Многослойные магниторезистивные нанопроволоки

Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации. Многослойные магниторезистивные нанопроволоки состоят из чередующихся ферромагнитных и медных слоев, при этом в качестве ферромагнитных слоев используются слои никель-железо с толщинами 10-30 нм, а толщины медных слоев – 2-5 нм и суммарное количество пар слоев от 100 до 10 000. Технический результат - получение многослойных магниторезистивных нанопроволок NiFe/Cu с коэффициентами ГМР -18.4…-19.2% и величиной поля насыщения ГМР эффекта 0,001-0,0015 Тл. 3 пр., 3 ил.

 

Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации.

Металлические многослойные низкоразмерные структуры являются в настоящее время одними из наиболее интересных объектов исследования. Благодаря их уникальным магнитным и электрическим свойствам, они находят широкое применение при создании устройств спинтроники. Особую роль здесь играет обнаруженный в них гигантский магниторезистивный эффект (ГМР). Природа этого эффекта обусловлена сильным различием коэффициентов рассеяния электронов проводимости с параллельной и антипараллельной ориентацией спинов относительно вектора намагниченности ферромагнитных слоев. Практический интерес к многослойным структурам обусловлен возможностью их использования в качестве сенсоров магнитного поля, чувствительных элементов головок записи-считывания магнитной информации, решения различного типа задач магнитометрии - определения местоположения объекта по магнитному полю Земли, измерения бесконтактным способом угла поворота и линейного перемещения, распознавания образа ферромагнитных объектов.

В основе практического использования многослойных нанопроволок лежат два основных принципа. Первый, основывается на том факте, что пространственная ориентация спинов электронов в ферромагнитных слоях (наноразмерной величины) многослойных нанопроволок «ферромагнетик/диамагнетик» определяется величинами и направлениями протекающих по ним спин-поляризованных токов, дефектностью ферромагнитных слоев, составом и состоянием межфазных границ. Это позволяет с помощью электрического поля управлять магнитной структурой ферромагнитных нанослоев. Второй принцип обусловлен тем, что инжекция спин-поляризованых электронов в диамагнитные слои создает в них неравновесную намагниченность, позволяющую влиять на величину спинового тока через диамагнитные прослойки за счет изменения их толщины и состава.

Известны многослойные структуры Co/Cu (D.W. Lee, D.J. Kim, US Patent 6,912,770 B2 (05.07.2005) / Application Number: 10/316,783 (11.12.2002)) для использования в качестве сенсоров магнитного поля. Для согласования с полупроводниковыми устройствами на подложки Та, TaN, TiN или WN методом химического парофазного осаждения (CVD-метод) наносят барьерный слой Cu (толщиной от 10 до 100 нм). Далее методом напыления на барьерный слой Cu наносят пленку ферромагнетика (в частности Со), с варьируемыми толщинами (от 10 до 1000 нм). На поверхность пленки Со наносят фоточувствительный материал (фоторезист). После чего он селективно протравливается вместе с пленкой Со, образуя «траншеи». Т.о. на подложке формируются полосы Со (ширина 0.05-1 мкм, толщина 0.05-1 мкм). После этого в гальваностатическом режиме «траншеи» заполняются диамагнетиком (в частности Cu). После этого методом механохимического полирования доводят многослойную структуру Со/Cu до необходимой толщины и параллельности поверхностей и далее на верхнюю поверхность наносят слой диэлектрика.

Недостатком данного материала является то, что процесс формирования многослойной структуры сопряжен с большим количеством технологических операций, что негативно сказывается на объемах и скорости выпускаемой продукции. Так же, ширина слоев диамагнитного металла зависит от параметров шаблона (в процессе селективного протравливания), и при этом невозможно получить слои Сu шириной менее 0.05 мкм.

Известены многослойные нанопроволоки системы Co/Cu (Х.-Т. Tang, et al, J of Appl. Phys., 2006, V. 99, 033906-1-033906-7). Многослойные нанопроволоки формируются в порах оксида алюминия методом электроосаждения из комбинированного электролита в потенциостатическом режиме. Поочередно формируются слои металлов Со и Cu. Диаметр пор составляет 300 нм. Максимальный эффект ГМР в 13.5% при комнатной температуре достигается при соотношении толщин слоев кобальта и меди 8 нм/10 нм. При этом величина поля насыщения ГМР эффекта составляла 0.28-0.38 Тл.

Недостатком данного материала является относительно высокая коэрцитивная сила чистого кобальта, что обуславливает высокие значения полей насыщения (0.28-0.38 Тл) ГМР эффекта в многослойных нанопроволоках Со/Cu.

Наиболее близкими к предложенному материалу являются многослойные магниторезистивные нанопроволоки, состоящие из чередующихся ферромагнитных слоев - CoNi и слоев меди - Cu, формируемые методом электролитического осаждения (Патент BY 19142 «Способ получения многослойных нанопроволок для сенсоров магнитного поля», Грабчиков С.С., Труханов А.В., Шарко С.А., от 30.04.2015). В качестве прототипа нами принят материал на основе многослойных нанопроволок CoNi/Cu, формирующихся методом электролитического осаждения в потенциостатическом режиме из комбинированного электролита в поры матриц анодного оксида алюминия диаметром 100±10 нм. Толщина каждого ферромагнитного и медного слоя составляет 25±1 нм и 2±0,3 нм соответственно.

Недостатком данного материала является относительно невысокий (по сравнению с предлагаемым материалом) коэффициент ГМР (-15,3%) и значительная величина поля насыщения ГМР эффекта (0.03-0.05 Тл).

Технический результат - получение многослойных магниторезистивных нанопроволок NiFe/Cu с коэффициентами ГМР -18.4…-19.2% и величиной поля насыщения ГМР эффекта 0,001-0,0015 Тл.

Технический результат достигается тем, что в качестве ферромагнитных слоев используются слои NiFe с толщинами 10-30 нм, а толщины медных слоев - 2-5 нм и суммарное количество пар слоев от 100 до 10 000.

Сущность изобретения состоит в следующем. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Электроосаждение осуществляют с помощью программно-аппаратного комплекса на базе потенциостата ПИ-50-1.1 (ГОСТ 22261-82) с электрохимической ячейкой и программатора ПР-8 с (ГОСТ 25272-14), предназначенного для задания сигнала. Электрод сравнения хлорсеребряный ЭВЛ-1М 3.1 (ТУ25-05 (1Е2.840.217)-78), имеющий потенциал 201±3 мВ относительно нормального водородного электрода предназначен для задания и поддержания потенциала осаждения при работе в потенциостатическом режиме. Силу тока в электрической цепи контролируют амперметром М325-1,5 (ГОСТ 871 1-93), имеющим класс точности 0.2. Для получения многослойных нанопроволок используют метод импульсного электроосаждения (А V Trukhanov, S S Grabchikov, S A Sharko, S V Trukhanov, К L Trukhanova, О S Volkova, and A Shakin, Magnetotransport properties and calculation of the stability of GMR coefficients in CoNi/Cu multilayer quasi-one-dimension structures, Materials research express Vol. 3, №6, (2016)) из комбинированного электролита. Принцип данного метода основан на том, что ферромагнитные металлы группы железа (Fe, Co. Ni, а также их сплавы) и благородные металлы (Cu, Ag, Au, Pt) могут быть использованы соответственно в качестве ферромагнитных и диамагнитных слоев. Получение многослойных нанопроволок методом электролитического осаждения из одного и того же электролита основывается на том факте, что равновесный потенциал восстановления ионов ферромагнитных и благородных металлов отличается более чем на 400 мВ. Поэтому при малых потенциалах осаждения будут восстанавливаться только такие металлы, как Cu, Ag и т.д. При более отрицательных потенциалах осаждаются как Cu, так и ферромагнитные металлы или их сплавы. Но если задавать концентрацию ионов Cu в электролите намного меньше, чем концентрация ферромагнитных ионов (порядка 1% от концентрации ионов магнитного металла), то из-за диффузионных затруднений переноса ионов Cu к катоду скорость осаждения слоев Cu будет ограничена, независимо от величины прикладываемого потенциала.

Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; Н3 BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель).

Соотношение по концентрациям солей NiSO4⋅7H2O и FeSO4⋅7H2O (210/15 г/л) в электролите было обусловлено тем, что при данной концентрации формируются составы сплавов (Ni80Fe20) с минимальной коэрцитивной силой и максимальными значениями магнитной проницаемости.

Режимы осаждения многослойных нанопроволок были следующими: ϕNiFe=-1.8…-2.3 В; ϕCu=-0.2-0.4 В. При этих условиях средняя скорость осаждения отдельных слоев составляет VNiFe=~8-10 нм/с; vCu=~0.1-0.5 нм/с. Толщина ферромагнитного слоя составляет 10-30 нм, толщина слоя Си составляет 2-5 нм. Толщина матрицы оксида алюминия составляет ~2-120 мкм. Диаметр пор в матрицах ~100±10 нм.

Коэффициент ГМР многослойных нанопроволок рассчитывался на основе данных измерений электрического сопротивления двухконтактным методом при фиксированных значениях магнитных полей в интервале до 0.13 Тл при комнатной температуре по следующей формуле:

где R(B) - электрическое сопротивление многослойных нанопроволок NiFe/Cu во внешнем магнитном поле В, R0 - электрическое сопротивление многослойных нанопроволок NiFe/Cu без магнитного поля.

Пример 1

Многослойные магниторезистивные нанопроволоки NiFe/Cu с толщинами слоев: ферромагнитный слой NiFe 20 нм; диамагнитный слой Cu - 2 нм; суммарное количество пар слоев NiFe/Cu - 1000; суммарная толщина матриц анодного оксида алюминия - 20-25 мкм. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; H3BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель). Режимы осаждения многослойных нанопроволок: ϕNiFe=-1.8…-2.3В; ϕCu=-0.2-0.4В. При этих условиях средняя скорость осаждения отдельных слоев составляет vNiFe=~8-10 нм/с; vCu=~0.1-0.2 нм/с. Время осаждения одного парциального ферромагнитного слоя NiFe - 1,6-2 с. Время осаждения одного парциального диамагнитного слоя Cu - 4-8 с. Коэффициент ГМР составляет -18,7%. Величина поля насыщения ГМР эффекта - 0,0013 Тл (Фиг. 1)

Пример 2

Многослойные магниторезистивные нанопроволоки NiFe/Cu с толщинами слоев: ферромагнитный слой NiFe 30 нм; диамагнитный слой Cu - 5 нм; суммарное количество пар слоев NiFe/Cu - 1000; суммарная толщина матриц анодного оксида алюминия - 35-38 мкм. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; H3BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель). Режимы осаждения многослойных нанопроволок: ϕNiFe=-1.8…-2.3В; ϕCu=-0.2-0.4В. При этих условиях средняя скорость осаждения отдельных слоев составляет vNiFe=~8-10 нм/с; vCu=~0.1-0.2 нм/с. Время осаждения одного парциального ферромагнитного слоя NiFe - 3-3,75 с. Время осаждения одного парциального диамагнитного слоя Cu - 12,5-25 с. Коэффициент ГМР составляет -18,4%. Величина поля насыщения ГМР эффекта - 0,0015 Тл (Фиг. 2)

Пример 3

Многослойные магниторезистивные нанопроволоки NiFe/Cu с толщинами слоев: ферромагнитный слой NiFe 30 нм; диамагнитный слой Cu - 2 нм; суммарное количество пар слоев NiFe/Cu - 1000; суммарная толщина матриц анодного оксида алюминия - 30-35 мкм. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; H3BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель). Режимы осаждения многослойных нанопроволок: ϕNiFe=-1.8…-2.3В; ϕCu=-0.2-0.4В. При этих условиях средняя скорость осаждения отдельных слоев составляет vNiFe=~8-10 нм/с; vCu=~0.1-0.2 нм/с. Время осаждения одного парциального ферромагнитного слоя NiFe - 3-3,75 с. Время осаждения одного парциального диамагнитного слоя Cu - 5-10 с. Коэффициент ГМР составляет - 19,2%. Величина поля насыщения ГМР эффекта - 0,0013 Тл (Фиг. 3)

Многослойные магниторезистивные нанопроволоки, состоящие из чередующихся ферромагнитных и медных слоев, отличающиеся тем, что ферромагнитные слои выполнены в виде слоев NiFe с толщиной 10-30 нм, а медные слои - с толщиной 2-5 нм, при этом суммарное количество пар слоев составляет от 100 до 10 000.



 

Похожие патенты:
Изобретение относится к области гальванотехники и может быть использовано в производстве печатных плат и других компонентов электронных устройств. Способ электролитического осаждения медных покрытий из электролита, содержащего пентагидрат сульфата меди и серную кислоту, с использованием реверсивного импульсного тока, заключается в том, что концентрация пентагидрата сульфата меди составляет 80-250 г/л, концентрация серной кислоты 100-150 г/л, плотность тока в катодных импульсах составляет 2,5-4,0 А/дм2, плотность тока в анодных импульсах составляет 2,5-10,0 А/дм2, длительность катодных импульсов 100-300 с, длительность анодных импульсов 30-100 с, при одновременном соблюдении условия, чтобы отношение произведения длительности катодного импульса и катодной плотности тока к произведению длительности анодного импульса и анодной плотности тока находилось в пределах 2,0-3,0.
Изобретение относится к области гальванотехники и может быть использовано при нанесении покрытий с повышенной твердостью и износостойкостью. Способ включает нанесение покрытия из электролита, содержащего сульфат никеля семиводный, аминоуксусную кислоту, хлорид-ион, гипофосфит натрия одноводный, сахарин и лаурилсульфат натрия, при плотности тока 2–7 А/дм2 с использованием симметричного реверсивного тока, причем длительность анодных импульсов составляет 1–6 с, а длительность катодных – 3–10 с, при их соотношении в пределах 0,20–0,75, из электролита, содержащего сульфат никеля семиводный 120–170 г/л, аминоуксусную кислоту 12–20 г/л, хлорид–ион 4–7 г/л, гипофосфит натрия одноводный 4–7 г/л, сахарин 1,5–2,5 г/л и лаурилсульфат натрия 0,05–0,1 г/л, при pH 2,2–2,6 и температуре электролита 48–53°С.

Изобретение относится к области электрохимических методов очистки водных растворов от анионов и катионов и может быть использовано для очистки природных вод, стоков металлургической, машиностроительной и других отраслей промышленности.
Изобретение относится к области гальванотехники и может быть использовано для нанесения медных покрытий на профилированные изделия. Способ включает электроосаждение медного покрытия из электролита, содержащего соль меди и серную кислоту, с использованием реверсивного тока, при этом электролиз ведут при плотности тока в катодных и анодных импульсах 200-1000 А/м2, частоте пульсации тока от 0,05 до 1 Гц, отношении длительности катодных и анодных импульсов от 2:1 до 5:1, при этом электролит дополнительно содержит пероксид водорода, содержание которого с помощью потенциала индикаторного платинового электрода контролируют в пределах от +0,7 до +0,8 В относительно стандартного водородного электрода.

Изобретение относится к способу нанесения покрытия из металлических сплавов с применением гальванической технологии. .

Изобретение относится к области гальваностегии, а именно: к процессам нанесения никелевого покрытия на поверхность металлического изделия. .
Изобретение относится к гальваностегии и может быть использовано для получения кобальта электролитическим способом, а также может найти применение в областях техники, в которых предъявляются требования высокой коррозионной стойкости, твердости и магнитных свойств.

Изобретение относится к области гальванотехники и может быть использовано для антикоррозионной защиты внутренней поверхности металлических труб в условиях работы с агрессивными средами.

Изобретение относится к области машиностроения, а именно к способам получения гальванических покрытий с последующей термообработкой для защиты от коррозии стальных изделий.

Изобретение относится к области гальванотехники и может быть использовано для изготовления распылителей жидкости с регулируемым размером капель жидкости. В одном из воплощений способ изготовления дырчатой пластины включает осаждение отделяемого затравочного слоя поверх подложки, нанесение первой фотолитографической маски с рисунком поверх отделяемого затравочного слоя, причем первая фотолитографическая маска с рисунком включает негативное изображение требуемой схемы расположения отверстий, электролитическое осаждение первого материала поверх открытых участков отделяемого затравочного слоя, определенных первой маской, нанесение второй фотолитографической маски поверх первого материала, причем вторая фотолитографическая маска включает негативное изображение первой полости, электролитическое осаждение второго материала поверх открытых участков первого материала, определенных второй маской, удаление обеих масок и травление отделяемого затравочного слоя для освобождения первого материала и второго материала.
Изобретение относится к области машиностроения, а именно к способам получения комбинированных покрытий для защиты от коррозии деталей из низко- и среднелегированных сталей различной прочности.

Изобретение относится к восстановлению изношенных деталей машин и механизмов путем нанесения на их поверхность гальванических железных покрытий, обладающих повышенной износостойкостью.
Изобретение относится к триботехнике, машиностроению и приборостроению и может быть использовано при формировании многофункциональных покрытий на поверхностях фрикционных пар при гальванических способах осаждения в магнитном поле для обеспечения антифрикционных, механических (упругих, прочностных) свойств.

Изобретение относится к области технологии машиностроения и может быть использовано для получения качественных многослойных покрытий большой толщины на поверхностях гидроцилиндров, штоков и т.п., а также при восстановлении изношенных участков деталей.

Изобретение относится к общему машиностроению и может быть использовано для обеспечения эксплуатационных характеристик покрытий на поверхностях деталей машин и режущих инструментов.

Изобретение относится к области нанесения на алюминий металлических покрытий, в частности медных, гальваническим способом. .
Изобретение относится к непрерывной разливке металлов, а именно к элементу кристаллизатора для непрерывной разливки металлов, содержащему охлаждаемую стенку из меди или медного сплава, контактирующую с жидким металлом и имеющую на своей наружной поверхности металлическое покрытие.
Изобретение относится к способу нанесения нескольких слоев гальванических покрытий на изделия из магния и его сплавов для обеспечения их различных функциональных свойств.

Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации. Многослойные магниторезистивные нанопроволоки состоят из чередующихся ферромагнитных и медных слоев, при этом в качестве ферромагнитных слоев используются слои никель-железо с толщинами 10-30 нм, а толщины медных слоев – 2-5 нм и суммарное количество пар слоев от 100 до 10 000. Технический результат - получение многослойных магниторезистивных нанопроволок NiFeCu с коэффициентами ГМР -18.4…-19.2 и величиной поля насыщения ГМР эффекта 0,001-0,0015 Тл. 3 пр., 3 ил.

Наверх