Способ активно-импульсного видения

Способ активно-импульсного видения основан на использовании возможностей ПЗС фотоприемника со строчным переносом. Способ включает подсветку сцены импульсным источником излучения, восприятие отраженного света с помощью фотоприемного устройства и визуализацию. Непосредственно перед приходом отраженного света подают управляющий сигнал обнуления ячеек секции накопления, далее через заданный промежуток времени подают сигналы, обеспечивающие перенос зарядов из секции накопления ПЗС-фотоприемника в буферную секцию. Затем, без переноса кадра изображения на выход ПЗС-фотоприемника, синхронно с приходом света очередного импульса подсветки, отраженного от объекта наблюдения, производят повторение процедуры подачи сигналов обнуления ячеек секции накопления и переноса зарядов в буферную секцию, что приводит к суммированию зарядов в буферной секции. Технический результат заключается в получении изображения достаточного качества при упрощении конструкции устройства наблюдения, уменьшении массогабаритных параметров, в увеличении его надежности и ресурса, в исключении ЭОП из конструкции прибора. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к технике оптико-электронного приборостроения, а именно к активно-импульсным приборам наблюдения, и может быть использовано в оптических локаторах и поисково-обзорных системах.

Известны активно-импульсные устройства наблюдения, принцип действия которых основан на методе световой локации [1]. Такие устройства имеют в своей конструкции синхронно управляемые фотоприемник и импульсный излучатель, который используется для подсветки сцены. Суть метода заключается в том, что фотоприемник начинает получать изображение с некоторой задержкой относительно срабатывания излучателя, благодаря чему воспринимает свет излучателя, отраженный от интересующих оператора объектов, отсекая свет, отраженный от объектов, находящихся ближе заданного расстояния, например от частиц пыли или тумана, за счет того, что свет, отраженный от объектов, находящихся ближе, возвращается быстрее. Подсветка местности при этом осуществляется короткими импульсами, длительность которых значительно меньше времени распространения света от устройства до наблюдаемых объектов и обратно.

В состав подобных устройств, как правило, входит электронно-оптический преобразователь (ЭОП), который выполняет функцию внешнего быстродействующего затвора фотоприемника и одновременно является усилителем яркости [2]

Недостатком данного способа является то, что для отсечения сигнала, отраженного от объектов, находящихся ближе объекта наблюдения, необходимо использовать внешний затвор, роль которого выполняет достаточно громоздкий и дорогой ЭОП, либо механический затвор. Использование внешнего затвора увеличивает массогабаритные параметры и стоимость устройства активно-импульсного видения.

Задача изобретения заключается в создании способа активно-импульсного видения, основанного на использовании возможностей ПЗС фотоприемника со строчным переносом, позволяющего достичь высоких характеристик изображения без применения ЭОП.

Технический результат: получение изображения достаточного качества при упрощении конструкции устройства наблюдения, уменьшение массогабаритных параметров, а также увеличение его надежности и ресурса, кроме того, исключение ЭОП из конструкции прибора позволяет при необходимости наблюдать цветное изображение, а также увеличить разрешение наблюдаемого в устройстве изображения за счет использования соответствующих ПЗС-фотоприемников.

Поставленная задача решена тем, что в известном способе активно-импульсного видения, включающем подсветку сцены излучением от импульсного источника, восприятие фотоприемным устройством отраженного излучения и последующую визуализацию и/или сохранение изображения в устройстве памяти, согласно изобретению в качестве фотоприемного устройства используют ПЗС-фотоприемник со строчным переносом, непосредственно перед приходом отраженного от объекта наблюдения света импульсной подсветки подают управляющий сигнал обнуления ячеек секции накопления, причем задний фронт управляющего сигнала обнуления совпадает с передним фронтом импульса отраженной подсветки, далее через заданный промежуток времени подают сигналы, обеспечивающие перенос зарядов из секции накопления ПЗС-фотоприемника в буферную секцию, затем без переноса кадра изображения на выход ПЗС-фотоприемника, синхронно с приходом света очередного импульса подсветки, отраженного от объекта наблюдения, производят повторение процедуры подачи сигналов обнуления ячеек секции накопления и переноса зарядов в буферную секцию, что приводит к суммированию зарядов в буферной секции, данные процедуры подачи сигналов повторяют необходимое количество раз, далее подают управляющие сигналы для переноса зарядов в буферной секции из области вертикального переноса в горизонтальные регистры вывода кадра изображения на выходы фотоприемника.

В условиях сильной освещенности объектов фона время накопления в секции накопления выбирают равным длительности импульса подсветки, причем частота импульсов подсветки выбирается максимально возможной.

В условиях слабой освещенности объектов фона время накопления в секции накопления увеличивают на величину, достаточную для наблюдения объектов фона.

В условиях слабой освещенности объектов фона, перед импульсом подсветки объекта наблюдения проводят процедуру накопления заряда, связанного с фоном без подсветки, в течение заданного времени, достаточного для наблюдения объектов фона, что обеспечивает суммирование зарядов, связанных с фоном, и зарядов, связанных с подсветкой.

Обоснование введенных признаков использования заявляемого способа позволяет при управлении ПЗС-фотоприемником со строчным переносом наблюдать в одном кадре несколько отраженных импульсов подсветки, отсекая при этом свет, отраженный от объектов, находящихся ближе заданного расстояния. Благодаря наблюдению нескольких отраженных импульсов подсветки суммарное время экспозиции изображения может быть увеличено до значения, приемлемого для наблюдения в конкретных условиях. Это, в свою очередь, позволяет использовать ПЗС-фотоприемник в составе активно-импульсного прибора наблюдения без использования в конструкции прибора электронно-оптического преобразователя (ЭОП) или иного внешнего затвора, что приводит к уменьшению массогабаритных параметров прибора, а также к увеличению надежности и ресурса.

Исключение ЭОП из конструкции активно-импульсного прибора наблюдения позволяет уменьшить габаритные размеры и массу прибора за счет исключения как самого ЭОП, так и проекционной оптической системы, необходимой для согласования ЭОП с ПЗС-фотоприемником. Кроме того, исключение ЭОП из конструкции прибора позволяет при необходимости наблюдать цветное изображение, а также увеличить разрешение наблюдаемого в приборе изображения за счет использования соответствующих ПЗС-фотоприемников.

Описание способа

Способ управления ПЗС-фотоприемников поясняется Фигурами 1, 2, 3.

На Фиг. 1 приведена функциональная схема управления ПЗС-фотоприемником. Конструктивно ПЗС-фотоприемники со строчным переносом состоят из секции накопления (поз. 1 на Фиг. 1), буферной секции (поз. 2 на Фиг. 1) и устройства вывода ПЗС фотоприемника (поз. 3 на фиг 1). Накопление и передача зарядов между секциями осуществляется управляющими сигналами 4, 5, 6 на Фиг. 1.

Порядок подачи потенциалов, а также их величины и форма сигналов для обнуления секции накопления, для переноса зарядов из секции накопления в буферную секцию, для перемещения зарядов в буферной секции, а также для перемещения зарядов из буферной секции на выходные элементы определяются производителем конкретного ПЗС-фотоприемника и описаны в документации на него.

Временем накопления (экспозиции) для таких ПЗС-фотоприемников является интервал между обнулением зарядов в секции накопления и окончанием переноса зарядов из секции накопления в буферную секцию. В буферную секцию в момент переноса попадают только заряды, накопленные в секции накопления между обнулением и переносом.

На Фиг. 2 приведены диаграммы сигналов, управляющих обнулением и вертикальным переносом, необходимых для реализации заявляемого способа на примере ПЗС-фотоприемника со строчным переносом ICX618 производства Sony. Сигналы управления ПЗС-фотоприемником обозначены также, как они обозначены в документации [3] на ПЗС-фотоприемник. V1…V4 - сигналы управления вертикальным переносом зарядов, из них V2 и V3 используются также для осуществления переноса зарядов из секции накопления в буферную секцию. SUB - сигнал, по которому осуществляется обнуление секции накопления. LASER - сигнал, управляющий импульсным излучателем, RESP - отклик импульсной подсветки. На Фиг. 2 дополнительно обозначено А - процесс подготовки получения кадра, В - наблюдение откликов импульсной подсветки, С - завершение переноса зарядов из секции накопления в буферную секцию, D - процесс вертикального и горизонтального переноса зарядов.

Для наглядности диаграммы представлены без соблюдения масштаба. В реальной системе промежутки времени между вертикальными переносами каждой строки, необходимые для горизонтального переноса, существенно превышают промежутки времени вертикальных переносов.

Для ПЗС-фотоприемников других типов (производителей) диаграммы управляющих сигналов отличаются от диаграмм, приведенных на Фиг. 2, в зависимости от их конструкции и схем управления. Так, например, на ПЗС-фотоприемник ICX659 [4] положительные потенциалы, осуществляющие перенос из секции накопления в буферную секцию, подаются на входы V1 и V3, а ПЗС-фотоприемнику ICX445 [5] для полноценной работы помимо сигналов управления вертикальным переносом V1…V4 требуются дополнительные сигналы VHLD и VST.

На Фиг. 3 приведены диаграммы сигналов, управляющих обнулением и вертикальным переносом, необходимых для реализации способа с предварительным считыванием изображения фона на примере ПЗС-фотоприемника со строчным переносом ICX618 производства Sony. Обозначения те же, что и на Фиг. 2. Дополнительно на Фиг. 3 обозначены А - процесс накопления изображения фона, В - процесс переноса изображения фона в буферную секцию, С - наблюдение откликов импульсной подсветки, D - завершение переноса зарядов из секции накопления в буферную секцию, Е - процесс вертикального и горизонтального переноса зарядов.

Весь процесс получения кадра изображения происходит в следующей последовательности:

а) Вначале происходит подготовка получения кадра. На управляющие вертикальным переносом входы подаются сигналы такой формы, какая указана в документации производителя на ПЗС-фотоприемник до подачи положительных потенциалов считывания. На примере, представленном на Фиг. 2, данный процесс обозначен как А.

б) Затем вместо подачи на управляющие вертикальным переносом входы фотоприемника положительных потенциалов считывания, как того требует документация, производится подсветка сцены однократным импульсом, а затем перед приходом отраженного сигнала подсветки от объекта наблюдения на ПЗС-фотоприемник подается сигнал обнуления. В момент накопления наблюдается отклик импульса подсветки. Затем на управляющие вертикальным переносом входы ПЗС-фотоприемника подаются положительные потенциалы, и тем самым происходит перенос полученных зарядов из секции накопления в буферную секцию.

После процедуры переноса зарядов из секции накопления в буферную секцию построчный перенос кадра изображения на выход фотоприемника не производится. Пользуясь тем, что секция накопления изолирована от буферной секции, производится повторная подсветка сцены и последующая подача сигнала обнуления и положительных потенциалов для осуществления переноса из секции накопления в буферную секцию.

При этом перенесенные ранее в буферную секцию заряды, которые содержат информацию, полученную в момент наблюдения отклика от предыдущего импульса подсветки, остаются нетронутыми. Затем происходит перенос зарядов, накопленных в секции накопления при наблюдении нового импульса подсветки, в буферную секцию, где они складываются с уже имеющимися зарядами, полученными ранее. Подобная процедура повторяется несколько раз. На примере, представленном на Фиг. 2, данный процесс обозначен как В.

в) Затем происходит завершение переноса зарядов из секции накопления в буферную секцию, для чего на управляющие вертикальным переносом входы ПЗС-фотоприемника подаются сигналы той формы, которая необходима после подачи положительных потенциалов переноса из секции накопления в буферную секцию, в соответствии с документацией. На примере, представленном на Фиг. 2, данный процесс обозначен как С.

г) Затем осуществляется процесс вертикального и горизонтального переносов зарядов. Заряды построчно переносятся из области вертикального переноса в горизонтальные регистры вывода, а из горизонтальных регистров вывода передаются на выходы ПЗС-фотоприемника в соответствии с документацией на ПЗС-фотоприемник. На примере, представленном на Фиг. 2, данный процесс обозначен как D.

д) Далее полученное изображение выводится, например, на монитор или запоминается в устройстве памяти.

В условиях сильной освещенности объектов фона время накопления выбирают равным длительности импульса засветки, причем частота импульсов засветки выбирается максимально возможной.

В условиях средней и слабой освещенности объектов фона время накопления увеличивают на величину, достаточную для наблюдения объектов фона.

В условиях недостаточной освещенности, например в сумерках, для наблюдения бликов импульсной подсветки достаточно нескольких импульсов лазерного излучателя, но при этом суммарного времени экспозиции оказывается недостаточно для наблюдения слабо отражающего подсветку фона. В этом случае изображение фона может быть получено заранее с необходимым временем экспозиции во время вертикального переноса предыдущего кадра. Затем накопленные заряды перемещаются в буферную секцию, где они в дальнейшем суммируются с зарядами, накапливаемыми в моменты наблюдений откликов импульсной подсветки. В этом случае диаграммы управления ПЗС-фотоприемником будут иметь вид, сходный с представленными на Фиг. 3. Накопление света от фона происходит с момента подачи последнего импульса обнуления до завершения считывания накопленных зарядов из секции накопления в буферную секцию.

Экспериментальная проверка работоспособности способа проверялась на ПЗС-фотоприемниках со строчным переносом производства Sony ICX445ALA и ICX618ALA с прогрессивной разверткой и на ПЗС-фотоприемниках со строчным переносом ICX659ALA и ICX279AL-E с чересстрочной разверткой. В качестве импульсного излучателя был использован полупроводниковый лазер QPGAS2S09H [6] со специально сконструированной для него платой питания и управления. Импульсная мощность излучателя составила 200 Вт, длительность импульса 150 нс, частота импульсов, не приводящая к потере мощности 15 кГц. При управлении ПЗС-фотоприемником изменялось время задержки между импульсом запуска лазерного излучателя и импульсом обнуления ПЗС-фотоприемника и проверялось, перестанут ли давать блик наблюдаемые мишени, если задать время, большее, чем необходимо свету на преодоление расстояния от излучателя до мишени и обратно. Эксперименты показали, что для устойчивого наблюдения блика мишеней, роли которых играли оптический прицел и катафот, в условиях освещенности «солнечный день» на расстоянии 300 метров достаточно 15-20 импульсов лазерного излучателя, а для наблюдения мишеней на расстоянии 800 метров необходимо 70-90 импульсов.

Использованные источники информации

1. В.В. Балаков, В.Г. Вафиади. Очерк научной деятельности академика А.А. Лебедева // Академик А.А. Лебедев. Избранные труды / отв. ред. П.П. Феофилов. - Л.: Наука, 1974. С. 3-16.

2. Гейхман И.Л., Волков В.Г. Основы улучшения видимости в сложных условиях. М: Недра-Бизнесцентр, 1999, 286 с.

3. ICX618 Diagonal 4.5mm (Type 1/4) Progressive Scan CCD Image Sensor with Square Pixel for B/W Cameras / Sony [Электронный ресурс] - Режим доступа: http://www.npk-photonica.ru/images/icx618ala.pdf.

4. ICX659ALA Diagonal 6mm (Type 1/3) CCD Image Sensor for CCIR B/W Video Cameras - [Электронный ресурс] - Режим доступа: http://www.npk-photonica.ru/images/icx659ala.pdf.

5. ICX445ALA. Diagonal 6.0mm (Type 1/3) Progressive Scan CCD Image Sensor for B/W Cameras / Sony - [Электронный ресурс] - Режим доступа: http://www.unibrain.com/wp-content/uploads/2013/04/ICX445ALAE.pdf.

6. PGA Series of Single- and Multi-epi 905 nm Pulsed Semiconductor Lasers / Excelitas [Электронный ресурс] - Режим доступа: http://www.excelitas.com/downloads/DTS_multi_active_PGA_Series.pdf.

1. Способ активно-импульсного видения, включающий подсветку сцены излучением от импульсного источника, восприятие фотоприемным устройством отраженного излучения и последующую визуализацию и/или сохранение изображения в устройстве памяти, отличающийся тем, что в качестве фотоприемного устройства используют ПЗС-фотоприемник со строчным переносом, при этом непосредственно перед приходом на поверхность ПЗС-фотоприемника светового сигнала импульсной подсветки, отраженного от объекта наблюдения, подают управляющий сигнал обнуления ячеек секции накопления ПЗС-фотоприемника, причем задний фронт управляющего сигнала обнуления совпадает с передним фронтом импульса отраженной подсветки, далее через заданное время подают сигнал для переноса полученных зарядов из секции накопления ПЗС-фотоприемника в его буферную секцию, и данные процедуры подачи сигналов повторяют необходимое количество раз, после чего подают управляющие сигналы для переноса зарядов, суммированных в буферной секции, из области вертикального переноса в горизонтальный регистр с последующим выводом кадра изображения на выход фотоприемника.

2. Способ по п. 1, отличающийся тем, что в условиях сильной освещенности объектов фона время накопления в секции накопления выбирают равным длительности импульса подсветки, причем частоту импульсов подсветки выбирают максимально возможной.

3. Способ по п. 1, отличающийся тем, что в условиях слабой освещенности объектов фона время накопления в секции накопления увеличивают на величину, достаточную для наблюдения объектов фона.

4. Способ по п. 1, отличающийся тем, что в условиях слабой освещенности объектов фона, перед импульсом подсветки объекта наблюдения проводят процедуры подачи управляющих сигналов для накопления заряда, связанного с фоном без подсветки, в секции накопления в течение заданного времени, достаточного для наблюдения объектов фона и последующей передачи этого заряда в буферную секцию, что обеспечивает суммирование зарядов, связанных с фоном, и зарядов, связанных с подсветкой.



 

Похожие патенты:

Изобретение относится к электронным схемам и корпусам для электронных схем. Техническим результатом является предотвращение электрических замыканий и уменьшение электромагнитных помех к(от) драйверу(а) освещения.

Изобретение относится к области детекторов присутствия и связи между такими детекторами. Технический результат состоит в том, что информацию о присутствии передают между различными детекторами присутствия без какой-либо необходимости в дополнительных системах связи, тем самым снижая техническую сложность и расходы.

Изобретение относится к области светотехники, в частности к адаптивному управлению освещением на основе транспортного потока в наружной осветительной сети (100). Это адаптивное управление обеспечивает освещение с помощью некоторого диапазона чувствительности на основе детектирования объекта (20) и, кроме того, возможно, скорости объекта (20), посредством осветительного устройства (LU 1-8), снабженного датчиком (12).

Изобретение относится к области светотехники, имеющей отношение к управлению освещением в пространстве. Способ управления освещением в пространстве включает в себя этапы, на которых определяют ориентацию элемента блокировки дневного освещения и/или осветительного устройства (301) и автоматически корректируют по меньшей мере одну характеристику элемента блокировки дневного освещения и/или осветительного устройства по меньшей мере частично на основе определенной ориентации (305).

Изобретение относится к устройству управления источниками света. Техническим результатом является обеспечить устройство управления источником света с возможностью обнаружения неисправности в источниках света из-за неисправности типа обрыва цепи и предотвращения протекания чрезмерного тока через другие нормально работающие источники света, в которых не возникла неисправность.

Изобретение относится к схеме управления модулем светодиодного источника света. Технический результат заключается в предоставлении схемы для модуля светодиодного источника света с прямым питанием переменным током и, в частности, схемы управления яркостью, совместимой с полупроводниковым устройством управления яркостью.

Изобретение относится к регуляторам постоянного тока, в частности к регуляторам, используемым для подачи электрической энергии в аэродромные световые приборы. Техническим результатом является повышение надежности и увеличение КПД регулятора постоянного тока.

Изобретение относится к области светотехники и предназначено преимущественно для использования в зонах, в которых системы электрических сетей ненадежны и требуют чрезмерных затрат.

Изобретение относится к области электронной техники. Техническим результатом является повышение надежности, снижение потерь и улучшение динамических показателей, таких как уровень перенапряжения и интервал переходного процесса, при деструктивных воздействиях и в момент подключения светодиодов.

Изобретение относится к области электротехники и предназначено для использования в местах проведения подземных работ. Техническим результатом является расширение арсенала технических средств.

Изобретение относится к области светотехники. Способ для уменьшения дискомфортного отблеска содержит: этап предоставления первого фрагмента светового излучения в первом диапазоне углов падения; и другой этап предоставления второго фрагмента светового излучения во втором диапазоне углов падения, следующем за первым диапазоном углов падения.

Изобретение относится управлению освещением, в частности к управлению системой осветительных устройств. Техническим результатом является обеспечение системы осветительных устройств, в которой осветительное устройство выполнено с возможностью обеспечивать луч света, направленный к целевой области.

Изобретение предлагает одноцепочечную планку освещения с устройством защиты от перегрузки и схему драйвера источника освещения для устройства отображения. Технический результат заключается в предотвращении перегрева из-за превышения тока в планке освещения и предотвращение повреждения всего модуля подсветки.

Изобретения относятся к области светотехники и предназначены для управления освещением. Техническим результатом является расширение арсенала технических средств.

Изобретение относится к области систем освещения. Техническим результатом является обеспечение ввода в эксплуатацию систем освещения, содержащих множество управляемых устройств, способных передавать свои идентификационные сигналы.

Изобретение относится к устройствам освещения, в частности к осветительному устройству для освещения дороги. Техническим результатом является обеспечение осветительного устройства, которое может регулировать свой световой выход для того, чтобы освещать дорогу оптимальным образом.

Изобретение относится к системе управления одним или более устройствами освещения в зависимости от обнаруженного пребывания внутри комнаты, коридора или другого внутреннего или наружного пространства.

Изобретение относится к области светотехники. Портативный, например головной, светильник, содержащий: источник (114, 401, 403) света, содержащий по меньшей мере один или более источников для генерирования по меньшей мере одного светового пучка; блок (110) питания для управления яркостью пучка в качестве отклика на управляющую информацию или управляющий сигнал и блок (120, 200) управления для генерирования управляющей информации или указанного управляющего сигнала.

Изобретение относится к области светотехники, в частности к контролю системы терапевтического освещения. Способ управления освещением для разработки освещения для множества пользователей, содержит следующие этапы: обеспечение первого освещения, имеющего первые характеристики светового выхода, для первой области в помещении и обеспечение второго освещения, имеющего вторые характеристики светового выхода, для второй области в упомянутом помещении (300, 305); причем упомянутое первое освещение и упомянутое второе освещение различаются; идентификация потребностей первого пользователя в освещении для упомянутых первых характеристик (310) светового выхода и идентификация потребностей второго пользователя в освещении для упомянутых вторых характеристик светового выхода.

Изобретение относится к технологии изготовления жидкокристаллических дисплеев с обеспечением схемы возбуждения светодиодной подсветки со схемой защиты от превышения потребляемого тока.

Группа изобретений относится к медицине. Группа изобретений представлена способом определения жизненно важных показателей человеческого тела, устройством для определения жизненно важных показателей, способом аутентификации человека и способом для распознавания реакции человека.

Способ активно-импульсного видения основан на использовании возможностей ПЗС фотоприемника со строчным переносом. Способ включает подсветку сцены импульсным источником излучения, восприятие отраженного света с помощью фотоприемного устройства и визуализацию. Непосредственно перед приходом отраженного света подают управляющий сигнал обнуления ячеек секции накопления, далее через заданный промежуток времени подают сигналы, обеспечивающие перенос зарядов из секции накопления ПЗС-фотоприемника в буферную секцию. Затем, без переноса кадра изображения на выход ПЗС-фотоприемника, синхронно с приходом света очередного импульса подсветки, отраженного от объекта наблюдения, производят повторение процедуры подачи сигналов обнуления ячеек секции накопления и переноса зарядов в буферную секцию, что приводит к суммированию зарядов в буферной секции. Технический результат заключается в получении изображения достаточного качества при упрощении конструкции устройства наблюдения, уменьшении массогабаритных параметров, в увеличении его надежности и ресурса, в исключении ЭОП из конструкции прибора. 3 з.п. ф-лы, 3 ил.

Наверх