Устройство кодирования видео, устройство декодирования видео, способ кодирования видео и способ декодирования видео

Группа изобретений относится к технологиям кодирования/декодирования видео, которые осуществляют прогнозирование в отношении восстановленного изображения и выполняют сжатие данных посредством квантования. Техническим результатом является повышение эффективности декодирования видео для декодирования блоков изображения, используя размер шага квантования. Предложено устройство декодирования видео для декодирования блоков изображения, используя размер шага квантования. Устройство содержит первое средство получения для получения первого размера шага квантования, который управляет степенью детализации обратного квантования, причем упомянутый размер шага квантования назначается соседнему блоку изображения, который уже декодирован. Устройство также содержит второе средство получения для получения второго размера шага квантования, который управляет степенью детализации обратного квантования, причем второй размер шага квантования назначается блоку изображения, который был декодирован непосредственно перед. Средство выбора для выбора первого размера шага квантования или второго размера шага квантования. 3 н.п. ф-лы, 27 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Настоящее изобретение относится к методике кодирования видео, и в частности, к методике кодирования видео, которая осуществляет прогнозирование в отношении восстановленного изображения и выполняет сжатие данных посредством квантования.

УРОВЕНЬ ТЕХНИКИ

[0002] Типичное устройство кодирования видео выполняет процесс кодирования, который соответствует предварительно определенной схеме кодирования видео, чтобы формировать кодированные данные, т.е. поток битов. В ISO/IEC 14496-10, стандарте усовершенствованного кодирования видео (AVC), описанном в непатентном документе (NPL) 1 в качестве характерного примера предварительно определенной схемы кодирования видео, каждый кадр разделяется на блоки размера 16×16 пикселов, называемые MB (макроблоками), и каждый MB дополнительно разделяется на блоки размера 4×4 пикселов, задавая MB в качестве минимальной единицы кодирования. Фиг. 23 показывает пример разделения на блоки в случае, если цветовой формат кадра представляет собой формат 4:2:0 YCbCr, а пространственное разрешение представляет собой QCIF (четверть общего промежуточного формата).

[0003] Каждый из разделенных блоков изображений вводится последовательно в устройство кодирования видео и кодируется. Фиг. 24 является блок-схемой, показывающей пример структуры типичного устройства кодирования видео для формирования потока битов, который соответствует AVC. Ссылаясь на фиг. 24, ниже описывается структура и работа типичного устройства кодирования видео.

[0004] Устройство кодирования видео, показанное на фиг. 24, включает в себя преобразователь 101 частоты, квантователь 102, кодер 103 с переменной длиной кода, контроллер 104 квантования, обратный квантователь 105, обратный преобразователь 106 частоты, запоминающее устройство 107 кадров, модуль 108 внутрикадрового прогнозирования, модуль 109 межкадрового прогнозирования и модуль 110 выбора прогнозирования.

[0005] Входное изображение в устройство кодирования видео вводится в преобразователь 101 частоты в качестве изображения ошибки прогнозирования после того, как прогнозное изображение, предоставляемое из модуля 108 внутрикадрового прогнозирования или модуля 109 межкадрового прогнозирования через модуль 110 выбора прогнозирования, вычитается из входного изображения.

[0006] Преобразователь 101 частоты преобразует входное изображение ошибки прогнозирования из пространственной области в частотную область и выводит результат в качестве коэффициентного изображения.

[0007] Квантователь 102 квантует коэффициентное изображение, предоставляемое из преобразователя 101 частоты, с использованием размера шага квантования, предоставляемого из контроллера 104 квантования, управляющего степенью детализации квантования, и выводит результат в качестве квантованного коэффициентного изображения.

[0008] Кодер 103 с переменной длиной кода энтропийно кодирует квантованное коэффициентное изображение, предоставляемое из квантователя 102. Кодер 103 с переменной длиной кода также кодирует вышеуказанный размер шага квантования, предоставляемый из контроллера 104 квантования, и параметр прогнозирования изображений, предоставляемый из модуля 110 выбора прогнозирования. Эти фрагменты кодированных данных мультиплексируются и выводятся из устройства кодирования видео в качестве потока битов.

[0009] Здесь, процесс кодирования для размера шага квантования в кодере 103 с переменной длиной кода описывается со ссылкой на фиг. 25. В кодере 103 с переменной длиной кода кодер размеров шагов квантования для кодирования размера шага квантования включает в себя буфер 10311 размеров шагов квантования и энтропийный кодер 10312, как показано на фиг. 25.

[0010] Буфер 10311 размеров шагов квантования запоминает размер Q(i-1) шага квантования, назначаемый предыдущему блоку изображений, кодированному непосредственно перед блоком изображений, который должен быть кодирован.

[0011] Как показано в следующем уравнении (1), предыдущий размер Q(i-1) шага квантования, предоставляемый из буфера 10311 размеров шагов квантования, вычитается из входного размера Q(i) шага квантования, и результат вводится в энтропийный кодер 10312 в качестве размера dQ(i) разности шагов квантования.

[0012] dQ(i)=Q(i)-Q(i-1)…(1)

[0013] Энтропийный кодер 10312 энтропийно кодирует входной размер dQ(i) разности шагов квантования и выводит результат в качестве кода, соответствующего размеру шага квантования.

[0014] Выше описан процесс кодирования для размера шага квантования.

[0015] Контроллер 104 квантования определяет размер шага квантования для текущего входного блока изображений. В общем, контроллер 104 квантования отслеживает выходную кодовую скорость кодера 103 с переменной длиной кода, чтобы повышать размер шага квантования, с тем, чтобы уменьшать выходную кодовую скорость для соответствующего блока изображений, или, наоборот, чтобы понижать размер шага квантования, с тем, чтобы увеличивать выходную кодовую скорость для соответствующего блока изображений. Увеличение или уменьшение размера шага квантования предоставляет возможность устройству кодирования видео кодировать входное движущееся изображение посредством целевой скорости. Определенный размер шага квантования предоставляется в квантователь 102 и кодер 103 с переменной длиной кода.

[0016] Квантованное коэффициентное изображение, выводимое из квантователя 102, обратно квантуется посредством обратного квантователя 105, чтобы получать коэффициентное изображение, которое должно использоваться для прогнозирования при кодировании последующих блоков изображений. Коэффициентное изображение, выводимое из обратного квантователя 105, задается обратно в пространственную область посредством обратного преобразователя 106 частоты для того, чтобы получать изображение ошибки прогнозирования. Прогнозное изображение суммируется с изображением ошибки прогнозирования, и результат вводится в запоминающее устройство 107 кадров и модуль 108 внутрикадрового прогнозирования в качестве восстановленного изображения.

[0017] Запоминающее устройство 107 кадров хранит восстановленные изображения кодированных кадров с изображениями, вводимых ранее. Кадры с изображениями, сохраненные в запоминающем устройстве 107 кадров, называются опорными кадрами.

[0018] Модуль 108 внутрикадрового прогнозирования обращается к восстановленным изображениям блоков изображений, кодированных ранее, в кадре с изображением, кодируемом в данный момент, чтобы формировать прогнозное изображение.

[0019] Модуль 109 межкадрового прогнозирования обращается к опорным кадрам, предоставляемым из запоминающего устройства 107 кадров, чтобы формировать прогнозное изображение.

[0020] Модуль 110 выбора прогнозирования сравнивает прогнозное изображение, предоставляемое из модуля 108 внутрикадрового прогнозирования, с прогнозным изображением, предоставляемым из модуля 109 межкадрового прогнозирования, выбирает и выводит одно прогнозное изображение, которое ближе ко входному изображению. Модуль 110 выбора прогнозирования также выводит информацию (называемую "параметром прогнозирования изображений") в отношении способа прогнозирования, используемого посредством модуля 108 внутрикадрового прогнозирования или модуля 109 межкадрового прогнозирования, и предоставляет информацию в кодер 103 с переменной длиной кода.

[0021] Согласно вышеуказанной обработке, типичное устройство кодирования видео кодирует со сжатием входное движущееся изображение, чтобы формировать поток битов.

[0022] Выходной поток битов передается в устройство декодирования видео. Устройство декодирования видео выполняет процесс декодирования таким образом, что поток битов должен быть распакован в качестве движущегося изображения. Фиг. 26 показывает пример структуры типичного устройства декодирования видео, которое декодирует поток битов, выводимый из типичного устройства кодирования видео, чтобы получать декодированное видео. Ссылаясь на фиг. 26, ниже описывается структура и работа типичного устройства декодирования видео.

[0023] Устройство декодирования видео, показанное на фиг. 26, включает в себя декодер 201 с переменной длиной кода, обратный квантователь 202, обратный преобразователь 203 частоты, запоминающее устройство 204 кадров, модуль 205 внутрикадрового прогнозирования, модуль 206 межкадрового прогнозирования и модуль 207 выбора прогнозирования.

[0024] Декодер 201 с переменной длиной кода декодирует на основе кода с переменной длиной кода входной поток битов, чтобы получать размер шага квантования, который управляет степенью детализации обратного квантования, квантованное коэффициентное изображение и параметр прогнозирования изображений. Вышеуказанные размер шага квантования и квантованное коэффициентное изображение предоставляются в обратный квантователь 202. Параметр прогнозирования изображений предоставляется в модуль 207 выбора прогнозирования.

[0025] Обратный квантователь 202 обратно квантует входное квантованное коэффициентное изображение на основе входного размера шага квантования и выводит результат в качестве коэффициентного изображения.

[0026] Обратный преобразователь 203 частоты преобразует коэффициентное изображение, предоставляемое из обратного квантователя 202, из частотной области в пространственную область и выводит результат в качестве изображения ошибки прогнозирования. Прогнозное изображение, предоставляемое из модуля 207 выбора прогнозирования, суммируется с изображением ошибки прогнозирования, чтобы получать декодированное изображение. Декодированное изображение не только выводится из устройства декодирования видео в качестве выходного изображения, но также и вводится в запоминающее устройство 204 кадров и модуль 205 внутрикадрового прогнозирования.

[0027] Запоминающее устройство 204 кадров хранит кадры с изображениями, декодированные ранее. Кадры с изображениями, сохраненные в запоминающем устройстве 204 кадров, называются опорными кадрами.

[0028] На основе параметра прогнозирования изображений, предоставляемого из декодера 201 с переменной длиной кода, модуль 205 внутрикадрового прогнозирования обращается к восстановленным изображениям блоков изображений, декодированных ранее, в кадре с изображением, декодируемом в данный момент, чтобы формировать прогнозное изображение.

[0029] На основе параметра прогнозирования изображений, предоставляемого из декодера 201 с переменной длиной кода, модуль 206 межкадрового прогнозирования обращается к опорным кадрам, предоставляемым из запоминающего устройства 204 кадров, чтобы формировать прогнозное изображение.

[0030] Модуль 207 выбора прогнозирования выбирает любое из прогнозных изображений, предоставляемых из модуля 205 внутрикадрового прогнозирования и модуля 206 межкадрового прогнозирования, на основе параметра прогнозирования изображений, предоставляемого из декодера 201 с переменной длиной кода.

[0031] Здесь, процесс декодирования для размера шага квантования в декодере 201 с переменной длиной кода описывается со ссылкой на фиг. 27. В декодере 201 с переменной длиной кода декодер размеров шагов квантования для декодирования размера шага квантования включает в себя энтропийный декодер 20111 и буфер 20112 размеров шагов квантования, как показано на фиг. 27.

[0032] Энтропийный декодер 20111 энтропийно декодирует введенный код и выводит размер dQ(i) разности шагов квантования.

[0033] Буфер 20112 размеров шагов квантования запоминает предыдущий размер Q(i-1) шага квантования.

[0034] Как показано в следующем уравнении (2), Q(i-1), предоставляемый из буфера 20112 размеров шагов квантования, суммируется с размером dQ(i) разности шагов квантования, сформированным посредством энтропийного декодера 20111. Суммированное значение не только выводится в качестве размера Q(i) шага квантования, но также и вводится в буфер 20112 размеров шагов квантования.

[0035] Q(i)=Q(i-1)+dQ(i)…(2)

[0036] Выше описан процесс декодирования для размера шага квантования.

[0037] Согласно вышеуказанной обработке, типичное устройство декодирования видео декодирует поток битов, чтобы формировать движущееся изображение.

[0038] Между тем, чтобы поддерживать субъективное качество движущегося изображения, которое должно быть сжато посредством процесса кодирования, контроллер 104 квантования в типичном устройстве кодирования видео, в общем, анализирует одно или оба из входного изображения и изображения ошибки прогнозирования, а также анализирует выходную кодовую скорость для того, чтобы определять размер шага квантования согласно визуальной восприимчивости человека. Другими словами, контроллер 104 квантования выполняет адаптивное квантование на основе визуальной восприимчивости. В частности, когда визуальная восприимчивость человека к текущему изображению, которое должно быть кодировано, определяется как высокая, размер шага квантования задается небольшим, тогда как когда визуальная восприимчивость определяется как низкая, размер шага квантования задается большим. Поскольку такое управление может назначать большую кодовую скорость области низкой визуальной восприимчивости, субъективное качество повышается.

[0039] В качестве технологии адаптивного квантования на основе визуальной восприимчивости, например, известно адаптивное квантование на основе сложности текстуры входного изображения, используемое в тестовой модели 5 (TM5) MPEG-2. Сложность текстуры обычно называют активностью. Патентный документ (PTL) 1 предлагает систему адаптивного квантования с использованием активности прогнозного изображения в сочетании с активностью входного изображения. PTL 2 предлагает систему адаптивного квантования на основе активности, которая учитывает краевые участки.

[0040] Когда используется технология адаптивного квантования на основе визуальной восприимчивости, это приводит к проблеме, если размер шага квантования часто меняется в кадре с изображением. В типичном устройстве кодирования видео для формирования потока битов, который соответствует AVC-схеме, разность от размера шага квантования для блока изображений кодируется непосредственно перед тем, как энтропийно кодируется блок изображений, который должен быть кодирован, при кодировании размера шага квантования. Следовательно, когда изменение размера шага квантования в направлении последовательности кодирования становится большим, возрастает скорость, требуемая для того, чтобы кодировать размера шага квантования. Как результат, кодовая скорость, назначаемая кодированию коэффициентного изображения, относительно уменьшается, и, следовательно, качество изображений ухудшается.

[0041] Поскольку направление последовательности кодирования является независимым от непрерывности визуальной восприимчивости на экране, технология адаптивного квантования на основе визуальной восприимчивости неизменно увеличивает кодовую скорость, требуемую для того, чтобы кодировать размер шага квантования. Следовательно, даже с использованием технологии адаптивного квантования на основе визуальной восприимчивости в типичном устройстве кодирования видео, ухудшение качества изображений, ассоциированное с увеличением кодовой скорости для размера шага квантования, может сводить на нет субъективное качество, повышенное посредством технологии адаптивного квантования, т.е. возникает проблема в том, что не может достигаться достаточное повышение качества изображений.

[0042] Чтобы разрешать эту проблему, PTL 3 раскрывает технологию для адаптивного задания диапазона квантования равным нулю, т.е. мертвой зоны согласно визуальной восприимчивости в пространственной области и частотной области вместо адаптивного задания размера шага квантования согласно визуальной восприимчивости. В системе, описанной в PTL 3, мертвая зона для коэффициента преобразования, определенного как низкий с точки зрения визуальной восприимчивости, имеет большую ширину, чем мертвая зона для коэффициента преобразования, определенного как высокий с точки зрения визуальной восприимчивости. Такое управление обеспечивает адаптивное квантование на основе визуальной восприимчивости без изменения размера шага квантования.

СПИСОК БИБЛИОГРАФИЧЕСКИХ ССЫЛОК

Патентные документы

[0043] PTL 1. Патент (Япония) номер 2646921

PTL 2. Патент (Япония) номер 4529919

PTL 3. Патент (Япония) номер 4613909

Непатентные документы

[0044] NPL 1. ISO/IEC 14496-10 Advanced Video Coding

NPL 2. "WD1: Working Draft 1 of High-Efficiency Video Coding", Document JCTVC-C403, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 3rd Meeting в Guangzhou, Китай, октябрь 2010 года

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая задача

[0045] Тем не менее, когда используется технология, описанная в PTL 3, квантование, адаптивное к визуальной восприимчивости, не может быть выполнено для коэффициентов преобразования, которые не попадают в мертвую зону. Другими словами, даже когда визуальная восприимчивость определяется как низкая, скорость коэффициентного кода для коэффициентов преобразования, которые не попадают в мертвую зону, не может быть уменьшена. Дополнительно, когда размер шага квантования увеличивается, значения коэффициентов преобразования после подвергания квантованию концентрируются около нуля, тогда как когда мертвая зона расширяется, коэффициенты преобразования, которые не попадают в мертвую зону, не концентрируются около нуля даже после подвергания квантованию. Другими словами, когда мертвая зона расширяется, эффективность энтропийного кодирования является недостаточной по сравнению со случаем, в котором размер шага квантования увеличен. По этим причинам можно сказать, что в типичной технологии кодирования существует проблема в том, что назначение кодовой скорости для высокой области визуальной восприимчивости не может быть увеличено в достаточной степени.

[0046] Настоящее изобретение осуществлено с учетом вышеизложенных проблем, и его первая цель заключается в том, чтобы предоставлять устройство кодирования видео и способ кодирования видео, допускающие частое изменение размера шага квантования в тоже время подавляя увеличение кодовой скорости, чтобы осуществлять кодирование высококачественных движущихся изображений. Вторая цель настоящего изобретения заключается в том, чтобы предоставлять устройство декодирования видео и способ декодирования видео, допускающие повторное формирование высококачественного движущегося изображения.

Решение задачи

[0047] Устройство кодирования видео согласно настоящему изобретению для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержит средство кодирования размеров шагов квантования для кодирования размера шага квантования, который управляет степенью детализации квантования, при этом средство кодирования размеров шагов квантования прогнозирует размер шага квантования, который управляет степенью детализации квантования, посредством использования размера шага квантования, назначаемого уже кодированному соседнему блоку изображений.

[0048] Устройство декодирования видео согласно настоящему изобретению для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержит средство декодирования размеров шагов квантования для декодирования размера шага квантования, который управляет степенью детализации обратного квантования, при этом средство декодирования размеров шагов квантования прогнозирует размер шага квантования, который управляет степенью детализации обратного квантования, посредством использования размера шага квантования, назначаемого уже декодированному соседнему блоку изображений.

[0049] Способ кодирования видео согласно настоящему изобретению для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержит прогнозирование размера шага квантования, который управляет степенью детализации квантования, посредством использования размера шага квантования, назначаемого уже кодированному соседнему блоку изображений.

[0050] Способ декодирования видео согласно настоящему изобретению для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержит прогнозирование размера шага квантования, который управляет степенью детализации обратного квантования, посредством использования размера шага квантования, назначаемого уже декодированному соседнему блоку изображений.

Полезные эффекты изобретения

[0051] Согласно настоящему изобретению, даже когда размер шага квантования часто изменяется в кадре с изображением, устройство кодирования видео может подавлять увеличение кодовой скорости, ассоциированной с ним. Другими словами, размер шага квантования может быть кодирован посредством меньшей кодовой скорости. Это разрешает такую проблему, что субъективное качество, повышенное посредством адаптивного квантования на основе визуальной восприимчивости, сводится на нет, т.е. может осуществляться кодирование высококачественных движущихся изображений. Дополнительно, согласно настоящему изобретению, поскольку устройство декодирования видео может декодировать часто изменяемый размер шага квантования посредством приема только небольшой кодовой скорости, высококачественное движущееся изображение может повторно формироваться посредством небольшой кодовой скорости.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0052] Фиг. 1 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в устройстве кодирования видео в первом примерном варианте осуществления настоящего изобретения.

Фиг. 2 иллюстрирует пояснительную схему, показывающую пример блока изображений, который должен быть кодирован, и соседних блоков изображений.

Фиг. 3 иллюстрирует блок-схему, показывающую декодер размеров шагов квантования в устройстве декодирования видео во втором примерном варианте осуществления настоящего изобретения.

Фиг. 4 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в устройстве кодирования видео в третьем примерном варианте осуществления настоящего изобретения.

Фиг. 5 иллюстрирует блок-схему, показывающую декодер размеров шагов квантования в устройстве декодирования видео в четвертом примерном варианте осуществления настоящего изобретения.

Фиг. 6 иллюстрирует пояснительную схему, показывающую направления прогнозирования для внутрикадрового прогнозирования.

Фиг. 7 иллюстрирует пояснительную схему, показывающую пример межкадрового прогнозирования.

Фиг. 8 иллюстрирует пояснительную схему, показывающую пример прогнозирования размера шага квантования с использованием вектора движения межкадрового прогнозирования в устройстве кодирования видео в третьем примерном варианте осуществления настоящего изобретения.

Фиг. 9 иллюстрирует блок-схему, показывающую структуру другого устройства кодирования видео согласно настоящему изобретению.

Фиг. 10 иллюстрирует блок-схему, показывающую характерный компонент в другом устройстве кодирования видео согласно настоящему изобретению.

Фиг. 11 иллюстрирует пояснительную схему списка, показывающего пример мультиплексирования параметров прогнозирования размеров шагов квантования.

Фиг. 12 иллюстрирует блок-схему, показывающую структуру другого устройства декодирования согласно настоящему изобретению.

Фиг. 13 иллюстрирует блок-схему, показывающую характерный компонент в другом устройстве декодирования видео согласно настоящему изобретению.

Фиг. 14 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в седьмом примерном варианте осуществления настоящего изобретения.

Фиг. 15 иллюстрирует блок-схему, показывающую декодер размеров шагов квантования в устройстве декодирования видео в восьмом примерном варианте осуществления настоящего изобретения.

Фиг. 16 иллюстрирует блок-схему, показывающую пример конфигурации системы обработки информации, допускающей реализацию функций устройства кодирования видео и устройства декодирования видео согласно настоящему изобретению.

Фиг. 17 иллюстрирует блок-схему, показывающую характерные компоненты в устройстве кодирования видео согласно настоящему изобретению.

Фиг. 18 иллюстрирует блок-схему, показывающую характерные компоненты в другом устройстве кодирования видео согласно настоящему изобретению.

Фиг. 19 иллюстрирует блок-схему, показывающую характерные компоненты в устройстве декодирования видео согласно настоящему изобретению.

Фиг. 20 иллюстрирует блок-схему, показывающую характерные компоненты в другом устройстве декодирования видео согласно настоящему изобретению.

Фиг. 21 иллюстрирует блок-схему последовательности операций способа, показывающую характерные этапы в способе кодирования видео согласно настоящему изобретению.

Фиг. 22 иллюстрирует блок-схему последовательности операций способа, показывающую характерные этапы в способе декодирования видео согласно настоящему изобретению.

Фиг. 23 иллюстрирует пояснительную схему, показывающую пример разделения на блоки.

Фиг. 24 иллюстрирует блок-схему, показывающую пример структуры устройства кодирования видео.

Фиг. 25 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в типичном устройстве кодирования видео.

Фиг. 26 иллюстрирует блок-схему, показывающую пример структуры устройства декодирования видео.

Фиг. 27 иллюстрирует блок-схему, показывающую кодер размеров шагов квантования в типичном устройстве декодирования видео.

Подробное описание вариантов осуществления

[0053] Примерные варианты осуществления настоящего изобретения описываются ниже со ссылкой на прилагаемые чертежи.

[0054] Примерный вариант 1 осуществления

Аналогично устройству кодирования видео, показанному на фиг. 24, устройство кодирования видео в первом примерном варианте осуществления настоящего изобретения включает в себя преобразователь 101 частоты, квантователь 102, кодер 103 с переменной длиной кода, контроллер 104 квантования, обратный квантователь 105, обратный преобразователь 106 частоты, запоминающее устройство 107 кадров, модуль 108 внутрикадрового прогнозирования, модуль 109 межкадрового прогнозирования и модуль 110 выбора прогнозирования. Тем не менее, структура кодера размеров шагов квантования, включенного в кодер 103 с переменной длиной кода, отличается от структуры, показанной на фиг. 25.

[0055] Фиг. 1 является блок-схемой, показывающей кодер размеров шагов квантования в устройстве кодирования видео в первом примерном варианте осуществления настоящего изобретения. По сравнению с кодером размеров шагов квантования, показанным на фиг. 25, кодер размеров шагов квантования в примерном варианте осуществления отличается включением в конфигурацию формирователя 10313 прогнозных размеров шагов квантования, как показано на фиг. 1.

[0056] Буфер 10311 размеров шагов квантования запоминает и хранит размеры шагов квантования, назначаемые блокам изображений, кодированным ранее.

[0057] Формирователь 10313 прогнозных размеров шагов квантования извлекает размеры шагов квантования, назначаемые соседним блокам изображений, кодированным ранее, из буфера размеров шагов квантования, чтобы формировать прогнозный размер шага квантования.

[0058] Прогнозный размер шага квантования, предоставляемый из формирователя 10313 прогнозных размеров шагов квантования, вычитается из входного размера шага квантования, и результат вводится в энтропийный кодер 10312 в качестве размера разности шагов квантования.

[0059] Энтропийный кодер 10312 энтропийно кодирует входной размер разности шагов квантования и выводит результат в качестве кода, соответствующего размеру шага квантования.

[0060] Такая структура позволяет уменьшать кодовую скорость, требуемую для того, чтобы кодировать размер шага квантования, и, следовательно, может осуществляться кодирование высококачественных движущихся изображений. Причина состоит в том, что абсолютная величина для размера разности шагов квантования, вводимая в энтропийный кодер 10312, может быть уменьшена, поскольку формирователь 10313 прогнозных размеров шагов квантования формирует прогнозный размер шага квантования с использованием размеров шагов квантования соседних блоков изображений, независимых от последовательности кодирования. Причина, по которой абсолютная величина для размера разности шагов квантования, вводимая в энтропийный кодер 10312, может быть уменьшена, если прогнозный размер шага квантования формируется с использованием размеров шагов квантования соседних блоков изображений, заключается в том, что обычно существует корреляция между соседними пикселами в движущемся изображении, и, следовательно, степень подобия размеров шагов квантования, назначаемых соседним блокам изображений, имеющим высокую корреляцию друг с другом, является высокой, когда используется адаптивное квантование на основе визуальной восприимчивости.

[0061] Конкретная работа кодера размеров шагов квантования в устройстве кодирования видео в первом примерном варианте осуществления описывается ниже посредством использования конкретного примера.

[0062] В этом примере предполагается, что размер блока изображений в качестве единицы кодирования является фиксированным размером. Также предполагается, что три блока изображений, соответственно, смежные слева, выше и вправо по диагонали выше в том же самом кадре с изображением, используются в качестве соседних блоков изображений, используемых для прогнозирования размера шага квантования.

[0063] Предположим, что текущий блок изображений, который должен быть кодирован, обозначается посредством X, и три соседних блока A, B и C изображений находятся, соответственно, рядом слева, выше и вправо по диагонали выше с блоком X изображений, как показано на фиг. 2. В этом случае, если размер шага квантования в каком-либо блоке Z обозначается посредством Q(Z), и прогнозный размер шага квантования обозначается посредством pQ(Z), формирователь 10313 прогнозных размеров шагов квантования определяет прогнозный размер pQ(X) шага квантования посредством следующего уравнения (3).

[0064] pQ(X)=Median(Q(A), Q(B), Q(C))…(3)

Следует отметить, что Median(x, y, z) представляет собой функцию для определения промежуточного значения из трех значений x, y, z.

[0065] Энтропийный кодер 10312 кодирует размер dQ(X) разности шагов квантования, полученный посредством следующего уравнения (4) с использованием экспоненциального кода Голомба со знаком в качестве одного из энтропийных кодов, и выводит результат в качестве кода, соответствующего размеру шага квантования для соответствующего блока изображений.

[0066] dQ(X)=Q(X)-pQ(X)…(4)

[0067] В этом примере три блока изображений, смежные слева, выше и вправо по диагонали выше в том же самом кадре с изображением, используются в качестве соседних блоков изображений, используемых для прогнозирования размера шага квантования. Тем не менее, соседние блоки изображений не ограничены этим. Например, блоки изображений, смежные слева, выше и влево по диагонали выше, могут быть использованы для того, чтобы определять прогнозный размер шага квантования посредством следующего уравнения (5).

[0068] pQ(X)=Median(Q(A), Q(B), Q(D))…(5)

[0069] Число блоков изображений, используемых для прогнозирования, может быть любым числом, а не тремя, и среднее значение или подобное, а не промежуточное значение может быть использовано в качестве вычисления, используемого для прогнозирования, может использовать. Блоки изображений, используемые для прогнозирования, не обязательно должны быть смежными с блоком изображений, который должен быть кодирован. Блоки изображений, используемые для прогнозирования, могут быть отделены на предварительно определенное расстояние от блока изображений, который должен быть кодирован. Дополнительно, блоки изображений, используемые для прогнозирования, не ограничены блоками изображений, расположенными пространственно по соседству, т.е. в том же самом кадре с изображением, они могут быть блоками изображений в любом другом уже кодированном кадре с изображением.

[0070] Дополнительно, в этом примере предполагается, что блок изображений, который должен быть кодирован, и соседние блоки изображений имеют один и тот же фиксированный размер. Тем не менее, настоящее изобретение не ограничено случаем фиксированного размера, и размер блока в качестве единицы кодирования может быть переменным размером.

[0071] Дополнительно, в этом примере, кодирование выполняется на основе экспоненциального кода Голомба, чтобы кодировать разность между размером шага квантования блока изображений, который должен быть кодирован, и прогнозным размером шага квантования. Тем не менее, настоящее изобретение не ограничено использованием экспоненциального кода Голомба, и кодирование может быть выполнено на основе любого другого энтропийного кода. Например, может быть выполнено кодирование на основе Кода Хаффмана или арифметического кода.

[0072] Выше описано устройство кодирования видео в первом примерном варианте осуществления настоящего изобретения.

[0073] Примерный вариант 2 осуществления

Аналогично устройству декодирования видео, показанному на фиг. 26, устройство декодирования видео во втором примерном варианте осуществления настоящего изобретения включает в себя декодер 201 с переменной длиной кода, обратный квантователь 202, обратный преобразователь 203 частоты, запоминающее устройство 204 кадров, модуль 205 внутрикадрового прогнозирования, модуль 206 межкадрового прогнозирования и модуль 207 выбора прогнозирования. Тем не менее, структура декодера размеров шагов квантования, включенного в декодер 201 с переменной длиной кода, отличается от структуры, показанной на фиг. 27.

[0074] Фиг. 3 является блок-схемой, показывающей декодер размеров шагов квантования в устройстве декодирования видео во втором примерном варианте осуществления настоящего изобретения. По сравнению с декодером размеров шагов квантования, показанным на фиг. 27, декодер размеров шагов квантования в примерном варианте осуществления отличается включением в конфигурацию формирователя 20113 прогнозных размеров шагов квантования, как показано на фиг. 3.

[0075] Энтропийный декодер 20111 энтропийно декодирует введенный код, чтобы выводить размер разности шагов квантования.

[0076] Буфер 20112 размеров шагов квантования запоминает и хранит размеры шагов квантования, декодированные ранее.

[0077] Из размеров шагов квантования, декодированных ранее, формирователь 20113 прогнозных размеров шагов квантования извлекает размеры шагов квантования, соответствующие соседним пиксельным блокам текущего блока изображений, который должен быть декодирован, из буфера размеров шагов квантования, чтобы формировать прогнозный размер шага квантования. В частности, например, формирователь 20113 прогнозных размеров шагов квантования работает так же, как и формирователь 10313 прогнозных размеров шагов квантования в конкретном примере устройства кодирования видео в первом примерном варианте осуществления.

[0078] Прогнозный размер шага квантования, предоставляемый из формирователя 20113 прогнозных размеров шагов квантования, суммируется с размером разности шагов квантования, сформированным посредством энтропийного декодера 20111, и результат не только выводится в качестве размера шага квантования, но также и вводится в буфер 20112 размеров шагов квантования.

[0079] Такая структура декодера размеров шагов квантования предоставляет возможность устройству декодирования видео декодировать размер шага квантования посредством приема только меньшей кодовой скорости. Как результат, высококачественное движущееся изображение может декодироваться и повторно формироваться. Причина состоит в том, что энтропийный декодер 20111 должен декодировать только размер разности шагов квантования около нуля, поскольку прогнозный размер шага квантования приближается к фактически назначенному размеру шага квантования, когда формирователь 20113 прогнозных размеров шагов квантования формирует прогнозный размер шага квантования с использованием размеров шагов квантования соседних блоков изображений, независимых от декодирующей последовательности. Причина, по которой прогнозный размер шага квантования, близкий к фактически назначенному размеру шага квантования, может быть получен посредством формирования прогнозного размера шага квантования с использованием размеров шагов квантования соседних блоков изображений, заключается в том, что обычно существует корреляция между соседними пикселами в движущемся изображении, и, следовательно, степень подобия размеров шагов квантования, назначаемых соседним блокам изображений, имеющим высокую корреляцию друг с другом, является высокой, когда используется адаптивное квантование на основе визуальной восприимчивости.

[0080] Выше описано устройство декодирования видео во втором примерном варианте осуществления настоящего изобретения.

[0081] Примерный вариант 3 осуществления

Аналогично устройству кодирования видео в первом примерном варианте осуществления настоящего изобретения устройство кодирования видео в третьем примерном варианте осуществления настоящего изобретения включает в себя преобразователь 101 частоты, квантователь 102, кодер 103 с переменной длиной кода, контроллер 104 квантования, обратный квантователь 105, обратный преобразователь 106 частоты, запоминающее устройство 107 кадров, модуль 108 внутрикадрового прогнозирования, модуль 109 межкадрового прогнозирования и модуль 110 выбора прогнозирования, как показано на фиг. 24. Тем не менее, структура кодера размеров шагов квантования, включенного в кодер 103 с переменной длиной кода, отличается от структуры, показанной на фиг. 25.

[0082] Фиг. 4 является блок-схемой, показывающей кодер размеров шагов квантования в устройстве кодирования видео в третьем примерном варианте осуществления настоящего изобретения. Как показано на фиг. 4, структура кодера размеров шагов квантования в устройстве кодирования видео в третьем примерном варианте осуществления настоящего изобретения является идентичной структуре кодера размеров шагов квантования, показанного на фиг. 1. Тем не менее, третий примерный вариант осуществления отличается от первого примерного варианта осуществления тем, что параметр, используемый для прогнозирования изображений, предоставляется из модуля 110 выбора прогнозирования, показанного на фиг. 24, в формирователь 10313 прогнозных размеров шагов квантования в третьем примерном варианте осуществления, а также работой формирователя 10313 прогнозных размеров шагов квантования.

[0083] Поскольку работа буфера 10311 размеров шагов квантования и энтропийного кодера 10312 является идентичной работе буфера 10311 размеров шагов квантования и энтропийного кодера 10312 кодера размеров шагов квантования в устройстве кодирования видео в первом примерном варианте осуществления, избыточное описание опускается здесь.

[0084] Формирователь 10313 прогнозных размеров шагов квантования использует параметр прогнозирования изображений для того, чтобы выбирать блок изображений, который должен использоваться для прогнозирования размера шага квантования, из числа блоков изображений, кодированных ранее. Формирователь 10313 прогнозных размеров шагов квантования формирует прогнозный размер шага квантования из размера шага квантования, соответствующего выбранному блоку изображений.

[0085] Такая структура предоставляет возможность устройству кодирования видео дополнительно уменьшать кодовую скорость, требуемую для того, чтобы кодировать размер шага квантования, по сравнению с устройством кодирования видео в первом примерном варианте осуществления. Как результат, может осуществляться кодирование высококачественных движущихся изображений. Причина состоит в том, что размер шага квантования может быть прогнозирован из соседних блоков изображений, имеющих высокую корреляцию с соответствующим блоком изображений, поскольку формирователь 10313 прогнозных размеров шагов квантования прогнозирует размер шага квантования с использованием параметра прогнозирования изображений.

[0086] Примерный вариант 4 осуществления

Аналогично устройству декодирования видео во втором примерном варианте осуществления настоящего изобретения, устройство декодирования видео в четвертом примерном варианте осуществления настоящего изобретения включает в себя декодер 201 с переменной длиной кода, обратный квантователь 202, обратный преобразователь 203 частоты, запоминающее устройство 204 кадров, модуль 205 внутрикадрового прогнозирования, модуль 206 межкадрового прогнозирования и модуль 207 выбора прогнозирования, как показано на фиг. 26. Тем не менее, структура декодера размеров шагов квантования, включенного в декодер 201 с переменной длиной кода, отличается от структуры, показанной на фиг. 27.

[0087] Фиг. 5 является блок-схемой, показывающей декодер размеров шагов квантования в устройстве декодирования видео в четвертом примерном варианте осуществления настоящего изобретения. Как показано на фиг. 5, структура декодера размеров шагов квантования в устройстве декодирования видео в четвертом примерном варианте осуществления настоящего изобретения является идентичной структуре декодера размеров шагов квантования, показанного на фиг. 3. Тем не менее, четвертый примерный вариант осуществления отличается от второго примерного варианта осуществления тем, что параметр, используемый для прогнозирования изображений, предоставляется из модуля 207 выбора прогнозирования, показанного на фиг. 26, в формирователь 20313 прогнозных размеров шагов квантования, а также работой формирователя 20113 прогнозных размеров шагов квантования.

[0088] Поскольку работа энтропийного декодера 20111 и буфера 20112 размеров шагов квантования является идентичной работе энтропийного декодера 20111 и буфера 20112 размеров шагов квантования декодера размеров шагов квантования в устройстве декодирования видео во втором примерном варианте осуществления, избыточное описание здесь опускается.

[0089] Формирователь 20113 прогнозных размеров шагов квантования использует параметр прогнозирования изображений для того, чтобы выбирать блок изображений, который должен использоваться для прогнозирования размера шага квантования, из числа блоков изображений, декодированных ранее. Формирователь 20113 прогнозных размеров шагов квантования формирует прогнозный размер шага квантования из размера шага квантования, соответствующего выбранному блоку изображений. Размер разности шагов квантования, выводимый из энтропийного декодера 20111, суммируется со сформированным прогнозным размером шага квантования, и результат не только выводится в качестве размера шага квантования, но также и вводится в буфер 20112 размеров шагов квантования.

[0090] Поскольку способ извлечения для прогнозного размера шага квантования в формирователе 20113 прогнозных размеров шагов квантования является идентичным способу формирования для прогнозного размера шага квантования в формирователе 10313 прогнозных размеров шагов квантования в вышеуказанном устройстве кодирования видео в третьем примерном варианте осуществления, избыточное описание опускается здесь.

[0091] Такая структура предоставляет возможность устройству декодирования видео декодировать размер шага квантования посредством приема только дополнительной меньшей кодовой скорости по сравнению с устройством декодирования видео во втором примерном варианте осуществления. Как результат, высококачественное движущееся изображение может декодироваться и повторно формироваться. Причина состоит в том, что размер шага квантования может быть прогнозирован из соседних блоков изображений, имеющих более высокую корреляцию с соответствующим блоком изображений, поскольку формирователь 20113 прогнозных размеров шагов квантования прогнозирует размер шага квантования с использованием параметра прогнозирования изображений.

[0092] Пример 1

С использованием примера ниже описывается конкретная работа кодера размеров шагов квантования в устройстве кодирования видео в третьем примерном вышеуказанном варианте осуществления.

[0093] В этом примере направление прогнозирования для внутрикадрового прогнозирования используется в качестве параметра прогнозирования изображений, который должен использоваться для прогнозирования размера шага квантования. Дополнительно в качестве внутрикадрового прогнозирования используются направленное прогнозирование из восьми направлений и прогнозирование по среднему (проиллюстрированные на фиг. 6), используемые для пиксельных блоков 4×4 и пиксельных блоков 8×8 в AVC, описанном в NPL 1.

[0094] Предполагается, что размер блока изображений в качестве единицы кодирования является фиксированным размером. Также предполагается, что блок в качестве единицы определения размера шага квантования (называемый "блоком передачи размера шага квантования") и блок в качестве единицы внутрикадрового прогнозирования (называемый "прогнозным блоком") имеют один и тот же размер. Если текущий блок изображений, который должен быть кодирован, обозначается посредством X, и четыре соседних блока A, B, C и D имеют позиционную взаимосвязь, показанную на фиг. 2, формирователь 10313 прогнозных размеров шагов квантования определяет прогнозный размер pQ(X) шага квантования посредством следующего уравнения (6).

[0095] pQ(X)=pQ(B); если m=0

pQ(X)=pQ(A); если m=1

pQ(X)=(pQ(A)+pQ(B)+1)/2; если m=2

pQ(X)=pQ(C); если m=3

pQ(X)=pQ(D); если m=4

pQ(X)=(pQ(C)+pQ(D)+1)/2; если m=5

pQ(X)=(pQ(A)+pQ(D)+1)/2; если m=6

pQ(X)=(pQ(B)+pQ(D)+1)/2; если m=7

pQ(X)=pQ(A); если m=8…(6)

Следует отметить, что m является индексом направления внутреннего прогнозирования в кадре, показанном на фиг. 6.

[0096] Энтропийный кодер 10312 применяет размер Q(X) шага квантования и прогнозный размер pQ(X) шага квантования к уравнению (4), чтобы получать размер dQ(X) разности шагов квантования. Энтропийный кодер 10312 кодирует полученный размер dQ(X) разности шагов квантования с использованием экспоненциального кода Голомба со знаком в качестве одного из энтропийных кодов и выводит результат в качестве кода, соответствующего размеру шага квантования для соответствующего блока изображений.

[0097] В этом примере направленное прогнозирование из восьми направлений и прогнозирование по среднему используются в качестве внутрикадрового прогнозирования, но настоящее изобретение не ограничено этим. Например, могут быть использованы направленное прогнозирование из 33 направлений, описанное в NPL 2, и прогнозирование по среднему, либо может быть использовано любое другое внутрикадровое прогнозирование.

[0098] Дополнительно число блоков изображений, используемых для прогнозирования, может быть любым числом, отличным от четырех. В этом примере, как показано в вышеуказанном уравнении (6), либо размер шага квантования в любом из блоков изображений, либо среднее значение размеров шагов квантования в двух блоках изображений используется в качестве прогнозного размера шага квантования. Тем не менее, настоящее изобретение не ограничено вышеуказанным уравнением (6), и любой другой результат вычисления может быть использован в качестве прогнозного размера шага квантования. Например, как показано в следующем уравнении (7), может быть использован либо размер шага квантования в любом из блоков изображений, либо промежуточное значение трех размеров шагов квантования, или прогнозный размер шага квантования может быть определен с использованием любого другого вычисления. Дополнительно, блоки изображений, используемые для прогнозирования, не обязательно должны быть смежными с текущим блоком изображений, который должен быть кодирован. Блоки изображений, используемые для прогнозирования, могут быть отделены на предварительно определенное расстояние от текущего блока изображений, который должен быть кодирован.

[0099] pQ(X)=pQ(B); если m=0, 5 или 7

pQ(X)=pQ(A); если m=1, 6 или 8

pQ(X)=pQ(C); если m=3

pQ(X)=pQ(D); если m=4

pQ(X)=Median(pQ(A), pQ(B), pQ(C)); если m=2…(7)

[0100] В этом примере предполагается, что блок изображений, который должен быть кодирован, и соседние блоки изображений имеют один и тот же фиксированный размер. Тем не менее, настоящее изобретение не ограничено фиксированным размером, и блок в качестве единицы кодирования может иметь переменный размер.

[0101] Дополнительно в этом примере предполагается, что блоки передачи размера шага квантования и прогнозный блок имеют один и тот же размер. Тем не менее, настоящее изобретение не ограничено одним и тем же размером, и блоки передачи размера шага квантования и прогнозный блок могут иметь различные размеры. Например, если два или более прогнозных блока включаются в блоки передачи размера шага квантования, прогнозный блок в любом из двух или более прогнозных блоков может использоваться для прогнозирования размера шага квантования. Альтернативно, результат суммирования любого вычисления, к примеру, вычисления промежуточного значения или вычисления среднего значения, с направлениями прогнозирования двух или более прогнозных блоков может использоваться для прогнозирования размера шага квантования.

[0102] Дополнительно в этом примере разность между размером шага квантования блока изображений, который должен быть кодирован, и прогнозным размером шага квантования кодируется на основе экспоненциального кода Голомба. Тем не менее, настоящее изобретение не ограничено использованием экспоненциального кода Голомба, и может быть выполнено кодирование на основе любого другого энтропийного кода. Например, может быть выполнено кодирование на основе Кода Хаффмана или арифметического кода.

[0103] Пример 2

С использованием другого примера ниже описывается конкретная работа кодера размеров шагов квантования в устройстве кодирования видео в третьем примерном вышеуказанном варианте осуществления.

[0104] В этом примере вектор движения межкадрового прогнозирования используется в качестве параметра прогнозирования изображений, используемого для прогнозирования размера шага квантования. Прогнозирование, заданное посредством преобразования единиц блоков, как показано на фиг. 7, предполагается в качестве межкадрового прогнозирования. Предполагается, что прогнозное изображение формируется из блока изображений, расположенного в позиции, которая расходится с пространственной позицией блока, который должен быть кодирован в опорном кадре, на смещение, соответствующее вектору движения. Кроме того, как показано на фиг. 7, прогнозирование из одного опорного кадра, т.е. однонаправленное прогнозирование предполагается в качестве межкадрового прогнозирования. Дополнительно, в примере предполагается, что блоки передачи размера шага квантования и прогнозный блок имеют один и тот же размер.

[0105] Здесь, блок, который должен быть кодирован, обозначается посредством X, центральная позиция блока X обозначается посредством cent(X), вектор движения при межкадровом прогнозировании X обозначается посредством V(X), и опорный кадр, к которому следует обращаться при межкадровом прогнозировании, обозначается посредством RefPic(X). Затем, как показано на фиг. 8, блок, которому принадлежит позиция cent(X)+V(X) в кадре RefPic(X), выражается как Block(RefPic(X),cent(X)+V(X)). Формирователь 10313 прогнозных размеров шагов квантования определяет прогнозный размер pQ(X) шага квантования посредством следующего уравнения (8).

[0106] pQ(X)=Q(Block(RefPic(X),cent(X)+V(X))…(8)

[0107] Извлечение dQ(X) и процесс кодирования посредством энтропийного кодера 10312 являются идентичными извлечению и процессу в первом примере.

[0108] В этом примере предполагается однонаправленное прогнозирование, но настоящее изобретение не ограничено использованием однонаправленного прогнозирования. Например, в случае двунаправленного прогнозирования, при котором прогнозное изображение формируется посредством взвешенного усреднения блоков опорных изображений в двух опорных кадрах, если один опорный кадр обозначается посредством RefPic0(X), вектор движения в RefPic0(X) обозначается посредством V0(X), другой опорный кадр обозначается посредством RefPic1(X), вектор движения в RefPic1(X) обозначается посредством V1(X), весовой коэффициент, присвоенный RefPic0(X) при формировании прогнозного изображения, обозначается посредством w0, и весовой коэффициент, присвоенный RefPic1(X), обозначается посредством w1, формирователь 10313 прогнозных размеров шагов квантования может определять прогнозный размер pQ(X) шага квантования посредством следующего уравнения (9).

[0109] pQ(X)=w0 Q(Block(RefPic0(X), cent(X)+V0 (X))+w1 Q(Block(RefPic1(X), cent(X)+V1(X))…(9)

[0110] Дополнительно в этом примере размер шага квантования блока, которому принадлежит центральная позиция блока опорных изображений, используется в качестве прогнозного размера шага квантования, но прогнозный размер шага квантования не ограничен этим. Например, размер шага квантования блока, которому принадлежит верхняя левая позиция блока опорных изображений, может быть использован в качестве прогнозного размера шага квантования. Альтернативно, можно, соответственно, обращаться к размерам шагов квантования блоков, которым принадлежат все пикселы блока опорных изображений, для того, чтобы использовать среднее значение этих размеров шагов квантования в качестве прогнозного размера шага квантования.

[0111] Дополнительно в этом примере прогнозирование, представленное посредством трансляции между блоками, предполагается в качестве межкадрового прогнозирования. Тем не менее, блок опорных изображений не ограничен этим, и он может иметь любую форму.

[0112] Дополнительно в этом примере предполагается, что блоки передачи размера шага квантования и прогнозный блок имеют один и тот же размер. Тем не менее, аналогично первому примеру устройства кодирования видео в третьем примерном вышеуказанном варианте осуществления, блоки передачи размера шага квантования и прогнозный блок могут иметь размеры, отличающиеся друг от друга.

[0113] Пример 3

С использованием еще одного другого примера ниже описывается конкретная работа кодера размеров шагов квантования в устройстве кодирования видео в третьем примерном вышеуказанном варианте осуществления.

[0114] В этом примере прогнозирование вектора движения межкадрового прогнозирования, т.е. прогнозного вектора движения, используется в качестве параметра прогнозирования изображений, используемого для прогнозирования размера шага квантования. Когда прогнозный вектор движения извлекается из соседних блоков изображений блока, который должен быть кодирован, размеры шагов квантования соседних блоков изображений, используемых для извлечения прогнозного вектора движения, используются для того, чтобы прогнозировать вектор движения блока, который должен быть кодирован.

[0115] В этом примере предполагается, что блоки передачи размера шага квантования и прогнозный блок имеют один и тот же размер. Кроме того, аналогично второму примеру устройства кодирования видео в третьем примерном вышеуказанном варианте осуществления, однонаправленное прогнозирование, представленное посредством вектора движения, предполагается в качестве межкадрового прогнозирования. В этом примере прогнозный вектор движения, извлекаемый посредством предварительно определенного способа, вычитается из вектора движения, показанного на фиг. 7, и разность энтропийно кодируется. В качестве предварительно определенного способа извлечения прогнозного вектора движения используется способ извлечения прогнозного вектора движения, описанный в "8.4.2.1.4. Derivation process for luma motion vector prediction" NPL 2.

[0116] Далее вкратце описывается способ извлечения прогнозного вектора движения, используемый в этом примере. Блок, который должен быть кодирован, обозначается посредством X, и блоки, смежные слева, выше, вправо по диагонали выше, влево по диагонали выше и влево по диагонали ниже, как показано на фиг. 2 обозначаются посредством A, B, C, D и E, соответственно. Вектор движения блока A обозначается посредством mvA, и вектор движения блока B обозначается посредством mvB. Когда блок C существует в изображении и уже кодирован, вектор движения блока C задается в качестве mvC. В противном случае, когда блок D существует в изображении и уже кодирован, вектор движения блока D задается в качестве mvC. В противном случае, вектор движения блока E задается в качестве mvC.

[0117] Дополнительно, вектор движения, определенный посредством следующего уравнения (10), обозначается посредством mvMed, и вектор движения блока в пространственной позиции, идентичной пространственной позиции блока, который должен быть кодирован в опорном кадре, назначаемом кадру с изображением, который должен быть кодирован (проиллюстрирован в качестве синфазного блока XCol относительно блока X, который должен быть кодирован, на фиг. 8), обозначается посредством mvCol. Назначенный опорный кадр означает, например, кадр с изображением, кодированный непосредственно перед кадром с изображением, который должен быть кодирован.

[0118] mvMed=(mvMedx, mvMedy)

mvMedx=Median(mvAx, mvBx, mvCx)

mvMedy=Median(mvAy, mvBy, mvCy)…(10)

[0119] Как описано выше, пять векторов движения, т.е. mvMed, mvA, mvB, mvC и mvCol, представляют собой варианты для прогнозного вектора движения в блоке X, который должен быть кодирован. Любой вектор движения выбирается согласно предварительно определенной очередности согласно приоритету из числа вариантов и задается в качестве прогнозного вектора PMV(X) движения блока, который должен быть кодирован. Пример предварительно определенной очередности согласно приоритету описывается в "8.4.2.1.4. Derivation process for luma motion vector prediction" и "8.4.2.1.8. Removal process for motion vector prediction" NPL 2.

[0120] Когда прогнозный вектор PMV(X) движения определяется, как упомянуто выше, формирователь 10313 прогнозных размеров шагов квантования определяет прогнозный размер pQ(X) шага квантования блока X, который должен быть кодирован, посредством следующего уравнения (11).

[0121] pQ(X)=Q(A); если pMV(X)=mvA

pQ(X)=Q(B); иначе, если pMV(X)=mvB

pQ(X)=Q(C); иначе, если pMV(X)=mvC, и mvC является вектором движения блока C

pQ(X)=Q(D); иначе, если pMV(X)=mvC, и mvC является вектором движения блока D

pQ(X)=Q(E); иначе, если pMV(X)=mvC, и mvC является вектором движения блока E

pQ(X)=Q(XCol); иначе, если pMV(X)=mvCol

pQ(X)=Median(Q(A), Q(B), Q(C)); иначе

…(11)

[0122] В этом примере предполагается однонаправленное прогнозирование, но настоящее изобретение не ограничено использованием однонаправленного прогнозирования. Аналогично второму примеру устройства кодирования видео в третьем примерном вышеуказанном варианте осуществления, этот пример также может применяться к двунаправленному прогнозированию.

[0123] Дополнительно в этом примере способ извлечения прогнозного вектора движения, описанный в "8.4.2.1.4. Derivation process for luma motion vector prediction" NPL 2, используется в качестве способа извлечения прогнозного вектора движения, но настоящее изобретение не ограничено этим. Например, как описано в "8.4.2.1.3. Derivation process for luma motion vectors for merge mode" NPL 2, если вектор движения блока X, который должен быть кодирован, прогнозируется посредством вектора движения блока A или блока B, формирователь 10313 прогнозных размеров шагов квантования может определять прогнозный размер pQ(X) шага квантования блока X, который должен быть кодирован, посредством следующего уравнения (12), либо может быть использован любой другой способ извлечения прогнозного вектора движения.

[0124] pQ(X)=Q(A); если pMV(X)=mvA

pQ(X)=Q(B); иначе

…(12)

[0125] Дополнительно в этом примере блоки изображений, используемые для прогнозирования размера шага квантования, упоминаются так, как показано в уравнении (11), в порядке блоков A, B, C, D, E и XCol. Тем не менее, настоящее изобретение не ограничено этим порядком, и может быть использован любой порядок. Что касается числа и позиций блоков изображений, используемых для прогнозирования размера шага квантования, могут быть использованы любое число и позиции блоков изображений. Дополнительно в этом примере вычисление промежуточного значения аналогично уравнению (3) используется, когда pMV(X) не согласуется ни с одним из mvA, mvB, mvC и mvCol, но настоящее изобретение не ограничено использованием вычисления промежуточного значения. Также может быть использовано любое вычисление, к примеру, вычисление среднего значения, аналогично первому примерному варианту осуществления.

[0126] Дополнительно в этом примере предполагается, что блоки передачи размера шага квантования и прогнозный блок имеют один и тот же размер. Тем не менее, блоки передачи размера шага квантования и прогнозный блок могут иметь размеры, отличающиеся друг от друга, аналогично первому примеру и второму примеру устройства кодирования видео в третьем примерном вышеуказанном варианте осуществления.

[0127] Примерный вариант 5 осуществления

Фиг. 9 является блок-схемой, показывающей структуру устройства кодирования видео в пятом примерном варианте осуществления настоящего изобретения. Фиг. 10 является блок-схемой, показывающей структуру кодера размеров шагов квантования в устройстве кодирования видео в этом примерном варианте осуществления.

[0128] По сравнению с устройством кодирования видео, показанным на фиг. 24, устройство кодирования видео в этом примерном варианте осуществления отличается тем, что включаются контроллер 111 прогнозирования размеров шагов квантования и мультиплексор 112, как показано на фиг. 9. Следует отметить, что устройство кодирования видео, показанное на фиг. 24, также представляет собой устройство кодирования видео в третьем примерном варианте осуществления, как описано выше.

[0129] Дополнительно, как показано на фиг. 10, этот примерный вариант осуществления отличается от третьего примерного варианта осуществления тем, что кодер размеров шагов квантования для кодирования размера шага квантования в кодере 103 с переменной длиной кода устройства кодирования видео выполнен с возможностью предоставлять параметр прогнозирования размеров шагов квантования из контроллера 111 прогнозирования размеров шагов квантования, показанного на фиг. 9, в формирователь 10313 прогнозных размеров шагов квантования, по сравнению с кодером размеров шагов квантования, показанным на фиг. 4, а также работой формирователя 10313 прогнозных размеров шагов квантования.

[0130] Контроллер 111 прогнозирования размеров шагов квантования предоставляет управляющую информацию для управления операцией прогнозирования размеров шагов квантования формирователя 10313 прогнозных размеров шагов квантования в кодер 103 с переменной длиной кода и мультиплексор 112. Управляющая информация для управления операцией прогнозирования размеров шагов квантования называется параметром прогнозирования размеров шагов квантования.

[0131] Мультиплексор 112 мультиплексирует параметр прогнозирования размеров шагов квантования в поток видеобитов, предоставляемый из кодера 103 с переменной длиной кода, и выводит результат в качестве потока битов.

[0132] С использованием параметра прогнозирования изображений и параметра прогнозирования размеров шагов квантования, формирователь 10313 прогнозных размеров шагов квантования выбирает блок изображений, используемый для прогнозирования размера шага квантования, из числа блоков изображений, кодированных ранее. Прогнозный размер 10313 шага квантования также формирует прогнозный размер шага квантования из размера шага квантования, соответствующего выбранному блоку изображений.

[0133] Такая структура устройства кодирования видео в примерном варианте осуществления дополнительно может уменьшать кодовую скорость, требуемую для того, чтобы кодировать размер шага квантования, по сравнению с устройством кодирования видео в третьем примерном варианте осуществления. Как результат, может осуществляться кодирование высококачественных движущихся изображений. Причина состоит в том, что размер шага квантования может быть прогнозирован для блока изображений с более высокой точностью, поскольку формирователь 10313 прогнозных размеров шагов квантования использует параметр прогнозирования размеров шагов квантования в дополнение к параметру прогнозирования изображений для того, чтобы переключать или корректировать прогнозное значение размера шага квантования с использованием параметра прогнозирования изображений. Причина, по которой размер шага квантования может быть прогнозирован с более высокой точностью посредством переключения или коррекции с использованием параметра прогнозирования размеров шагов квантования, заключается в том, что контроллер 104 квантования, показанный на фиг. 9, отслеживает выходную кодовую скорость кодера 103 с переменной длиной кода, чтобы повышать или понижать размер шага квантования без зависимости исключительно от визуальной восприимчивости человека, и, следовательно, размер шага квантования, который также должен быть предоставлен блокам изображений, имеющим идентичную визуальную восприимчивость, может варьироваться.

[0134] Конкретная работа кодера размеров шагов квантования в устройстве кодирования видео в пятом примерном вышеуказанном варианте осуществления описывается с использованием конкретного нижеприведенного примера.

[0135] В этом примере, аналогично второму примеру устройства кодирования видео в третьем примерном вышеуказанном варианте осуществления, вектор движения межкадрового прогнозирования используется в качестве параметра прогнозирования изображений, используемого для прогнозирования размера шага квантования. Прогнозирование, заданное посредством трансляции единиц блоков, как показано на фиг. 7, предполагается в качестве межкадрового прогнозирования. В этом случае предполагается, что прогнозное изображение формируется из блока изображений, расположенного в позиции, которая расходится с пространственной позицией блока, который должен быть кодирован в опорном кадре, на смещение, соответствующее вектору движения. Кроме того, как показано на фиг. 7, прогнозирование из одного опорного кадра, т.е. однонаправленное прогнозирование предполагается в качестве межкадрового прогнозирования. Дополнительно, в примере предполагается, что блоки передачи размера шага квантования и прогнозный блок имеют один и тот же размер.

[0136] Здесь, блок, который должен быть кодирован, обозначается посредством X, кадр, который должен быть кодирован, обозначается посредством Pic(X), центральная позиция блока X обозначается посредством cent(X), вектор движения при межкадровом прогнозировании X обозначается посредством V(X), и опорный кадр, к которому следует обращаться при межкадровом прогнозировании, обозначается посредством RefPic(X). Затем, как показано на фиг. 8, блок, которому принадлежит позиция cent(X)+V(X) в кадре RefPic(X), выражается как Block(RefPic(X),cent(X)+V(X)). Дополнительно, предполагается, что три соседних блока A, B и C изображений находятся в позициях, соответственно, смежных слева, выше и вправо по диагонали выше с блоком X, как показано на фиг. 2. В этом случае, формирователь 10313 прогнозных размеров шагов квантования определяет прогнозный размер pQ(X) шага квантования посредством следующего уравнения (13).

[0137] pQ(X)=Q(Block(RefPic(X),cent(X)+V(X)); если temporal_qp_pred_flag=1

pQ(X)=Median(pQ(A), pQ(B), Q(C)); иначе

…(13)

[0138] Здесь, temporal_qp_pred_flag представляет флаг для переключения между тем, может или нет вектор движения между кадрами быть использован для прогнозирования размера шага квантования. Флаг предоставляется из контроллера 111 прогнозирования размеров шагов квантования в формирователь 10313 прогнозных размеров шагов квантования.

[0139] Формирователь 10313 прогнозных размеров шагов квантования также может использовать значение смещения для компенсации изменения размера шага квантования между кадром Pic(X), который должен быть кодирован, и опорным кадром RefPic(X), т.е. смещение к размеру Qofs(Pic(X), RefPic(X)) шага квантования, чтобы определять прогнозный размер pQ(X) шага квантования посредством следующего уравнения (14).

[0140] pQ(X)=Q(Block(RefPic(X),cent(X)+V(X))+Qofs(Pic(X), RefPic(X))…(14)

[0141] Дополнительно формирователь 10313 прогнозных размеров шагов квантования может использовать как вышеупомянутый temporal_qp_pred_flag, так и смещение к размеру шага квантования для того, чтобы определять прогнозный размер pQ(X) шага квантования посредством следующего уравнения (15).

[0142] pQ(X)=Q(Block(RefPic(X),cent(X)+V(X))+Qofs(Pic(X), RefPic(X)); если temporal_qp_pred_flag=1

pQ(X)=Median(pQ(A), pQ(B), Q(C)); иначе

…(15)

[0143] Например, если начальный размер шага квантования какого-либо кадра Z обозначается посредством Qinit(Z), смещение к размеру Qofs(Pic(X), RefPic(X)) шага квантования в вышеуказанных уравнениях (14) и (15) может быть определено посредством следующего уравнения (16).

[0144] Qofs(Pic(X), RefPic(X))=Qinit(Pic(X))-Qinit(RefPic(X))…(16)

[0145] Начальный размер шага квантования является значением, заданным в качестве начального значения размера шага квантования для каждого кадра, и может быть использован, например, SliceQPY, описанный в "7.4.3. Slice header semantics" NPL 1.

[0146] Например, как проиллюстрировано в списке, показанном на фиг. 11, который соответствует описанию в "Specification of syntax functions, categories and descriptors" NPL 1, одно или оба из вышеуказанного значения temporal_qp_pred_flag и значения Qofs(Pic(X), RefPic(X)) могут быть мультиплексированы в поток битов в качестве части информации заголовка.

[0147] В списке, показанном на фиг. 11, qp_pred_offset представляет значение Qofs в вышеуказанном уравнении (14). Как показано на фиг. 11, несколько фрагментов qp_pred_offset могут быть мультиплексированы в качестве значений Qofs, соответствующих соответствующим опорным кадрам, или один фрагмент qp_pred_offset может быть мультиплексирован в качестве общего значения Qofs во все опорные кадры.

[0148] В этом примере вектор движения межкадрового прогнозирования предполагается в качестве параметра прогнозирования изображений. Тем не менее, настоящее изобретение не ограничено использованием вектора движения межкадрового прогнозирования. Аналогично первому примеру устройства кодирования видео в третьем примерном вышеуказанном варианте осуществления, направление прогнозирования для внутрикадрового прогнозирования может быть использовано таким образом, что вышеупомянутый флаг переключается между тем, использовать или нет направление прогнозирования для внутрикадрового прогнозирования, для прогнозирования размера шага квантования. Аналогично третьему примеру устройства кодирования видео в третьем примерном вышеуказанном варианте осуществления, может быть использовано направление прогнозирования прогнозного вектора движения, либо может быть использован любой другой параметр прогнозирования изображений.

[0149] Дополнительно в этом примере однонаправленное прогнозирование предполагается в качестве межкадрового прогнозирования. Тем не менее, настоящее изобретение не ограничено использованием однонаправленного прогнозирования. Аналогично второму примеру устройства кодирования видео в третьем примерном вышеуказанном варианте осуществления, настоящее изобретение также может применяться к двунаправленному прогнозированию.

[0150] Дополнительно в этом примере размер шага квантования блока, которому принадлежит центральная позиция блока опорных изображений, используется в качестве прогнозного размера шага квантования. Тем не менее, извлечение прогнозного размера шага квантования в настоящем изобретении не ограничено этим. Например, размер шага квантования блока, которому принадлежит верхняя левая позиция блока опорных изображений, может быть использован в качестве прогнозного размера шага квантования. Альтернативно, можно, соответственно, обращаться к размерам шагов квантования блоков, которым принадлежат все пикселы блока опорных изображений, для того, чтобы использовать среднее значение этих размеров шагов квантования в качестве прогнозного размера шага квантования.

[0151] Дополнительно в этом примере прогнозирование, представленное посредством трансляции между блоками идентичной формы, предполагается в качестве межкадрового прогнозирования. Тем не менее, блок опорных изображений в настоящем изобретении не ограничен этим, и он может иметь любую форму.

[0152] Дополнительно в этом примере, как показано в уравнении (13) и уравнении (15), когда информация межкадрового прогнозирования не используется, размер шага квантования прогнозируется из трех пространственно соседних блоков изображений на основе вычисления промежуточного значения, но настоящее изобретение не ограничено этим. Аналогично конкретному примеру первого примерного варианта осуществления, число блоков изображений, используемых для прогнозирования, может быть любым числом, отличным от трех, и вычисление среднего значения и т.п. может быть использовано вместо вычисления промежуточного значения. Дополнительно, блоки изображений, используемые для прогнозирования, не обязательно должны быть смежными с текущим блоком изображений, который должен быть кодирован, и блоки изображений могут быть отделены на предварительно определенное расстояние от текущего блока изображений, который должен быть кодирован.

[0153] Дополнительно, в этом примере предполагается, что блоки передачи размера шага квантования и прогнозный блок имеют один и тот же размер, но аналогично первому примеру устройства кодирования видео в третьем примерном вышеуказанном варианте осуществления, блоки передачи размера шага квантования и прогнозный блок могут иметь размеры, отличающиеся друг от друга.

[0154] Примерный вариант 6 осуществления

Фиг. 12 является блок-схемой, показывающей структуру устройства декодирования видео в шестом примерном варианте осуществления настоящего изобретения. Фиг. 13 является блок-схемой, показывающей структуру декодера размеров шагов квантования в устройстве декодирования видео в примерном варианте осуществления.

[0155] По сравнению с устройством декодирования видео, показанным на фиг. 26, устройство декодирования видео в примерном варианте осуществления отличается включением в конфигурацию демультиплексора 208 и контроллера 209 прогнозирования размеров шагов квантования, как показано на фиг. 12. Как описано выше, устройство декодирования видео, показанное на фиг. 26, также представляет собой устройство декодирования видео в четвертом примерном варианте осуществления.

[0156] Дополнительно, по сравнению с декодером размеров шагов квантования, показанным на фиг. 5, декодер размеров шагов квантования для декодирования размера шага квантования в декодере 201 с переменной длиной кода устройства декодирования видео в примерном варианте осуществления отличается, как показано на фиг. 13, от четвертого примерного варианта осуществления тем, что параметр прогнозирования размеров шагов квантования предоставляется из контроллера 209 прогнозирования размеров шагов квантования, показанного на фиг. 12, в формирователь 20113 прогнозных размеров шагов квантования, а также работой формирователя 20113 прогнозных размеров шагов квантования.

[0157] Демультиплексор 208 демультиплексирует поток битов, чтобы извлекать поток видеобитов и управляющую информацию для управления операцией прогнозирования размеров шагов квантования. Демультиплексор 208 дополнительно предоставляет извлеченную управляющую информацию в контроллер 209 прогнозирования размеров шагов квантования и извлеченный поток видеобитов в декодер 201 с переменной длиной кода, соответственно.

[0158] Контроллер 209 прогнозирования размеров шагов квантования настраивает работу формирователя 20113 прогнозных размеров шагов квантования на основе предоставляемой управляющей информации.

[0159] Формирователь 20113 прогнозных размеров шагов квантования использует параметр прогнозирования изображений и параметр прогнозирования размеров шагов квантования, чтобы выбирать блок изображений, используемый для прогнозирования размера шага квантования, из числа блоков изображений, декодированных ранее. Формирователь 20113 прогнозных размеров шагов квантования дополнительно формирует прогнозный размер шага квантования из размера шага квантования, соответствующего выбранному блоку изображений. Размер разности шагов квантования, выводимый из энтропийного декодера 20111, суммируется со сформированным прогнозным размером шага квантования, и результат не только выводится в качестве размера шага квантования, но также и вводится в буфер 20112 размеров шагов квантования.

[0160] Поскольку способ извлечения для прогнозного размера шага квантования в формирователе 20113 прогнозных размеров шагов квантования является идентичным способу формирования для прогнозного размера шага квантования в формирователе 10313 прогнозных размеров шагов квантования в вышеуказанном устройстве кодирования видео в пятом примерном варианте осуществления, избыточное описание опускается здесь.

[0161] Такая структура предоставляет возможность устройству декодирования видео декодировать размер шага квантования посредством приема только дополнительной меньшей кодовой скорости по сравнению с устройством декодирования видео в четвертом примерном варианте осуществления. Как результат, высококачественное движущееся изображение может декодироваться и повторно формироваться. Причина состоит в том, что размер шага квантования может быть прогнозирован для блока изображений с более высокой точностью, поскольку формирователь 20113 прогнозных размеров шагов квантования использует параметр прогнозирования размеров шагов квантования в дополнение к параметру прогнозирования изображений для того, чтобы переключать или корректировать прогнозированное значение размера шага квантования с использованием параметра прогнозирования изображений.

[0162] Примерный вариант 7 осуществления

Аналогично устройству кодирования видео в третьем примерном варианте осуществления, устройство кодирования видео в седьмом примерном варианте осуществления настоящего изобретения включает в себя преобразователь 101 частоты, квантователь 102, кодер 103 с переменной длиной кода, контроллер 104 квантования, обратный квантователь 105, обратный преобразователь 106 частоты, запоминающее устройство 107 кадров, модуль 108 внутрикадрового прогнозирования, модуль 109 межкадрового прогнозирования и модуль 110 выбора прогнозирования, как показано на фиг. 24. Тем не менее, структура кодера размеров шагов квантования, включенного в кодер 103 с переменной длиной кода, отличается от структуры устройства кодирования видео в третьем примерном варианте осуществления, показанном на фиг. 4.

[0163] Фиг. 14 является блок-схемой, показывающей структуру кодера размеров шагов квантования в устройстве кодирования видео в седьмом примерном варианте осуществления настоящего изобретения. По сравнению с кодером размеров шагов квантования, показанным на фиг. 4, структура кодера размеров шагов квантования в примерном варианте осуществления отличается включением в конфигурацию модуля 10314 выбора размеров шагов квантования, как показано на фиг. 14.

[0164] Поскольку работа буфера 10311 размеров шагов квантования, энтропийного кодера 10312 и формирователя 10313 прогнозных размеров шагов квантования является идентичной работе кодера размеров шагов квантования в устройстве кодирования видео в третьем примерном варианте осуществления, избыточное описание опускается здесь.

[0165] Модуль 10314 выбора размеров шагов квантования выбирает либо размер шага квантования, назначаемый ранее кодированному блоку изображений, либо прогнозный размер разности шагов квантования, выводимый из формирователя 10313 прогнозных размеров шагов квантования согласно параметру прогнозирования изображений, и выводит результат в качестве избирательно прогнозного размера шага квантования. Размер шага квантования, назначаемый ранее кодированному блоку изображений, сохраняется в буфере 10311 размеров шагов квантования. Избирательно прогнозный размер разности шагов квантования, выводимый из модуля 10314 выбора размеров шагов квантования, вычитается из размера шага квантования, вводимого в кодер размеров шагов квантования, который должен кодироваться в данный момент, и результат вводится в энтропийный кодер 10312.

[0166] Такая структура предоставляет возможность устройству кодирования видео в примерном варианте осуществления дополнительно уменьшать кодовую скорость, требуемую для того, чтобы кодировать размер шага квантования, по сравнению с устройством кодирования видео в третьем примерном варианте осуществления. Как результат, может осуществляться кодирование высококачественных движущихся изображений. Причина состоит в том, что размер шага квантования может быть кодирован посредством работы модуля 10314 выбора размеров шагов квантования, чтобы избирательно использовать прогнозный размер шага квантования, извлекаемый из параметра прогнозирования изображений, и ранее кодированный размер шага квантования. Причина, по которой может быть дополнительно уменьшена кодовая скорость, требуемая для того, чтобы кодировать размер шага квантования, посредством избирательного использования прогнозного размера шага квантования, извлекаемого из параметра прогнозирования изображений, и ранее кодированного размера шага квантования, заключается в том, что контроллер 104 квантования в устройстве кодирования не только выполняет адаптивное квантование на основе визуальной восприимчивости, но также и отслеживает выходную кодовую скорость, чтобы повышать или понижать размер шага квантования, как описано выше.

[0167] Конкретная работа кодера размеров шагов квантования в устройстве кодирования видео в седьмом примерном варианте осуществления описывается с использованием конкретного нижеприведенного примера.

[0168] Здесь, направление прогнозирования для внутрикадрового прогнозирования используется в качестве параметра прогнозирования изображений, используемого для прогнозирования размера шага квантования. Дополнительно, в качестве внутрикадрового прогнозирования, используются направленное прогнозирование из восьми направлений и прогнозирование по среднему (см. фиг. 6), используемые для пиксельных блоков 4×4 и пиксельных блоков 8×8 в AVC-схеме, описанной в NPL 1.

[0169] Предполагается, что размер блока изображений в качестве единицы кодирования является фиксированным размером. Также предполагается, что блок в качестве единицы определения размера шага квантования (называемый "блоком передачи размера шага квантования") и блок в качестве единицы внутрикадрового прогнозирования (называемый "прогнозным блоком") имеют один и тот же размер. Если текущий блок изображений, который должен быть кодирован, обозначается посредством X, и четыре соседних блока A, B, C и D имеют позиционную взаимосвязь, показанную на фиг. 2, формирователь 10313 прогнозных размеров шагов квантования определяет прогнозный размер pQ(X) шага квантования посредством вышеуказанного уравнения (6).

[0170] Модуль 10314 выбора размеров шагов квантования выбирает либо прогнозный размер pQ(X) шага квантования, полученный посредством уравнения (6), либо ранее кодированный размер Q(Xprev) шага квантования согласно следующему уравнению (17), чтобы формировать избирательно прогнозный размер sQ(X) шага квантования, т.е. прогнозный размер шага квантования, определенный посредством уравнения (6), используется в качестве избирательно прогнозного размера шага квантования для направленного прогнозирования, и предыдущий размер шага квантования используется в качестве избирательно прогнозного размера шага квантования для прогнозирования по среднему значению.

[0171] sQ(X)=Q(Xprev); если m=2

sQ(X)=pQ(X); если m=0, 1, 3, 4, 5, 6, 7 или 8

…(17)

Следует отметить, что m является индексом направления внутрикадрового прогнозирования в кадре, показанном на фиг. 6.

[0172] Энтропийный кодер 10312 кодирует размер dQ(X) разности шагов квантования, полученный посредством следующего уравнения (18) с использованием экспоненциального кода Голомба со знаком в качестве одного из энтропийных кодов, и выводит результат в качестве кода, соответствующего размеру шага квантования для соответствующего блока изображений.

[0173] dQ(X)=Q(X)-sQ(X)…(18)

[0174] В этом примерном варианте осуществления прогнозирование направления из восьми направлений и прогнозирование по среднему используются в качестве внутрикадрового прогнозирования, но настоящее изобретение не ограничено этим. Например, могут быть использованы направленное прогнозирование из 33 направлений, описанное в NPL 2, и прогнозирование по среднему, либо может быть использовано любое другое внутрикадровое прогнозирование.

[0175] Дополнительно в этом примерном варианте осуществления выбор между прогнозным размером шага квантования и ранее кодированным размером шага квантования проводится на основе параметров внутрикадрового прогнозирования, но настоящее изобретение не ограничено использованием информации внутрикадрового прогнозирования. Например, выбор может проводиться таким образом, чтобы использовать прогнозный размер шага квантования в блоке внутрикадрового прогнозирования и ранее кодированный размер шага квантования в блоке межкадрового прогнозирования, или наоборот. Когда параметры межкадрового прогнозирования удовлетворяют определенному конкретному условию, выбор может проводиться таким образом, чтобы использовать ранее кодированный размер шага квантования.

[0176] Число блоков изображений, используемых для прогнозирования, может быть любым числом, отличным от четырех. Дополнительно в этом примерном варианте осуществления либо размер шага квантования в любом из блоков изображений, либо среднее значение размеров шагов квантования в двух блоках изображений используется в качестве прогнозного размера шага квантования, как показано в уравнении (6). Тем не менее, прогнозный размер шага квантования не ограничен прогнозными размерами в уравнении (6). Любой другой результат вычисления может быть использован в качестве прогнозного размера шага квантования. Например, как показано в уравнении (7), может быть использован либо размер шага квантования в любом из блоков изображений, либо промежуточное значение трех размеров шагов квантования, или прогнозный размер шага квантования может быть определен с использованием любого другого вычисления. Дополнительно, блоки изображений, используемые для прогнозирования, не обязательно должны быть смежными с текущим блоком изображений, который должен быть кодирован. Блоки изображений, используемые для прогнозирования, могут быть отделены на предварительно определенное расстояние от текущего блока изображений, который должен быть кодирован.

[0177] Дополнительно, в этом примерном варианте осуществления предполагается, что блок изображений, который должен быть кодирован, и блоки изображений, используемые для прогнозирования, имеют один и тот же фиксированный размер. Тем не менее, настоящее изобретение не ограничено случаем, в котором блок изображений в качестве единицы кодирования имеет фиксированный размер. Блок изображений в качестве единицы кодирования может иметь переменный размер, и блок изображений, который должен быть кодирован, и блоки изображений, используемые для прогнозирования, могут иметь размеры, отличающиеся друг от друга.

[0178] Дополнительно, в этом примерном варианте осуществления предполагается, что блоки передачи размера шага квантования и прогнозный блок имеют один и тот же размер. Тем не менее, настоящее изобретение не ограничено случаем идентичного размера и блоков передачи размера шага квантования, и прогнозный блок может иметь различные размеры. Например, когда два или более прогнозных блока включаются в блоки передачи размера шага квантования, направление прогнозирования любого прогнозного блока двух или более прогнозных блоков может использоваться для прогнозирования размера шага квантования. Альтернативно, результат суммирования любого вычисления, к примеру, вычисления промежуточного значения или вычисления среднего значения, с направлениями прогнозирования двух или более прогнозных блоков может использоваться для прогнозирования размера шага квантования.

[0179] Дополнительно, в этом примерном варианте осуществления, разность между размером шага квантования блока изображений, который должен быть кодирован, и прогнозным размером шага квантования кодируется на основе экспоненциального кода Голомба. Тем не менее, настоящее изобретение не ограничено использованием экспоненциального кода Голомба, и может быть выполнено кодирование на основе любого другого энтропийного кода. Например, может быть выполнено кодирование на основе Кода Хаффмана или арифметического кода.

[0180] Примерный вариант 8 осуществления

Аналогично устройству декодирования видео в четвертом примерном варианте осуществления настоящего изобретения, устройство декодирования видео в восьмом примерном варианте осуществления настоящего изобретения включает в себя декодер 201 с переменной длиной кода, обратный квантователь 202, обратный преобразователь 203 частоты, запоминающее устройство 204 кадров, модуль 205 внутрикадрового прогнозирования, модуль 206 межкадрового прогнозирования и модуль 207 выбора прогнозирования, как показано на фиг. 26. Тем не менее, структура декодера размеров шагов квантования, включенного в декодер 201 с переменной длиной кода, отличается от структуры, показанной на фиг. 5.

[0181] Фиг. 15 является блок-схемой, показывающей декодер размеров шагов квантования в устройстве декодирования видео в восьмом примерном варианте осуществления настоящего изобретения. По сравнению со структурой декодера размеров шагов квантования, показанного на фиг. 5, структура декодера размеров шагов квантования в примерном варианте осуществления отличается включением в конфигурацию модуля 20114 выбора размеров шагов квантования, как показано на фиг. 15.

[0182] Поскольку работа энтропийного декодера 20111, буфера 20112 размеров шагов квантования и формирователя 20113 прогнозных размеров шагов квантования является идентичной работе декодера размеров шагов квантования в устройстве кодирования видео в четвертом примерном варианте осуществления, избыточное описание опускается здесь.

[0183] Модуль 20114 выбора размеров шагов квантования выбирает либо размер шага квантования, назначаемый ранее декодированному блоку изображений, либо прогнозный размер разности шагов квантования, выводимый из формирователя 20113 прогнозных размеров шагов квантования согласно параметру прогнозирования изображений, и выводит результат в качестве избирательно прогнозного размера шага квантования. Размер шага квантования, назначаемый ранее декодированному блоку изображений, сохраняется в буфере 20112 размеров шагов квантования. Размер разности шагов квантования, сформированный посредством энтропийного декодера 20111, суммируется с выводимым избирательно прогнозным размером разности шагов квантования, и результат не только выводится в качестве размера шага квантования, но также и сохраняется в буфере 20112 размеров шагов квантования.

[0184] Такая структура предоставляет возможность устройству декодирования видео декодировать размер шага квантования посредством приема только дополнительной меньшей кодовой скорости по сравнению с устройством декодирования видео в четвертом примерном варианте осуществления. Как результат, высококачественное движущееся изображение может декодироваться и повторно формироваться. Причина состоит в том, что размер шага квантования может быть декодирован посредством работы модуля 20114 выбора размеров шагов квантования, чтобы избирательно использовать прогнозный размер шага квантования, извлекаемый из параметра прогнозирования изображений, и ранее кодированный размер шага квантования, так что размер шага квантования может быть декодирован с меньшей кодовой скоростью для потока битов, сформированного посредством применения как адаптивного квантования на основе визуальной восприимчивости, так и повышения или понижения размера шага квантования, возникающего в результате мониторинга выходной кодовой скорости, и, следовательно, движущееся изображение может декодироваться и повторно формироваться посредством меньшей кодовой скорости.

[0185] Каждый из примерных вышеупомянутых вариантов осуществления может быть реализован посредством аппаратных средств или компьютерной программы.

[0186] Система обработки информации, показанная на фиг. 16, включает в себя процессор 1001, запоминающее устройство 1002 программ, носитель 1003 хранения данных для хранения видеоданных и носитель 1004 хранения данных для хранения потока битов. Носитель 1003 хранения данных и носитель 1004 хранения данных могут быть отдельными носителями хранения данных или областями хранения, включенными в один и тот же носитель хранения данных. В качестве носителя хранения данных, магнитный носитель хранения данных, такой как жесткий диск, может быть использован в качестве носителя хранения данных.

[0187] В системе обработки информации, показанной на фиг. 16, программа для реализации функции каждого блока (включающего в себя каждый из блоков, показанных на фиг. 1, фиг. 3, фиг. 4 и фиг. 5, за исключением блока буферов), показанного в каждом из фиг. 24 и фиг. 26, сохраняется в запоминающем устройстве 1002 программ. Процессор 1001 выполняет обработку согласно программе, сохраненной в запоминающем устройстве 1002 программ, чтобы реализовывать функции устройства кодирования видео или устройства декодирования видео, показанного в каждом из фиг. 24, фиг. 26 и фиг. 1, фиг. 3, фиг. 4 и фиг. 5, соответственно.

[0188] Фиг. 17 является блок-схемой, показывающей характерные компоненты в устройстве кодирования видео согласно настоящему изобретению. Как показано на фиг. 17, устройство кодирования видео согласно настоящему изобретению включает в себя модуль 10 кодирования размеров шагов квантования для кодирования размера шага квантования, который управляет степенью детализации квантования, и модуль 10 кодирования размеров шагов квантования включает в себя модуль 11 прогнозирования размеров шагов квантования для прогнозирования размера шага квантования с использованием размеров шагов квантования, назначаемых уже кодированным соседним блокам изображений.

[0189] Фиг. 18 является блок-схемой, показывающей характерные компоненты в другом устройстве кодирования видео согласно настоящему изобретению. Как показано на фиг. 18, другое устройство кодирования видео согласно настоящему изобретению включает в себя, в дополнение к структуре, показанной на фиг. 17, модуль 20 формирования прогнозных изображений для использования изображений, кодированных ранее, и предварительно определенного параметра, для того чтобы формировать прогнозное изображение блока изображений, который должен быть кодирован. В этой структуре модуль 10 кодирования размеров шагов квантования прогнозирует размер шага квантования с использованием параметров, используемых при формировании прогнозного изображения. Также может быть включен модуль 30 формирования прогнозных векторов движения для прогнозирования вектора движения, используемого для межкадрового прогнозирования посредством использования векторов движения, назначаемых уже кодированным соседним блокам изображений, так что модуль 10 кодирования размеров шагов квантования использует направление прогнозирования прогнозного вектора движения для того, чтобы прогнозировать размер шага квантования.

[0190] Фиг. 19 является блок-схемой, показывающей характерные компоненты в устройстве декодирования видео согласно настоящему изобретению. Как показано на фиг. 19, устройство декодирования видео согласно настоящему изобретению включает в себя модуль 50 декодирования размеров шагов квантования для декодирования размера шага квантования, который управляет степенью детализации обратного квантования, и модуль 50 декодирования размеров шагов квантования включает в себя модуль 51 прогнозирования размеров шага для прогнозирования размера шага квантования с использованием размеров шагов квантования, назначаемых уже декодированным соседним блокам изображений.

[0191] Фиг. 20 является блок-схемой, показывающей характерные компоненты в другом устройстве декодирования видео согласно настоящему изобретению. Как показано на фиг. 20, другое устройство декодирования видео согласно настоящему изобретению включает в себя, в дополнение к структуре, показанной на фиг. 19, модуль 60 формирования прогнозных изображений для использования изображений, декодированных ранее, и предварительно определенных параметров, чтобы формировать прогнозное изображение блока изображений, который должен быть декодирован. В этой структуре модуль 50 декодирования размеров шагов квантования прогнозирует размер шага квантования с использованием параметров, используемых при формировании прогнозного изображения. Также может быть включен модуль 70 формирования прогнозных векторов движения для прогнозирования вектора движения, используемого для межкадрового прогнозирования посредством использования вектора движения, назначаемого уже кодированному соседнему блоку изображений, так что модуль 50 декодирования размеров шагов квантования использует направление прогнозирования прогнозного вектора движения для того, чтобы прогнозировать размер шага квантования.

[0192] Фиг. 21 является блок-схемой последовательности операций способа, показывающей характерные этапы в способе кодирования видео согласно настоящему изобретению. Как показано на фиг. 21, способ кодирования видео включает в себя этап S11 для определения направления прогнозирования для внутрикадрового прогнозирования, этап S12 для формирования прогнозного изображения с использованием внутрикадрового прогнозирования, и этап S13 для прогнозирования размера шага квантования с использованием направления прогнозирования для внутрикадрового прогнозирования.

[0193] Фиг. 22 является блок-схемой последовательности операций способа, показывающей характерные этапы в способе декодирования видео согласно настоящему изобретению. Как показано на фиг. 22, способ декодирования видео включает в себя этап S21 для определения направления прогнозирования для внутрикадрового прогнозирования, этап S22 для формирования прогнозного изображения с использованием внутрикадрового прогнозирования, и этап S23 для прогнозирования размера шага квантования с использованием направления прогнозирования для внутрикадрового прогнозирования.

[0194] Часть или все вышеуказанные примерные варианты осуществления могут описываться как дополнительные примечания, упомянутые ниже, но структура настоящего изобретения не ограничена следующими структурами.

[0195] Дополнительное примечание 1

Устройство кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержащее средство кодирования размеров шагов квантования для кодирования размера шага квантования, который управляет степенью детализации квантования, и средство формирования прогнозных изображений для использования изображения, кодированного ранее, и предварительно определенного параметра, для того чтобы формировать прогнозное изображение блока изображений, который должен быть кодирован, средство кодирования размеров шагов квантования для прогнозирования размера шага квантования посредством использования параметра, используемого посредством средства формирования прогнозных изображений, при этом средство формирования прогнозных изображений формирует прогнозное изображение посредством использования, по меньшей мере, межкадрового прогнозирования, и средство кодирования размеров шагов квантования использует вектор движения межкадрового прогнозирования для того, чтобы прогнозировать размер шага квантования.

[0196] Дополнительное примечание 2

Устройство кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержащее средство кодирования размеров шагов квантования для кодирования размера шага квантования, который управляет степенью детализации квантования, и средство формирования прогнозных изображений для формирования прогнозного изображения блока изображений, который должен быть кодирован, посредством использования изображения, кодированного ранее, и предварительно определенного параметра, средство кодирования размеров шагов квантования для прогнозирования размера шага квантования посредством использования параметра, используемого посредством средства формирования прогнозных изображений, при этом средство кодирования размеров шагов квантования прогнозирует размер шага квантования посредством использования размера шага квантования, назначаемого уже кодированному соседнему блоку изображений, средство формирования прогнозных изображений формирует прогнозное изображение посредством использования, по меньшей мере, межкадрового прогнозирования, дополнительно содержится средство формирования прогнозных векторов движения для прогнозирования вектора движения, используемого для межкадрового прогнозирования посредством использования вектора движения, назначаемого уже кодированному соседнему блоку изображений, и средство кодирования размеров шагов квантования использует направление прогнозирования прогнозного вектора движения для того, чтобы прогнозировать размер шага квантования.

[0197] Дополнительное примечание 3

Устройство декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержащее средство декодирования размеров шагов квантования для декодирования размера шага квантования, который управляет степенью детализации обратного квантования, и средство формирования прогнозных изображений для формирования прогнозного изображения блока изображений, который должен быть декодирован, посредством использования изображения, декодированного ранее, и предварительно определенного параметра, средство декодирования размеров шагов квантования для прогнозирования размера шага квантования посредством использования параметра, назначаемого уже декодированному соседнему блоку изображений, при этом средство декодирования размеров шагов квантования прогнозирует размер шага квантования посредством использования параметра, используемого для того, чтобы формировать прогнозное изображение, средство формирования прогнозных изображений формирует прогнозное изображение посредством использования, по меньшей мере, межкадрового прогнозирования, и средство декодирования размеров шагов квантования использует вектор движения межкадрового прогнозирования для того, чтобы прогнозировать размер шага квантования.

[0198] Дополнительное примечание 4

Устройство декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержащее средство декодирования размеров шагов квантования для декодирования размера шага квантования, который управляет степенью детализации обратного квантования, и средство формирования прогнозных изображений для формирования прогнозного изображения блока изображений, который должен быть декодирован, посредством использования изображения, декодированного ранее, и предварительно определенного параметра, средство декодирования размеров шагов квантования для прогнозирования размера шага квантования посредством использования размера шага квантования, назначаемого уже декодированному соседнему изображению, при этом средство декодирования размеров шагов квантования прогнозирует размер шага квантования с использованием прогнозного изображения, используемого для того, чтобы формировать прогнозное изображение, средство формирования прогнозных изображений формирует прогнозное изображение с использованием, по меньшей мере, межкадрового прогнозирования, дополнительно содержится средство формирования прогнозных векторов движения для использования вектора движения, назначаемого уже кодированному соседнему блоку изображений, чтобы прогнозировать вектор движения, используемый для межкадрового прогнозирования, и средство декодирования размеров шагов квантования использует направление прогнозирования прогнозного вектора движения для того, чтобы прогнозировать размер шага квантования.

[0199] Дополнительное примечание 5

Способ кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержащий этап прогнозирования размера шага квантования, который управляет степенью детализации квантования, с использованием размера шага квантования, назначаемого уже кодированному соседнему блоку изображений, и этап формирования прогнозного изображения блока изображений, который должен быть кодирован, посредством использования изображения, кодированного ранее, и предварительно определенного параметра, при этом размер шага квантования прогнозируется посредством использования параметра, используемого для того, чтобы формировать прогнозное изображение.

[0200] Дополнительное примечание 6

Способ кодирования видео согласно дополнительному примечанию 5, в котором прогнозное изображение формируется с использованием, по меньшей мере, внутрикадрового прогнозирования на этапе формирования прогнозного изображения, и направление прогнозирования для внутрикадрового прогнозирования используется для того, чтобы прогнозировать размер шага квантования.

[0201] Дополнительное примечание 7

Способ кодирования видео согласно дополнительному примечанию 5, в котором прогнозное изображение формируется с использованием, по меньшей мере, межкадрового прогнозирования на этапе формирования прогнозного изображения, и вектор движения межкадрового прогнозирования используется для того, чтобы прогнозировать размер шага квантования.

[0202] Дополнительное примечание 8

Способ кодирования видео согласно дополнительному примечанию 5, прогнозное изображение формируется с использованием, по меньшей мере, межкадрового прогнозирования на этапе формирования прогнозного изображения, содержится этап использования вектора движения, назначаемого уже кодированному соседнему блоку изображений, для того, чтобы прогнозировать вектор движения, используемый для межкадрового прогнозирования, и направление прогнозирования прогнозного вектора движения используется для того, чтобы прогнозировать размер шага квантования.

[0203] Дополнительное примечание 9

Способ кодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержащий этап прогнозирования размера шага квантования, который управляет степенью детализации обратного квантования, посредством использования размера шага квантования, назначаемого уже декодированному соседнему блоку изображений, и этап формирования прогнозного изображения с использованием, по меньшей мере, межкадрового прогнозирования, при этом вектор движения межкадрового прогнозирования используется для того, чтобы прогнозировать размер шага квантования.

[0204] Дополнительное примечание 10

Способ декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержащий этап прогнозирования размера шага квантования, который управляет степенью детализации обратного квантования, посредством использования размера шага квантования, назначаемого уже декодированному соседнему блоку изображений, и этап формирования прогнозного изображения с использованием, по меньшей мере, межкадрового прогнозирования, вектор движения, назначаемый уже кодированному соседнему блоку изображений, используется для того, чтобы прогнозировать, что вектор движения используется для межкадрового прогнозирования, и направление прогнозирования прогнозного вектора движения используется для того, чтобы прогнозировать размер шага квантования.

[0205] Дополнительное примечание 11

Программа кодирования видео, используемая в устройстве кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений выполнять процесс кодирования со сжатием, заставляющая компьютер использовать размер шага квантования, назначаемый уже кодированному соседнему блоку изображений, чтобы прогнозировать размер шага квантования, который управляет степенью детализации квантования.

[0206] Дополнительное примечание 12

Программа кодирования видео согласно дополнительному примечанию (11), заставляющая компьютер использовать изображение, кодированное ранее, и предварительно определенный параметр, для того чтобы выполнять процесс формирования прогнозного изображения блока изображений, который должен быть кодирован, чтобы прогнозировать размер шага квантования с использованием параметра, используемого для того, чтобы формировать прогнозное изображение.

[0207] Дополнительное примечание 13

Программа кодирования видео согласно дополнительному примечанию (12), заставляющая компьютер выполнять процесс формирования прогнозного изображения с использованием, по меньшей мере, внутрикадрового прогнозирования, чтобы прогнозировать размер шага квантования с использованием направления прогнозирования для внутрикадрового прогнозирования.

[0208] Дополнительное примечание 14

Программа кодирования видео согласно дополнительному примечанию (12), заставляющая компьютер выполнять процесс формирования прогнозного изображения с использованием, по меньшей мере, межкадрового прогнозирования, чтобы прогнозировать размер шага квантования с использованием вектора движения межкадрового прогнозирования.

[0209] Дополнительное примечание 15

Программа кодирования видео согласно дополнительному примечанию (12), заставляющая компьютер выполнять процесс формирования прогнозного изображения с использованием, по меньшей мере, межкадрового прогнозирования и процесс использования вектора движения, назначаемого уже кодированному соседнему блоку изображений, чтобы прогнозировать вектор движения, используемый при межкадровом прогнозировании, чтобы прогнозировать размер шага квантования с использованием направления прогнозирования прогнозного вектора движения.

[0210] Дополнительное примечание 16

Программа декодирования видео, используемая в устройстве декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, заставляющая компьютер использовать размер шага квантования, назначаемый уже декодированному соседнему блоку изображений, чтобы прогнозировать размер шага квантования, который управляет степенью детализации обратного квантования.

[0211] Дополнительное примечание 17

Программа декодирования видео согласно дополнительному примечанию (16), заставляющая компьютер выполнять процесс использования изображения, декодированного ранее, и предварительно определенного параметра, для того чтобы формировать прогнозное изображение блока изображений, который должен быть декодирован, чтобы прогнозировать размер шага квантования с использованием параметра, используемого для того, чтобы формировать прогнозное изображение.

[0212] Дополнительное примечание 18

Программа декодирования видео согласно дополнительному примечанию (17), заставляющая компьютер выполнять процесс формирования прогнозного изображения с использованием, по меньшей мере, внутрикадрового прогнозирования, чтобы прогнозировать размер шага квантования с использованием направления прогнозирования для внутрикадрового прогнозирования.

[0213] Дополнительное примечание 19

Программа декодирования видео согласно дополнительному примечанию (17), заставляющая компьютер выполнять процесс формирования прогнозного изображения с использованием, по меньшей мере, межкадрового прогнозирования, чтобы прогнозировать размер шага квантования с использованием вектора движения межкадрового прогнозирования.

[0214] Дополнительное примечание 20

Программа декодирования видео согласно дополнительному примечанию (17), заставляющая компьютер выполнять процесс формирования прогнозного изображения с использованием, по меньшей мере, межкадрового прогнозирования и процесс использования вектора движения, назначаемого уже кодированному соседнему блоку изображений, чтобы прогнозировать вектор движения, используемый при межкадровом прогнозировании, чтобы прогнозировать размер шага квантования с использованием направления прогнозирования прогнозного вектора движения.

[0215] Дополнительное примечание 21

Устройство кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержащее средство кодирования размеров шагов квантования для кодирования размера шага квантования, который управляет степенью детализации квантования; средство формирования прогнозных изображений для формирования прогнозного изображения блока изображений, который должен быть кодирован, посредством использования изображения, кодированного ранее, и предварительно определенного параметра, при этом средство кодирования размеров шагов квантования прогнозирует размер шага квантования с использованием параметра, используемого посредством средства формирования прогнозных изображений; средство управления прогнозированием размеров шагов квантования для управления работой средства кодирования размеров шагов квантования на основе предварительно определенного параметра; и средство мультиплексирования для мультиплексирования функционального параметра средства кодирования размеров шагов квантования в результат процесса кодирования со сжатием.

[0216] Дополнительное примечание 22

Устройство кодирования видео согласно дополнительному примечанию 21, в котором функциональный параметр средства кодирования размеров шагов квантования включает в себя, по меньшей мере, флаг, представляющий то, следует или нет использовать параметр, используемый посредством средства формирования прогнозных изображений, и средство управления прогнозированием размеров шагов квантования управляет работой средства кодирования размеров шагов квантования на основе флага.

[0217] Дополнительное примечание 23

Устройство кодирования видео согласно дополнительному примечанию 21, в котором функциональный параметр средства кодирования размеров шагов квантования содержит, по меньшей мере, параметр модуляции размера шага квантования, и средство кодирования размеров шагов квантования использует параметр модуляции, чтобы модулировать размер шага квантования, определенный на основе параметра, используемого посредством средства формирования прогнозных изображений, чтобы прогнозировать размер шага квантования.

[0218] Дополнительное примечание 24

Устройство кодирования видео согласно дополнительному примечанию 23, в котором средство кодирования размеров шагов квантования суммирует предварительно определенное смещение с размером шага квантования, определенным на основе параметра, используемого посредством средства формирования прогнозных изображений, чтобы прогнозировать размер шага квантования.

[0219] Дополнительное примечание 25

Устройство декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержащее: средство декодирования размеров шагов квантования для декодирования размера шага квантования, который управляет степенью детализации обратного квантования; средство формирования прогнозных изображений для использования изображения, декодированного ранее, и предварительно определенного параметра, для того чтобы формировать прогнозное изображение блока изображений, который должен быть декодирован, при этом средство декодирования размеров шагов квантования использует размер шага квантования, назначаемый уже декодированному соседнему блоку изображений, чтобы прогнозировать размер шага квантования; средство демультиплексирования для демультиплексирования потока битов, включающего функциональный параметр средства декодирования размеров шагов квантования; и средство управления прогнозированием размеров шагов квантования для управления работой средства декодирования размеров шагов квантования на основе демультиплексированного функционального параметра средства декодирования размеров шагов квантования.

[0220] Дополнительное примечание 26

Устройство декодирования видео согласно дополнительному примечанию 25, в котором средство демультиплексирования извлекает, в качестве функционального параметра средства декодирования размеров шагов квантования, по меньшей мере, флаг, представляющий то, следует или нет использовать параметр, используемый посредством средства формирования прогнозных изображений, и средство управления прогнозированием размеров шагов квантования управляет работой средства декодирования размеров шагов квантования на основе флага.

[0221] Дополнительное примечание 27

Устройство декодирования видео согласно дополнительному примечанию 25, в котором средство демультиплексирования извлекает, в качестве функционального параметра средства декодирования размеров шагов квантования, по меньшей мере, параметр модуляции размера шага квантования, и средство декодирования размеров шагов квантования использует параметр модуляции, чтобы модулировать размер шага квантования, определенный на основе параметра, используемого посредством средства формирования прогнозных изображений, чтобы прогнозировать размер шага квантования.

[0222] Дополнительное примечание 28

Устройство декодирования видео согласно дополнительному примечанию 27, в котором средство декодирования размеров шагов квантования суммирует предварительно определенное смещение с размером шага квантования, определенным на основе параметра, используемого посредством средства формирования прогнозных изображений, чтобы прогнозировать размер шага квантования.

[0223] Дополнительное примечание 29

Способ кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержащий: кодирование размера шага квантования, который управляет степенью детализации квантования; использование изображения, кодированного ранее, и предварительно определенного параметра, для того чтобы формировать прогнозное изображение блока изображений, который должен быть кодирован; прогнозирование размера шага квантования с использованием параметра, используемого при формировании прогнозного изображения; и мультиплексирование функционального параметра, используемого при кодировании размера шага квантования, в результат процесса кодирования со сжатием.

[0224] Дополнительное примечание 30

Способ кодирования видео согласно дополнительному примечанию 29, в котором функциональный параметр, используемый при кодировании размера шага квантования, включает в себя, по меньшей мере, флаг, представляющий то, следует или нет использовать параметр при формировании прогнозного изображения для того, чтобы управлять операцией для кодирования размера шага квантования на основе флага.

[0225] Дополнительное примечание 31

Способ кодирования видео согласно дополнительному примечанию 29, в котором функциональный параметр, используемый при кодировании размера шага квантования, содержит, по меньшей мере, параметр модуляции размера шага квантования, и при кодировании размера шага квантования параметр модуляции используется для того, чтобы модулировать размер шага квантования, определенный на основе параметра, используемого при формировании прогнозного изображения, чтобы прогнозировать размер шага квантования.

[0226] Дополнительное примечание 32

Способ кодирования видео согласно дополнительному примечанию 31, в котором предварительно определенное смещение суммируется с размером шага квантования, определенным на основе параметра, используемого при формировании прогнозного изображения, чтобы прогнозировать размер шага квантования.

[0227] Дополнительное примечание 33

Способ декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержащий: декодирование размера шага квантования, который управляет степенью детализации обратного квантования; использование изображения, декодированного ранее, и предварительно определенного параметра, для того чтобы формировать прогнозное изображение блока изображений, который должен быть декодирован; использование размера шага квантования, назначаемого уже декодированному соседнему блоку изображений, чтобы прогнозировать размер шага квантования при декодировании размера шага квантования; демультиплексирование потока битов, включающего функциональный параметр, используемый при декодировании размера шага квантования, и управление работой для декодирования размера шага квантования на основе демультиплексированного функционального параметра.

[0228] Дополнительное примечание 34

Способ декодирования видео согласно дополнительному примечанию 33, в котором, по меньшей мере, флаг, представляющий то, следует или нет использовать параметр, используемый при формировании прогнозного изображения блока изображений, который должен быть декодирован, извлекается в качестве функционального параметра, используемого при декодировании размера шага квантования, и операция для декодирования размера шага квантования управляется на основе флага.

[0229] Дополнительное примечание 35

Способ декодирования видео согласно дополнительному примечанию 33, в котором, по меньшей мере, параметр модуляции размера шага квантования извлекается в качестве функционального параметра, используемого при декодировании размера шага квантования, и параметр модуляции используется для того, чтобы модулировать размер шага квантования, определенный на основе параметра, используемого при формировании прогнозного изображения блока изображений, который должен быть декодирован, чтобы прогнозировать размер шага квантования.

[0230] Дополнительное примечание 36

Способ декодирования видео согласно дополнительному примечанию 35, в котором при декодировании размера шага квантования, предварительно определенное смещение суммируется с размером шага квантования, определенным на основе параметра, используемого при формировании прогнозного изображения блока изображений, который должен быть декодирован, чтобы прогнозировать размер шага квантования.

[0231] Дополнительное примечание 37

Программа кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, заставляющая компьютер выполнять: процесс кодирования размера шага квантования, который управляет степенью детализации квантования; процесс использования изображения, кодированного ранее, и предварительно определенного параметра, для того чтобы формировать прогнозное изображение блока изображений, который должен быть кодирован; процесс прогнозирования размера шага квантования с использованием параметра, используемого при формировании прогнозного изображения; и мультиплексирование функционального параметра, используемого при кодировании размера шага квантования, в результат процесса кодирования со сжатием.

[0232] Дополнительное примечание 38

Программа кодирования видео согласно дополнительному примечанию 37, в которой функциональный параметр, используемый при кодировании размера шага квантования, включает в себя, по меньшей мере, флаг, представляющий то, следует или нет использовать параметр при формировании прогнозного изображения, и компьютер заставляют управлять операцией для кодирования размера шага квантования на основе флага.

[0233] Дополнительное примечание 39

Программа кодирования видео согласно дополнительному примечанию 37, в которой функциональный параметр, используемый при кодировании размера шага квантования, включает в себя, по меньшей мере, параметр модуляции размера шага квантования, и при кодировании размера шага квантования, компьютер заставляют использовать параметр модуляции, чтобы модулировать размер шага квантования, определенный на основе параметра, используемого при формировании прогнозного изображения, чтобы прогнозировать размер шага квантования.

[0234] Дополнительное примечание 40

Программа кодирования видео согласно дополнительному примечанию 39, в которой компьютер заставляют суммировать предварительно определенное смещение с размером шага квантования, определенным на основе параметра, используемого при формировании прогнозного изображения, чтобы прогнозировать размер шага квантования.

[0235] Дополнительное примечание 41

Программа декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, заставляющая компьютер выполнять: процесс декодирования размера шага квантования, который управляет степенью детализации обратного квантования; процесс использования изображения, декодированного ранее, и предварительно определенного параметра, для того чтобы формировать прогнозное изображение блока изображений, который должен быть декодирован; процесс использования размера шага квантования, назначаемого уже декодированному соседнему блоку изображений, чтобы прогнозировать размер шага квантования при декодировании размера шага квантования; процесс демультиплексирования потока битов, включающего функциональный параметр, используемый при декодировании размера шага квантования, и процесс управления работой для декодирования размера шага квантования на основе демультиплексированного функционального параметра.

[0236] Дополнительное примечание 42

Программа декодирования видео согласно дополнительному примечанию 41, заставляющая компьютер дополнительно выполнять: процесс извлечения, в качестве функционального параметра, используемого при декодировании размера шага квантования, по меньшей мере, флаг, представляющий то, следует или нет использовать параметр, используемый при формировании прогнозного изображения блока изображений, который должен быть декодирован; и процесс управления работой для декодирования размера шага квантования на основе флага.

[0237] Дополнительное примечание 43

Программа декодирования видео согласно дополнительному примечанию 41, заставляющая компьютер дополнительно выполнять: процесс извлечения, в качестве функционального параметра, используемого при декодировании размера шага квантования, по меньшей мере, параметр модуляции размера шага квантования; и процесс использования параметра модуляции, чтобы модулировать размер шага квантования, определенный на основе параметра, используемого при формировании прогнозного изображения блока изображений, который должен быть декодирован, чтобы прогнозировать размер шага квантования.

[0238] Дополнительное примечание 44

Программа декодирования видео согласно дополнительному примечанию 43, в которой при декодировании размера шага квантования, компьютер заставляют суммировать предварительно определенное смещение с размером шага квантования, определенным на основе параметра, используемого при формировании прогнозного изображения блока изображений, который должен быть декодирован, чтобы прогнозировать размер шага квантования.

[0239] Дополнительное примечание 45

Устройство кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержащее средство кодирования размеров шагов квантования для кодирования размера шага квантования, который управляет степенью детализации квантования, при этом средство кодирования размеров шагов квантования прогнозирует размер шага квантования, который управляет степенью детализации квантования, посредством использования среднего значения размеров шагов квантования, назначаемых нескольким уже кодированным соседним блокам изображений.

[0240] Дополнительное примечание 46

Устройство декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержащее средство декодирования размеров шагов квантования для декодирования размера шага квантования, который управляет степенью детализации обратного квантования, при этом средство декодирования размеров шагов квантования прогнозирует размер шага квантования, который управляет степенью детализации обратного квантования, посредством использования среднего значения размеров шагов квантования, назначаемых нескольким уже кодированным соседним блокам изображений.

[0241] Дополнительное примечание 47

Способ кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, содержащий использование среднего значения размеров шагов квантования, назначаемых нескольким уже кодированным соседним блокам изображений, чтобы прогнозировать размер шага квантования, который управляет степенью детализации квантования.

[0242] Дополнительное примечание 48

Способ декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, содержащий использование среднего значения размеров шагов квантования, назначаемых нескольким уже декодированным соседним блокам изображений, чтобы прогнозировать размер шага квантования, который управляет степенью детализации обратного квантования.

[0243] Дополнительное примечание 49

Программа кодирования видео для разделения входных данных изображений на блоки предварительно определенного размера и применения квантования к каждому разделенному блоку изображений, чтобы выполнять процесс кодирования со сжатием, заставляющая компьютер выполнять: процесс кодирования размера шага квантования, который управляет степенью детализации квантования; и процесс использования среднего значения размеров шагов квантования, назначаемых нескольким уже кодированным соседним блокам изображений, чтобы прогнозировать размер шага квантования, который управляет степенью детализации квантования.

[0244] Дополнительное примечание 50

Программа декодирования видео для декодирования блоков изображений с использованием обратного квантования входных сжатых видеоданных, чтобы выполнять процесс формирования данных изображений в качестве набора блоков изображений, заставляющая компьютер выполнять: процесс декодирования размера шага квантования, который управляет степенью детализации обратного квантования; и процесс использования среднего значения размеров шагов квантования, назначаемых нескольким уже декодированным соседним блокам изображений, чтобы прогнозировать размер шага квантования, который управляет степенью детализации обратного квантования.

[0245] Хотя настоящее изобретение описано в отношении примерных вариантов осуществления и примеров, настоящее изобретение не ограничено вышеуказанными примерными вариантами осуществления и примерами. Различные изменения, понятные для специалистов в данной области техники в пределах объема настоящего изобретения, могут быть внесены в структуры и подробности настоящего изобретения.

[0246] Данная заявка притязает на приоритет заявки на патент (Япония) № 2011-51291, поданной 9 марта 2011 года, и заявки на патент (Япония) № 2011-95395, поданной 21 апреля 2011 года, раскрытия сущности которых полностью содержатся в данном документе.

СПИСОК ПОЗИЦИОННЫХ ОБОЗНАЧЕНИЙ

[0247]

10 - модуль кодирования размеров шагов квантования

11 - модуль прогнозирования размеров шага

20 - модуль формирования прогнозных изображений

30 - модуль формирования прогнозных векторов движения

50 - модуль декодирования размеров шагов квантования

51 - модуль прогнозирования размеров шага

60 - модуль формирования прогнозных изображений

70 - модуль формирования прогнозных векторов движения

101 - преобразователь частоты

102 - квантователь

103 - кодер с переменной длиной кода

104 - контроллер квантования

105 - обратный квантователь

106 - обратный преобразователь частоты

107 - запоминающее устройство кадров

108 - модуль внутрикадрового прогнозирования

109 - модуль межкадрового прогнозирования

110 - модуль выбора прогнозирования

111 - контроллер прогнозирования размеров шагов квантования

112 - мультиплексор

201 - декодер с переменной длиной кода

202 - обратный квантователь

203 - обратный преобразователь частоты

204 - запоминающее устройство кадров

205 - модуль внутрикадрового прогнозирования

206 - модуль межкадрового прогнозирования

207 - модуль выбора прогнозирования

208 - демультиплексор

209 - контроллер прогнозирования размеров шагов квантования

1001 - процессор

1002 - запоминающее устройство программ

1003 - носитель хранения данных

1004 - носитель хранения данных

10311 - буфер размеров шагов квантования

10312 - энтропийный кодер

10313 - формирователь прогнозных размеров шагов квантования

20111 - энтропийный декодер

20112 - буфер размеров шагов квантования

20113 - формирователь прогнозных размеров шагов квантования

1. Устройство декодирования видео для декодирования блоков изображения, используя размер шага квантования, содержащее:

первое средство получения для получения первого размера шага квантования, который управляет степенью детализации обратного квантования, причем упомянутый размер шага квантования назначается соседнему блоку изображения, который уже декодирован,

второе средство получения для получения второго размера шага квантования, который управляет степенью детализации обратного квантования, причем второй размер шага квантования назначается блоку изображения, который был декодирован непосредственно перед,

средство выбора для выбора первого размера шага квантования или второго размера шага квантования; и

средство вычисления для вычисления размера шага квантования на основе выбранного размера шага квантования.

2. Способ декодирования видео для декодирования блоков изображения, используя размер шага квантования, содержащий:

получение первого размера шага квантования, который управляет степенью детализации обратного квантования, причем упомянутый размер шага квантования назначают соседнему блоку изображения, который уже декодирован,

получение второго размера шага квантования, который управляет степенью детализации обратного квантования, причем второй размер шага квантования назначают блоку изображения, который был декодирован непосредственно перед,

выбор первого размера шага квантования или второго размера шага квантования; и

вычисление размера шага квантования на основе выбранного размера шага квантования.

3. Считываемый компьютером носитель записи информации, хранящий программу, которая при исполнении процессором выполняет:

декодирование блоков изображения, используя размер шага квантования,

получение первого размера шага квантования, который управляет степенью детализации обратного квантования, причем упомянутый размер шага квантования назначают соседнему блоку изображения, который уже декодирован,

получение второго размера шага квантования, который управляет степенью детализации обратного квантования, причем второй размер шага квантования назначают блоку изображения, который был декодирован непосредственно перед,

выбор первого размера шага квантования или второго размера шага квантования; и

вычисление размера шага квантования на основе выбранного размера шага квантования.



 

Похожие патенты:

Изобретение относится к области обработки видеоданных. Технический результат – упрощение обработки элементов синтаксиса в наборе параметров видео посредством использования элемента синтаксиса смещения.

Изобретение относится к области кодирования/декодирования видео. Технический результат – обеспечение эффективного сжатия данных в контексте показателя искажения в зависимости от скорости передачи, посредством использования отфильтрованных значений отсчетов для внутреннего предсказания с блочным копированием.

Изобретение относится к средствам сжатия, передачи и хранения в компактном виде мультимедийной информации. Технический результат заключается в повышении быстродействия при сжатии мультимедийной информации.

Изобретение относится к области техники инкапсуляции синхронизированных мультимедийных данных, например, согласно базовому формату мультимедийных файлов MPEG. Техническим результатом является обеспечение организации данных и описания дорожек для пространственных мозаичных фрагментов, которая обеспечивает, безотносительно того, какая комбинация дорожек выбирается посредством клиентского приложения, то, что результат синтаксического ISO BMFF-анализа всегда приводит к допустимому элементарному потоку видеобитов для видеодекодера.

Изобретение относится к области обработки видеоданных. Технический результат заключается в обеспечении системы распределения видео для передачи видео на устройства, поддерживающие расширенный диапазон видео, и на стандартные видеоустройства.

Изобретение относится к обработке аудиоданных в установках домашней бытовой электроники. Технический результат заключается в повышении эффективности обработки аудиоданных.

Настоящее изобретение относится к средствам кодирования без потерь. Технический результат заключается в увеличении эффективности сжатия при кодировании изображения за счет выбора режима кодирвоания.

Изобретение относится к средствам сигнализации дополнительных значений сдвига параметров квантования цветности (quantization parameter - QP). Технический результат заключается в расширении арсенала технических средств квантования цветности.

Настоящее изобретение относится к средствам обработки изображений. Технический результат заключается в повышении точности воспроизведения динамического диапазона изображения.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении качества изображения за счет уменьшения локально возникающих ошибок предсказания. Устройство кодирования изображений содержит модуль внутреннего предсказания для, когда режимом кодирования, соответствующим одному из блоков кодирования, на которые разделено введенное изображение, является режим внутреннего кодирования, выполнения процедуры внутрикадрового предсказания для каждого блока, представляющего собой единичный элемент для предсказания блока кодирования, чтобы генерировать изображение с предсказанием, при этом, когда модуль внутреннего предсказания выполняет предсказание с усреднением, модуль внутреннего предсказания выполняет процедуру фильтрации на целевом пикселе внутреннего предсказания, расположенном на верхнем краю или на левом краю блока, который является единичным элементом для предсказания блока кодирования, причем процедура фильтрации использует промежуточное значение предсказания, которое является средним значением смежных пикселей блока, и по меньшей мере один смежный пиксель целевого пикселя. 3 н.п. ф-лы, 21 ил.

Изобретение относится к средствам для воспроизведения звуковых сигналов. Технический результат заключается в повышении качества воспроизведения звуковых сигналов. Получают первый параметр декодирования звуковых сигналов, который является параметром декодирования звуковых сигналов стороннего терминала, внешним образом подключенного к хосту, причем первый параметр декодирования звуковых сигналов используется для описания способности преобразования цифрового звукового сигнала в аналоговый звуковой сигнал. Выбирают устройство с большей способностью преобразования из стороннего терминала и хоста согласно первому и второму параметрам декодирования звуковых сигналов, где второй параметр декодирования является параметром декодирования звуковых сигналов хоста. Воспроизводят звуковые сигналы с использованием выбранного устройства, причем и первый, и второй параметры декодирования звуковых сигналов содержат по меньшей мере схему декодирования звуковых сигналов. Сравнение первого параметра декодирования звуковых сигналов со вторым параметром декодирования звуковых сигналов позволяет выбирать устройство с большей способностью преобразования в качестве устройства для воспроизведения звуковых сигналов, таким образом улучшая качество воспроизведения звуковых сигналов и точность выбора устройства. 2 н. и 14 з.п. ф-лы, 13 ил.

Изобретение относится к усовершенствованному кодированию с улучшенным кодированием таблицы цветов (палитры) и индексной карты. Технический результат заключается в снижении сложности кодера при вычислении и доступе к памяти. Предложено устройство (100) для выполнения способа (1700) кодирования содержимого, который состоит в том, что получают (1701) цветовую индексную карту (311, 601, 1301, 1600) на основе текущей единицы кодирования (CU) (101, 213, 401, 501), кодируют (1703) цветовую индексную карту, где по меньшей мере часть цветовой индексной карты кодируется с использованием первого метода кодирования, где первый индикатор указывает значительное расстояние первого метода кодирования, и объединяют (1705) закодированную цветовую индексную карту и первый индикатор для передачи в приемник (200). 4 н. и 20 з.п. ф-лы, 18 ил., 1 табл.

Изобретение относится к устройству прогнозирующего кодирования/декодирования изображений. Техническим результатом является подавление шума прогнозированных сигналов. Предложенные при прогнозирующем кодировании изображений один или более наборов информации движения извлекаются из нескольких фрагментов информации движения, сохраненной в средстве записи информации движения. Каждый из одного или более наборов информации включает в себя два фрагмента информации движения, в которых любые из составляющих элементов отличаются по значению. Прогнозированный сигнал целевой области в изображении формируется посредством компенсации движения с использованием двух фрагментов информации движения в наборе информации движения, выбранном из одного или более наборов информации движения. Два фрагмента информации движения в выбранном наборе информации движения сохраняются в средстве записи информации движения и используются для формирования прогнозированного сигнала другой области. 2 н.п. ф-лы, 17 ил.

Изобретение относится к управлению полосой пропускания в телевизионных сетях передачи данных по протоколу IP (IPTV). Технический результат заключается в решении проблемы конфликта на уровне ресурсов из-за отсутствия разумного управления полосой пропускания в домашней сети IPTV. Указанный результат достигается тем, что список использования полосы пропускания ресурсов домашней сети динамически поддерживается в терминальном устройстве IPTV в домашней сети; перед запуском службы IPTV, требующей занятия полосы пропускания, терминальное устройство IPTV запрашивает полосу пропускания, требующуюся службе IPTV; текущая остаточная полоса пропускания домашней сети вычисляется в соответствии с локально поддерживаемым списком использования полосы пропускания, и происходит оценивание, удовлетворяет ли текущая остаточная полоса пропускания домашней сети полосе пропускания, требующейся службе IPTV; если да, то обращение службы IPTV за полосой пропускания является успешным, и служба может быть запущена; в то же время терминал IPTV обновляет список использования полосы пропускания и передает другим терминальным устройствам IPTV в домашней сети первое уведомление об обновлении полосы пропускания для уведомления их о необходимости осуществления такого же обновления списка использования полосы пропускания. 4 н. и 7 з.п. ф-лы, 7 ил.

Изобретение относится к декодированию видео на основе арифметического декодирования. Техническим результатом является повышение эффективности процесса декодирования символов. Предложено устройство декодирования видео, содержащее: приемник битового потока, включающего в себя информацию о местоположении последнего коэффициента блока преобразования; арифметический декодер для получения битовой строки префикса местоположения последнего коэффициента из информации о местоположении последнего коэффициента посредством выполнения контекстного арифметического декодирования в отношении битового потока, и когда битовая строка префикса превышает предопределенное значение, получения из битового потока битовой строки суффикса; обратный бинаризатор для обратной бинаризации в отношении битовой строки префикса и выполнения обратной бинаризации в отношении битовой строки суффикса для получения суффикса, подвергнутого обратной бинаризации; и восстановитель символа для восстановления символа, указывающего местоположение последнего коэффициента блока преобразования, посредством использования префикса и суффикса, подвергнутых обратной бинаризации, при этом диапазон значения упомянутого префикса определяется на основе размера блока преобразования, и диапазон значения упомянутого суффикса определяется на основе значения упомянутого префикса, а значение символа, указывающего местоположение последнего коэффициента блока преобразования, восстанавливается посредством использования значений упомянутых префикса и суффикса. 19 ил., 2 табл.

Изобретение относится к субдискретизации сигнала цветности изображений с расширенным динамическим диапазоном (HDR). Технический результат заключается в обеспечении субдискретизации сигнала цветности c уменьшением артефактов размытия контуров при одновременном поддержании других характеристик изображения. Предложено субдискретизацию сигнала цветности, имеющую уменьшенные артефакты, обеспечивать посредством обнаружения высококонтрастных областей в канале яркости изображения, сегментирования изображения на первую высококонтрастную область и вторую область, отличную от первой области, с субдискретизацией сигнала цветности изображения в первой области с использованием первого модуля субдискретизации сигнала цветности и субдискретизацией сигнала цветности изображения во второй области с использованием второго модуля субдискретизации сигнала цветности. Первый модуль субдискретизации имеет свойство сохранения более высокой резкости краев по сравнению со вторым модулем субдискретизации. 3 н. и 10 з.п. ф-лы, 12 ил.

Изобретение относится к видеокодированию, в частности, к внутреннему предсказанию видео. Техническим результатом является снижение сложности процесса определения опорного пикселя для внутреннего предсказания. Предложен способ декодирования видео, содержащий этапы, на которых: определяют, является ли предварительно определенное количество смежных пикселей, смежных с текущим блоком, недоступным для внутреннего предсказания текущего блока; когда первый смежный пиксель из числа предварительно определенного количества смежных пикселей недоступен, выполняют поиск второго смежного пикселя из числа предварительно определенного количества смежных пикселей в предварительно определенном направлении от самого нижнего смежного пикселя слева до самого верхнего смежного пикселя слева для смежных пикселей слева и от самого верхнего смежного пикселя слева до самого верхнего смежного пикселя справа для смежных пикселей сверху; назначают пиксельное значение второго смежного пикселя пиксельному значению самого нижнего смежного пикселя слева; замещают недоступный пиксель, расположенный у левой части текущего блока, последовательно пиксельным значением более низкого смежного пикселя, расположенного непосредственно под недоступным пикселем; замещают недоступный пиксель, расположенный у верхней части текущего блока, последовательно пиксельным значением смежного пикселя слева, расположенного непосредственно слева от недоступного пикселя; и выполняют внутреннее предсказание в отношении текущего блока посредством использования предварительно определенного количества смежных пикселей, при этом первый смежный пиксель расположен в самом низу слева от текущего блока, при этом, когда размером текущего блока является nTxnT, где nT - целое число, предопределенным количеством является 4nT+1. 5 табл., 32 ил.

Изобретение относится к технологиям воспроизведения мультимедийных данных на пользовательских терминалах, например, таких как телевизоры Smart-TV и смартфоны. Технический результат заключается в снижении времени запуска воспроизведения мультимедийных данных. Предложен способ воспроизведения мультимедийных данных, который включает: посылку первым терминалом запроса на сервер на получение информации о статусе воспроизведения; получение сервером запроса на получение информации о статусе воспроизведения, направленного первым терминалом; получение сервером информации о статусе воспроизведения второго терминала, связанного с первым терминалом; управление со стороны сервера первым терминалом для продолжения воспроизведения соответствующих целевых мультимедийных данных согласно информации о статусе воспроизведения; получение первым терминалом посылаемой сервером информации о статусе воспроизведения второго терминала, связанного с первым терминалом; и продолжение воспроизведения соответствующих целевых мультимедийных данных на первом терминале согласно информации о статусе воспроизведения. 3 н. и 17 з.п. ф-лы, 14 ил.

Изобретение относится к видео декодированию, в частности к определению набора опорных картинок (RPS), которые используются в предсказывающем декодировании текущей картинки (изображения). Техническим результатом является повышение эффективности видео декодирования. Предложен cпособ декодирования закодированного видео, содержащий: получение из части битового потока, относящейся к набору параметров последовательности, количества наборов опорных картинок, включенных в упомянутую часть, относящуюся к этому набору параметров последовательности, определение, равен ли индекс текущего набора опорных картинок упомянутому количеству наборов опорных картинок; когда индекс текущего набора опорных картинок равен количеству наборов опорных картинок, получение из битового потока информации дельты о разности между индексом текущего набора опорных картинок и индексом набора-кандидата опорных картинок; определение индекса набора-кандидата опорных картинок на основании упомянутой информации дельты; и определение текущего набора опорных картинок на основании индекса набора-кандидата опорных картинок. 4 з.п. ф-лы, 15 ил.

Группа изобретений относится к технологиям кодированиядекодирования видео, которые осуществляют прогнозирование в отношении восстановленного изображения и выполняют сжатие данных посредством квантования. Техническим результатом является повышение эффективности декодирования видео для декодирования блоков изображения, используя размер шага квантования. Предложено устройство декодирования видео для декодирования блоков изображения, используя размер шага квантования. Устройство содержит первое средство получения для получения первого размера шага квантования, который управляет степенью детализации обратного квантования, причем упомянутый размер шага квантования назначается соседнему блоку изображения, который уже декодирован. Устройство также содержит второе средство получения для получения второго размера шага квантования, который управляет степенью детализации обратного квантования, причем второй размер шага квантования назначается блоку изображения, который был декодирован непосредственно перед. Средство выбора для выбора первого размера шага квантования или второго размера шага квантования. 3 н.п. ф-лы, 27 ил.

Наверх