Камера сгорания газотурбинной установки

Газотурбинная установка содержит воздушный компрессор, газовую турбину, блок вращающихся цилиндров камеры сгорания, установленные на одном валу. Корпус камеры сгорания изготовлен из материала, способного пропускать переменное магнитное поле высокой частоты и имеющего хорошую магнитную проницаемость, или имеет окна из материала, способного пропускать переменное магнитное поле высокой частоты и имеющего хорошую магнитную проницаемость, - кварца. Снаружи камеры сгорания располагаются блоки, по периметру камеры сгорания и в одной плоскости вращающихся цилиндров, магнитного и электромагнитного воздействия, блок постоянных магнитов, блок электромагнитов, блок магнетронов. Изобретение позволяет повысить кпд установки при работе на низкокалорийном газообразном топливе, снизить эмиссию вредных веществ в продуктах сгорания на основных режимах работы. 1 ил.

 

Камера сгорания газотурбинной установки, относится к устройствам камер сгорания газотурбинных установок, при большей детализации устройства кроме использования топлива, в данном камере сгорания используется высокочастотное электромагнитное излучения во время процесса горения, созданное при помощи блоков постоянных магнитов и электромагнитов, вращающихся блоков цилиндров определенной конфигурацией, чередованием и положением друг относительно друга, расположенном на одном валу с компрессором и турбиной, задающего генератора высокой частоты в виде магнетрона.

Типовая газовая турбина включает в себя компрессор спереди, одну или несколько камер сгорания вокруг середины и турбину сзади. Компрессор передает кинетическую энергию рабочего тела (воздуха), чтобы привести его в состояние высокого давления. Сжатое рабочее тело (воздух) выходит из компрессора и течет в камеры сгорания. Камеры сгорания смешивают топливо со сжатым воздухом, а смесь топлива и воздуха воспламеняется для получения газов сгорания, имеющих высокую температуру, давление и скорость. Газы сгорания поступают в турбину, где они расширяются, производят работу.

Газовые турбины все чаще требуют более высокой эффективности при производстве меньших выбросов. Более высокая эффективность может быть достигнута за счет увеличения температуры горения топливной смеси в камерах сгорания газовой турбины.

Также эффективность газовой турбины могут быть достигнуты за счет подачи обедненной воздушно-топливной смеси в камеру сгорания, но температура горения в камеру сгорание будет значительно снижена, что может привести к снижению КПД всей системы в совокупности.

Более низкая температура, более высокая эффективность процесса горения может быть достигнута за счет использования высокочастотного электромагнитного излучения в процессе горения.

Например, в патенте US 5370525 А США описано, что сжигание может быть увеличено путем размещения множества магнетронов вокруг горелки и направления микроволн в зону горения. Использование электромагнитного излучения во время горения может привести к образованию свободных радикалов, которые поддерживают дожигание СО и других UHC, что приводит к снижению выбросов СО и UHC. Кроме того, электромагнитное излучение стимулирует сжигание топлива за счет возбуждения атомов углерода в топливе, что повышает эффективность процесса горения;

в патенте US 20090229581 А1 США описано, что осуществляется воздействие микроволнами магнетроном на поток газовой струи;

в патенте US 20110225948 А1 США описано, что осуществляется зональное воздействие микроволнами магнетрона на поток газовой струи, то есть в разные зоны температурного нагрева, цель равномерное распределение излучения по объему;

в патенте DE 102013010706 В3 Германии описано, что осуществляется воздействие микро волнами магнетрона на поток газовой струи, расположение магнетронов по радиусу для создания равномерного воздействия;

За последние пятнадцать лет появилось множество проектных патентных разработок, но предполагаю, мало или нет действующих, на данной монет времени это не известно автору. Основной причиной, как представляется, является не выполнение достаточно необходимых условий для создания электромагнитного возбуждения рабочего теля (топливной смеси, газа) турбореактивного двигателя с заданной мощностью в камере сгорания высокочастотным генератором (магнетроном) при условии, высокого давления, высокой температуры и высокой скорости потока рабочего тела (топливной смеси, газа). Существующие разработки представлены без учета выше упомянутых параметров. Величина мощности, которую надо подвести и использовать в магнетронах для создания необходимых условий для возбуждения среды со измерима с мощностью самого двигателя и может составлять от 5% до 50% от мощности двигателя, значения зависят от инженерной реализации (что тоже вносит свой вклад в усложнения и удорожание системы), в абсолютных единицах величина, пример турбина, применяемая в вертолетных установках величиной в 1500 кВт при минимальных параметрах в 5%, составляет 75 кВт, что в свою очередь влечет за собой установку генератора, проводку и магнетронов количество, мощность должна соответствовать 75 кВт,

Решение может быть достигнуто, если применить динамическое и электромагнитное формирование достаточно необходимых условий внутри камеры сгорания.

Поставленная задача решается за счет того, что газотурбинная установка содержит воздушный компрессор, газовую турбину, блок вращающихся цилиндров камеры сгорания, установленные на одном валу, корпус воздушного компрессора, корпус камеры сгорания изготовлен из материала способного пропускать переменное магнитное поле высокой частоты и имеет хорошую магнитную проницаемость или имеет окна из материала способного пропускать переменное магнитное поле высокой частоты и хорошую магнитную проницаемость, - кварца, а с наружи камеры сгорания располагаются блоки, по периметру камеры сгорания и в одной плоскости вращающихся цилиндров, магнитного и электромагнитного воздействия, блок постоянных магнитов, блок электромагнитов, блок магнетронов.

Газотурбинная установка содержит воздушный компрессор (6), Газовую турбину (8), камеру сгорания (7). Камера сгорание представляет собой блок полый цилиндр и имеет в составе блок вращающихся цилиндров (5) воздушного компрессора (6) и газовой турбины (8) на общем валу. Блок вращающихся цилиндров равномерно чередуются между собой и стенки цилиндров имею конфигурационную форму. Конфигурационная форма вращающегося цилиндра в отдельности представлено в виде сужения края цилиндра к центру (форма бутылочного горла) для создания зоны переменной турбулентности потока и статичной по отношению к корпусу двигателя и блокам магнитного воздействия. Корпус газовой турбины и воздушного компрессора из магнитного материала, металла. Корпус камеры сгорания полностью из материала способного пропускать переменное магнитное поле высокой частоты и имеет хорошую магнитную проницаемость или имеет окна из материала способного пропускать переменное магнитное поле высокой частоты и хорошую магнитную проницаемость. Снаружи камеры сгорания по периметру в плоскости вращения цилиндров камеры сгорания расположены блоки:

Блоки постоянных магнитов (2) (3), в составе которых группа магнитов, расположенных друг к другу так, что чередуется полярность полюсов;

Блоки электромагнитов (1), в составе которых группа соединения катушек для возможности создания переменного вращающегося магнитного поля внутри камеры сгорания;

Блоки магнетронов (4), в составе каждый магнетрон имеет согласование по работе собственной частоты электромагнитного излучения с другими в блоке;

Чередование вращающихся цилиндров конфигурационной формы создают в внутри камеры сгорания зоны переменной турбулентности и статичные по отношению корпуса и блока магнитов и электромагнитов. Расстояние между зонами должно быть равным длине волны задающего электромагнитного генератора (магнетрона). Блоки магнитов содержат постоянные магниты, расположенные по радиусу равномерно с чередованием полюсов намагниченности и с шагом равный длинны волны задающего генератора (магнетрона). Блоки электромагнитов содержат катушку электромагнитной индуктивности с металлическим сердечником, направленным перпендикулярно к корпусу двигателя, электромагниты размещены в блоке по радиусу равномерно с шагом длинны волны задающего генератора (магнетрона). Поток рабочего тела (топливной смеси, газа) через камеру сгорания формируют узлы с заданной турбулентностью и с заданным местоположение согласованной с задающим генератором (магнетроном), что создает условия для электромагнитного возбуждения рабочего тела (топливной смеси, газа). Также причиной нагрева вращающихся цилиндров является физическое свойство возникновение токов Фуко в металле в переменном магнитном поле. Вследствие чего происходит, разогрев рабочего тела газотурбинной установки. Блоки, состоящие из постоянных магнитов, с чередование полюсов, на поверхности вращающихся цилиндрах создают переменное магнитное поле, что является причиной появление токов Фуко в металле вращающихся цилиндров, вследствие чего происходит, нагрев вращающихся цилиндров и в рабочем теле газотурбинного двигателя. Блоков может быть несколько, что приводит к увеличению нагрева вращающихся цилиндров и рабочего тела, но увеличивает динамическую нагрузку на вал из-за возникновения магнитного взаимодействия, магнитной вязкости. Блоки, состоящие из электромагнитов, представляют собой группу электромагнитов, подключенных к контроллеру для создания переменного вращающегося магнитного поля, что является причиной наведения ЭДС и возникновении токов Фуко на поверхности вращающихся цилиндров и в рабочем теле газотурбинного двигателя, в следствии чего происходит, нагрев вращающихся цилиндров и рабочего тела. Блоки, состоящие из магнетронов, представляют группу магнетронов, расположенных симметрично по периметру камеры сгорания и имеют согласование по работе собственной частоты электромагнитного излучения с другими в блоке, между собой. Высокочастотное магнитное поле воздействует на поверхность вращающихся цилиндров и на разогретое рабочее тело газотурбинной установки, что является причиной возникновении токов Фуко и вследствие чего происходит, нагрев вращающихся цилиндров и рабочего тела.

Изобретение позволяет повысить КПД установки при работе на низкокалорийном газообразном топливе, снизить эмиссию вредных веществ в продуктах сгорания на основных режимах работы и расширить диапазон технических эффектов, достигаемых при использовании устройства. Может быть использовано в авиационной, судовой, автомобильной промышленности, а также в энергетике.

Газотурбинная установка, содержащая воздушный компрессор (6), газовую турбину (8), блок вращающихся цилиндров (5) камеры сгорания (7), установленные на одном валу, корпус воздушного компрессора (6), корпус камеры сгорания (7) изготовлен из материала, способного пропускать переменное магнитное поле высокой частоты и имеющего хорошую магнитную проницаемость, или имеет окна из материала, способного пропускать переменное магнитное поле высокой частоты и имеющего хорошую магнитную проницаемость, - кварца, а снаружи камеры сгорания (7) располагаются блоки, по периметру камеры сгорания (7) и в одной плоскости вращающихся цилиндров (5), магнитного и электромагнитного воздействия, блок постоянных магнитов (2, 3), блок электромагнитов (1), блок магнетронов (4).



 

Похожие патенты:

Изобретение относится к области энергетического машиностроения. Космическая энергетическая установка с машинным преобразованием энергии в замкнутом контуре с газообразным рабочим телом содержит трубопроводы, образующие замкнутый контур, с включенными в него турбокомпрессором, источником тепла, теплообменником-рекуператором, теплообменником-холодильником.

Комплементарная система подачи тепловой энергии с использованием солнечной энергии и биомассы принадлежит к области использования чистой энергии. Система содержит устройство, концентрирующее солнечные лучи, емкость (1) для хранения солнечного тепла, энергоустановку на биомассе, устройство охлаждения и замораживания для охлаждения и систему нагревания воды для центрального нагревания.

Солнечный коллектор с турбиной или турбокомпрессором для приема солнечного излучения содержит коллектор (1) в форме конусообразной спирали, содержащий трубки круглого или квадратного сечения, причем радиус предыдущего витка трубок больше последующего, так что тень предыдущего витка не падает на последующий, и витки плотно прилегают друг к другу без зазоров между ними вплоть до последнего витка, соединенного с трубкой, питающей ведущую турбину (4); и содержит вход (6) для поступления сжатого воздуха из компрессора (16), содержит защиту указанного коллектора (1), покрывающую его поверхность и поверхность трубок (18) и различные инжекторы (30) для производства тепла посредством инжекции газов, содержит ведущую турбину (4), на которую поступает воздух, разогретый в коллекторе (1) энергией солнечного излучения или другими видами топлива, указанная турбина содержит теплообменник, отделяющий ведущую турбину (4) от компрессора (16), содержит промежуточную секцию, разделяющую компрессор (16) и ведущую турбину (4), с центральным проходом для размещения оси (9) в полости воздухонепроницаемой трубки, по которой лопастями (22) компрессора (16) направляется поток воздуха из окружающей среды наружной температуры по направлению к лопаткам ведущей турбины (4), охлаждая их, а центральными лопастями (21) ведущей турбины воздух выбрасывается наружу, где он смешивается с потоком воздуха, продвигающимся на выход (8).

Изобретение относится к области теплоэнергетики, энергомашиностроения и атомной энергетики и может быть использовано в конструкциях установок, преобразующих тепло в механическую или электрическую энергию.

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям, конкретно к турбовинтовым двигателям - ТВД, в которых применен ядерный реактор.

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям, конкретно к турбовинтовым двигателям - ТВД, в которых применен ядерный реактор.

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям, конкретно к турбовинтовым двигателям - ТВД, в которых применен ядерный реактор.

Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям, конкретно к турбовинтовым двигателям - ТВД, в которых применена ядерная силовая установка Известен авиационный комбинированный двигатель по заявке РФ на изобретение 2002115896, содержащий ГТД и ракетный двигатель.

Изобретение относится к энергетике по выработке электроэнергии с использованием солнечной лучистой энергии. .

Изобретение относится к авиадвигателестроению. .

Изобретение может быть использовано в двигателях внутреннего сгорания. Система генерирования мощности для двигателя внутреннего сгорания содержит турбонагнетатель, модуль (40e) вычисления генерируемой мощности и модуль управления генерированием мощности.

Приводная установка для приведения в действие нагрузки содержит газовую турбину, имеющую газогенератор, нагрузочную муфту, электрический двигатель/генератор, устройство для изменения потока, выполненное и управляемое с обеспечением изменения потока газообразного продукта сгорания через газовую турбину.

Газотурбинный двигатель содержит хотя бы один ротор турбокомпрессора, центробежный компрессор которого содержит хотя бы одно рабочее колесо и хотя бы одну электрическую машину, содержащую систему постоянных магнитов.

Изобретение относится к соединительному устройству для присоединения муфты (10) включения к турбоагрегату, турбоагрегату с муфтой включения и способу присоединения муфты включения к генератору и турбине.

Изобретение относится к энергетике. Газотурбинная система, содержащая газовую турбину (23), первую нагрузку (71) и вторую нагрузку (72), приводимые в действие с помощью газовой турбины.

Прямоточный турбореактивный детонационный двигатель состоит из входной части, средней части и выходной части. Во входную часть входят вентилятор и компрессор.

Изобретение относится к двигателестроению, а именно к двигательному узлу для гибридного автомобиля. Технический результат заключается в повышении эффективности регулирования двигателя путем изменения сопротивления потока отработавших газов.

Изобретение относится к преобразователям энергии сгорания топлива в электрическую энергию. Техническим результатом является повышение эффективности преобразования.

Изобретение относится к энергетике. Энергетическая установка (100) содержит кожух (108) с первой секцией (I) кожуха и второй секцией (II) кожуха, причём генератор (110) переменного тока расположен в пределах первой секции (I) кожуха, а газовая турбина (120) расположена в пределах второй секции (II) кожуха.

Изобретение призвано улучшить характеристики при ускорении газогенератора газовой турбины за счет сокращения отборов электрической энергии, в частности, во время переходных фаз, чтобы сохранить достаточную границу помпажа рабочей кривой.

Газотурбинная установка содержит воздушный компрессор, газовую турбину, блок вращающихся цилиндров камеры сгорания, установленные на одном валу. Корпус камеры сгорания изготовлен из материала, способного пропускать переменное магнитное поле высокой частоты и имеющего хорошую магнитную проницаемость, или имеет окна из материала, способного пропускать переменное магнитное поле высокой частоты и имеющего хорошую магнитную проницаемость, - кварца. Снаружи камеры сгорания располагаются блоки, по периметру камеры сгорания и в одной плоскости вращающихся цилиндров, магнитного и электромагнитного воздействия, блок постоянных магнитов, блок электромагнитов, блок магнетронов. Изобретение позволяет повысить кпд установки при работе на низкокалорийном газообразном топливе, снизить эмиссию вредных веществ в продуктах сгорания на основных режимах работы. 1 ил.

Наверх