Магнитная система ротора синхронного двигателя с инкорпорированными магнитами (варианты)

Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение мощности, механического момента, к.п.д. при снижении массогабаритных показателей. Магнитная система ротора с инкорпорированными постоянными магнитами содержит призматические постоянные магниты, вмонтированные в магнитопровод ротора. По внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода, с возможностью обеспечения синхронному двигателю асинхронного прямого пуска. Инкорпорированные магниты выполнены в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему. По первому варианту сцепление между магнитами и магнитопроводом обеспечивают титановые пластины, жестко соединенные с магнитопроводом посредством соединения "ласточкин хвост" и с электропроводящими стержнями посредством замкнутых электропроводящих колец, расположенных с торцов магнитопровода. По второму варианту сцепление между инкорпорированными магнитами и магнитопроводом ротора обеспечивают накоротко замкнутые электропроводящие направляющие, расположенные на периферии полюсных делений, которые жестко сцеплены с магнитопроводом ротора посредством соединения "ласточкин хвост" и с замкнутыми электропроводящими кольцами, расположенными с торцов магнитопровода ротора. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к области электротехники, а более конкретно к устройству роторов синхронного двигателя с инкорпорированными магнитами, и может быть использовано в электромашиностроении при производстве электродвигателей.

Известна магнитная система ротора (патент RU 2244370, МПК Н02K 1/06, опубл. 10.01.2005), содержащая закрепленный на валу магнитопровод, выполненный из магнитомягкого материала без разрывов по внешнему и внутреннему диаметрам и с отверстиями под размещение в них постоянных магнитов. Отверстия выполнены прямоугольной формы с наклоном к радиальным осям (расположены вдоль хорд) таким образом, что расстояние между обращенными друг к другу и к валу боковыми поверхностями их по мере приближения к расточке ротора уменьшается, а между противоположными поверхностями тех же отверстий и в том же направлении увеличивается. Магнитная система ротора с требуемым по условию ее работоспособности чередованием вдоль расточки ротора полярностью полюсов образуется путем установки в указанные прямоугольной формы отверстия ротора намагниченных перпендикулярно боковым поверхностям призматических постоянных магнитов, причем таким образом, что каждая пара обращенных друг к другу и в сторону расточки ротора поверхности соседних магнитов имеет одинаковую магнитную полярность и полярность следующих друг за другом и ориентированных указанным образом пар магнитов вдоль расточки чередуется.

Известна магнитная система ротора (патент RU №2316103, МПК Н02K 1/27, МПК Н02K 21/14, опубл. 27.01.2008 г.), которая содержит закрепленный на валу магнитопровод, выполненный из магнитомягкого материала без разрывов по внутреннему и внешнему диаметрам и с отверстиями под размещение в них постоянных магнитов. Отверстия выполнены прямоугольными с наклоном к радиальным осям (расположены вдоль хорд) таким образом, что расстояние между обращенными друг к другу и к валу боковыми поверхностями их по мере приближения к расточке ротора уменьшается, а между противоположными поверхностями тех же отверстий и в том же направлении увеличивается. Магнитная система ротора с требуемой по условию ее работоспособности чередующейся по расточке ротора полярностью полюсов образуется путем установки в указанные прямоугольной формы отверстия ротора намагниченных перпендикулярно боковым поверхностям постоянных магнитов, причем таким образом, что каждая пара обращенных друг к другу и в сторону расточки ротора поверхностей соседних призматических магнитов имеет одинаковую магнитную полярность, а полярность следующих друг за другом таких пар магнитов вдоль расточки чередуется.

Недостатком является наличие воздушной полости, прилегающей к торцам постоянных магнитов со стороны вала, что способствует лишь уменьшению магнитных потоков рассеяния в этой области, но не устраняет их полностью.

Наиболее близкой к заявленной магнитной системе является магнитная система синхронного двигателя с инкорпорированными магнитами [Синхронные электрические двигатели малой мощности: учеб. пособие для вузов / И.Л. Осин. - М.: Издательский дом МЭИ, 2006. - 216 с.: ил., стр. 74-77], содержащая инкорпорированные призматические постоянные магниты, вмонтированные в магнитопровод ротора, по внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода ротора, электропроводящие стержни служат синхронному двигателю с инкорпорированными магнитами для асинхронного прямого пуска.

Недостатком представленной магнитной системы синхронного двигателя с инкорпорированными постоянными магнитами является сложность конструкции, сравнительно малое полюсное деление ротора, несинусоидальное распределение магнитного поля на внешней стороне ротора.

Задача изобретения - расширение функциональных возможностей, упрощение конструкции, увеличение полюсного деления.

Техническим результатом является повышение энергетических характеристик: мощности, механического момента, коэффициента мощности, КПД при снижении массогабаритных показателей благодаря использованию постоянных магнитов в виде секторов окружности полого цилиндра.

Поставленная задача решается и технический результат по первому варианту достигается тем, что магнитная система ротора с инкорпорированными постоянными магнитами, содержащая инкорпорированные призматические постоянные магниты, вмонтированные в магнитопровод ротора, по внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода ротора, с возможностью обеспечения синхронному двигателю с инкорпорированными постоянными магнитами асинхронного прямого пуска, согласно изобретению инкорпорированные магниты выполнены в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему, а сцепление между инкорпорированными магнитами и магнитопроводом ротора обеспечивают титановые пластины, жестко соединенные с магнитопроводом ротора посредством соединения "ласточкин хвост" и с электропроводящими стержнями посредством замкнутых электропроводящих колец, расположенных с торцов магнитопровода ротора.

Поставленная задача решается и технический результат по второму варианту достигается тем, что магнитная система ротора с инкорпорированными постоянными магнитами, содержащая инкорпорированные призматические постоянные магниты, вмонтированные в магнитопровод ротора, по внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода ротора, с возможностью обеспечения синхронному двигателю с инкорпорированными постоянными магнитами асинхронного прямого пуска, согласно изобретению инкорпорированные магниты выполнены в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему, а сцепление между инкорпорированными магнитами и магнитопроводом ротора обеспечивают накоротко замкнутые электропроводящие направляющие, расположенные на периферии полюсных делений, которые жестко сцеплены с магнитопроводом ротора посредством соединения "ласточкин хвост" и с замкнутыми электропроводящими кольцами, расположенными с торцов магнитопровода ротора.

Существо изобретения поясняется чертежами. На фиг. 1 изображен поперечный и продольный разрез магнитной системы ротора с инкорпорированными постоянными магнитами по первом варианту, на фиг. 2 изображен поперечный и продольный разрез магнитной системы ротора с инкорпорированными постоянными магнитами по второму варианту.

Предложенная конструкция магнитной системы ротора с инкорпорированными постоянными магнитами по первому варианту содержит инкорпорированные магниты 1, выполняемые в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему. Инкорпорированные магниты 1 жестко соединены с магнитопроводом ротора 2, сцепление обеспечивают титановые пластины 3 посредством соединения "ласточкин хвост", титановые пластины 3 также соединены с электропроводящими стержнями 4 посредством замкнутых электропроводящих колец 5, расположенных с торцов магнитопровода ротора.

Предложенная конструкция магнитной системы ротора с инкорпорированными постоянными магнитам по второму варианту содержит: инкорпорированные магниты 1, выполненные в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему, жестко соединены с магнитопроводом ротора 2. На внешней стороне магнитопровода ротора 2 расположены электропроводящие стержни 4, соединенные с электропроводящими кольцами 5, которые расположены с торцов магнитопровода ротора 2. Также на внешней стороне ротора 2, на периферии полюсных делений расположены электропроводящие направляющие 6, соединенные с электропроводящими кольцами 5.

Магнитная система синхронного двигателя с инкорпорированными постоянными магнитами по первому варианту работает следующим образом: для пуска синхронного двигателя с инкорпорированными постоянными магнитами статорная обмотка включается в сеть с заданным напряжением и частотой, протекающие по обмотке токи образуют вращающееся магнитное поле. Это магнитное поле будет индуцировать в электропроводящих стержнях 4 токи, которые, замыкаясь через электропроводящие кольца 5, образуют короткозамкнутые контуры. Токи имеют частоту скольжения, т.е. частоту, которая определяется разницей скоростей вращения магнитного поля статора и частотой вращения ротора. В результате взаимодействия токов, индуктируемых в короткозамкнутых контурах ротора с вращающимся магнитным полем статора, на ротор будет действовать электромагнитный момент, который будет разгонять ротор. Также на ротор будут действовать тормозной момент, возникающий за счет взаимодействия полей инкорпорированных постоянных магнитов 1 с внешним полем статора. Чтобы минимизировать тормозной момент, титановые пластины 3 соединены с электропроводящими стержнями 4 посредством замкнутых электропроводящих колец 5, расположенных с торцов магнитопровода ротора, для того чтобы в момент пуска синхронного двигателя с инкорпорированными магнитами по титановой пластине 3 протекал ток в аксиальном направлении и в результате протекания тока титановая пластина 3 нагревалась, а т.к. титановая пластина 3 расположена в непосредственной близости с инкорпорированными постоянными магнитами 1, то последние также нагреются. При нагреве инкорпорированных постоянных магнитов 1 их внешнее магнитное поле будет уменьшаться, тем самым будет и уменьшаться тормозной пусковой момент. По мере входа в синхронизм синхронного двигателя с инкорпорированными магнитами ток в электропроводящих стержнях 4 и в титановых пластинах 3 будет уменьшаться, соответственно, будет уменьшаться температура в титановых пластинах 3, что также приведет к уменьшению температуры инкорпорированных магнитов 1. Магнитное поле инкорпорированных постоянных магнитов 1 будет восстанавливаться, и синхронный двигатель с инкорпорированными магнитами войдет в синхронизм. После входа в синхронизм синхронный двигатель с инкорпорированными магнитами будет иметь более жесткую механическую характеристику, меньшее потребление энергии из сети, увеличенный коэффициент мощности, чем в прототипе, за счет того что предложенная конструкция будет иметь увеличенное полюсное деление, иными словами, коэффициент использования энергии постоянных магнитов будет больше, чем в прототипе. Стоит отметить, что в данной конструкции отсутствует бандаж, т.к. магнитопровод ротора 2 замкнут шихтованной электротехничеcкой сталью по всей внешней длине окружности. Также механическую прочность обеспечивают титановые пластины 3 посредством жесткого соединения "ласточкин хвост" с магнитопроводом ротора 2. Также титановые пластины 3 выступают в качестве магнитного сопротивления, для того чтобы инкорпорированные постоянные магниты не замыкались между собой, а чтобы магнитное поле шло на внешнюю сторону магнитопровода ротора 2.

Магнитная система синхронного двигателя с инкорпорированными постоянными магнитами по второму варианту работает следующим образом: для пуска синхронного двигателя с инкорпорированными постоянными магнитами 1 статорная обмотка включается в сеть с заданным напряжением и частотой, протекающие по обмотке токи образуют вращающееся магнитное поле. Это магнитное поле будет индуцировать в электропроводящих стержнях 4 токи, которые, замыкаясь через электропроводящие кольца 5, образуют короткозамкнутые контуры. Токи имеют частоту скольжения, т.е. частоту, которая определяется разницей скоростей вращения магнитного поля статора и частотой вращения ротора. В результате взаимодействия токов, индуктируемых в короткозамкнутых контурах ротора с вращающимся магнитным полем статора, на ротор будет действовать электромагнитный момент, который будет разгонять ротор. Также на ротор будут действовать тормозной момент, возникающий за счет взаимодействия полей инкорпорированных постоянных магнитов 1 с внешним полем статора. Чтобы минимизировать тормозной момент на внешней стороне магнитопровода ротора 2, на периферии полюсных делений располагают накоротко замкнутые электропроводящие направляющие 6, которые посредством соединения "ласточкин хвост" жестко соединяются с магнитопроводом ротора 2. Электропроводящие направляющие 6 соединены с электропроводящими кольцами 5, расположенными с торцов магнитопровода ротора, для того чтобы в момент пуска синхронного двигателя с инкорпорированными магнитами по электропроводящим направляющим 6 протекал ток в аксиальном направлении и в результате протекания тока по электропроводящим направляющим 6 они нагревались, а т.к. электропроводящие направляющие 6 расположены в непосредственной близости с инкорпорированными постоянными магнитами 1, то последние также нагреются. При нагреве инкорпорированных постоянных магнитов 1 их внешнее магнитное поле будет уменьшаться, тем самым будет и уменьшаться тормозной пусковой момент. По мере входа в синхронизм синхронного двигателя с инкорпорированными магнитами ток в электропроводящих направляющих 6 и электропроводящих стержнях 4 будет уменьшаться, иными словами, температура в электропроводящих направляющих 6 и электропроводящих стержнях 4 будет уменьшаться, что также приведет к уменьшению температуры в инкорпорированных магнитах 1. Магнитное поле инкорпорированных постоянных магнитов 1 будет восстанавливаться, и синхронный двигатель с инкорпорированными магнитами войдет в синхронизм. После входа в синхронизм синхронный двигатель с инкорпорированными магнитами 1 будет иметь более жесткую механическую характеристику, меньшее потребление энергии из сети, увеличенный коэффициент мощности, чем в прототипе, за счет того что предложенная конструкция будет иметь увеличенное полюсное деление, иными словами, коэффициент использования энергии постоянных магнитов будет больше, чем в прототипе. Стоит отметить, что в данной конструкции отсутствует бандаж, т.к. магнитопровод ротора 2 замкнут шихтованной электротехнической сталью по всей внешней длине окружности. Также механическую прочность обеспечивают электропроводящие направляющие 6 посредством жесткого соединения "ласточкин хвост" с магнитопроводом ротора 2. Также электропроводящие направляющие 6 выступают в качестве магнитного сопротивления, для того чтобы инкорпорированные постоянные магниты не замыкались между собой и чтобы магнитное поле шло на внешнюю сторону магнитнопровода ротора 2.

Итак, заявленное изобретение позволяет расширить функциональные возможности, упростить конструкцию, повысить КПД, увеличить полюсные деления, благодаря использованию постоянных магнитов в виде секторов окружности полого цилиндра.

1. Магнитная система ротора синхронного двигателя с инкорпорированными постоянными магнитами, содержащая, инкорпорированные призматические постоянные магниты, вмонтированные в магнитопровод ротора, по внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода ротора, с возможностью обеспечения синхронному двигателю с инкорпорированными постоянными магнитами асинхронного прямого пуска, отличающаяся тем, что инкорпорированные магниты выполнены в виде секторов окружностей полого цилиндра, которые образуют n-полюсную магнитную систему, а сцепление между инкорпорированными магнитами и магнитопроводом ротора обеспечивают титановые пластины, жестко соединенные с магнитопроводом ротора посредством соединения "ласточкин хвост" и с электропроводящими стержнями посредством замкнутых электропроводящих колец, расположенных с торцов магнитопровода ротора.

2. Магнитная система ротора синхронного двигателя с инкорпорированными постоянными магнитами, содержащая инкорпорированные призматические постоянные магниты, вмонтированные в магнитопровод ротора, по внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода ротора, с возможностью обеспечения синхронному двигателю с инкорпорированными постоянными магнитами асинхронного прямого пуска, отличающаяся тем, что инкорпорированные магниты выполнены в виде секторов окружностей полого цилиндра, которые образуют n-полюсную магнитную систему, а сцепление между инкорпорированными магнитами и магнитопроводом ротора обеспечивают накоротко замкнутые электропроводящие направляющие, расположенные на периферии полюсных делений, которые жестко сцеплены с магнитопроводом ротора посредством соединения "ласточкин хвост" и с замкнутыми электропроводящими кольцами, расположенными с торцов магнитопровода ротора.



 

Похожие патенты:

Использование: изобретение относится к области электротехники и может быть использовано в высокоскоростных электрических машинах. Технический результат: повышение надежности ротора, снижение добавочных потерь.

Изобретение относится к области ветроэнергетики. Ротор сегментного ветроэлектрогенератора содержит вал, ступицу, П-образные магнитопроводы.

Изобретение относится к электротехнике и может быть использовано в агрегатах и приводных механизмах с быстрым и точным автоматическим остановом при работе приводного электродвигателя в одном направлении, т.е.

Изобретение относится к области электротехники, в частности к асинхронным двигателям с литой беличьей клеткой. Ротор включает в себя сердечник, расположенный на валу, состоящий из листов ротора с пазами и расположенными в пазах стержнями обмотки, а также короткозамыкающие кольца.

Изобретение относится к роторам торцевых электродвигателей синхронного или асинхронного типа. Ротор выполнен в виде проводящего диска с отверстиями, которые содержат магнитопроводящие болты, причем головки болтов установлены на стороне воздушного зазора, а резьбовая часть на противоположной стороне диска содержит навитую ферромагнитную проволоку, зафиксированную стопорами, шайбами и гайками.

Изобретение относится к области электротехники. Технический результат – улучшение охлаждения обмотки статора.

Изобретение относится к области электротехники, в частности к электромагнитным приводам постоянного тока для передачи угловых перемещений, и может быть использовано для создания двухпозиционных электромагнитных реле или устройств с поворотом подвижного элемента на некоторый ограниченный угол и обратно с двумя устойчивыми состояниями.

Изобретение относится к электрическим машинам. Клин для ротора электрической машины включает в себя проходящую в окружном направлении наружную поверхность, задающую радиальную протяженность клина, проходящую от первого осевого торца клина до второго осевого торца клина.

Изобретение относится к области электромашиностроения. Торцевой ротор электродвигателя, содержащий вал с проводящим диском и замыкающим магнитопроводом, выполненным в виде болтов с головками, обращенными к статору, а с противоположной от статора стороны диска, болты охвачены ферромагнитным тросом, укрепленным с помощью кольца и гаек.

Изобретение относится к области электротехники, в частности к синхронным реактивным электрическим двигателям. Технический результат - повышение пускового момента, обеспечение возможности реверса, уменьшение пульсации электромагнитного момента, а также упрощение конструкции и технологии изготовления ротора.

Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение мощности, механического момента, к.п.д. при снижении массогабаритных показателей. Магнитная система ротора с инкорпорированными постоянными магнитами содержит призматические постоянные магниты, вмонтированные в магнитопровод ротора. По внешней стороне окружности магнитопровода ротора установлены электропроводящие стержни, накоротко замкнутые посредством электропроводящих колец, расположенных с торцов магнитопровода, с возможностью обеспечения синхронному двигателю асинхронного прямого пуска. Инкорпорированные магниты выполнены в виде сектора окружностей полого цилиндра, которые образуют n-полюсную магнитную систему. По первому варианту сцепление между магнитами и магнитопроводом обеспечивают титановые пластины, жестко соединенные с магнитопроводом посредством соединения ласточкин хвост и с электропроводящими стержнями посредством замкнутых электропроводящих колец, расположенных с торцов магнитопровода. По второму варианту сцепление между инкорпорированными магнитами и магнитопроводом ротора обеспечивают накоротко замкнутые электропроводящие направляющие, расположенные на периферии полюсных делений, которые жестко сцеплены с магнитопроводом ротора посредством соединения ласточкин хвост и с замкнутыми электропроводящими кольцами, расположенными с торцов магнитопровода ротора. 2 н.п. ф-лы, 2 ил.

Наверх