом является повышение эффективности ремонтно-изоляционных работ, расширение технологических возможностей его применения за счет увеличения времени структурирования изоляционной композиции, ее высокой фильтруемости и сохранения проницаемости по нефти. 3 пр., 1 табл.

Наверх