Способ питания нагрузки постоянным током в автономной системе электропитания космического аппарата и космический аппарат для его реализации

Группа изобретений относится к системе электропитания космического аппарата (КА). В способе питания нагрузки постоянным током в автономной системе электропитания КА от первичного источника, например солнечной батареи (СБ), и вторичного источника электроэнергии, например аккумуляторной батареи (АБ), стабилизируют «n» номиналов напряжения нагрузки и согласовывают работу первичного и вторичного источников электроэнергии на первом уровне стабилизации напряжения. Число вторичных источников электроэнергии выбирают четным, а СБ - ориентированной и размещенной на двух крыльях, связанных с автоматикой КА через поворотные токосъемные устройства. Систему электропитания выполняют из двух независимых каналов с половиной АБ и одним крылом СБ в каждом канале. В КА, реализующем способ, СБ с поворотными токосъемными устройствами располагаются на «северной» и «южной» сторонах приборного блока в направлении, перпендикулярном плоскости геостационарной орбиты либо плоскости «Земля-Солнце-КА». Техническим результатом группы изобретений является повышение энергетических характеристик и надежности системы электропитания. 2 н. и 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области космической техники и может быть использовано при проектировании космических аппаратов (КА).

Космический аппарат представляет собой (см. Космические аппараты. Под общей редакцией К.П. Феоктистова, М., Воениздат, 1993, [1]) техническое устройство, состоящее из целевой аппаратуры и обеспечивающих систем.

В качестве целевой аппаратуры используется преимущественно связная аппаратура. В число обеспечивающих систем входят: система электропитания (СЭП), система ориентации КА, бортовой комплекс управления, система терморегулирования и другие системы в зависимости от типа и назначения КА.

К числу систем современных КА, по сути определяющих срок активного существования КА, относится в первую очередь система электропитания.

Известны способы питания нагрузки постоянным током в автономных системах электропитания ИСЗ, описанные в монографии «Системы электропитания космических аппаратов, Новосибирск, ВО «Наука», 1994 г.» [2].

Известные способы и автономные системы электропитания ИСЗ предусматривают стабилизацию напряжения от первичного источника ограниченной мощности (солнечной батареи) на нагрузке стабилизированными преобразователями различного типа.

Известен способ питания нагрузки постоянным током, предусматривающий наращивание мощности автономной системы электропитания установкой дополнительных модулей с обеспечением их равномерной загрузки (см. [1] главу 2, рис. 2.14).

Однако, такой подход (унифицированных модулей) применительно к космической технике неэффективен, так как неизбежно ведет к снижению удельных энергетических характеристик системы в целом.

Наиболее близким техническим решением является патент RU №2535662 «Способ питания нагрузки постоянным током», который выбран в качестве прототипа.

Известный способ заключается в питании нагрузки постоянным током с несколькими номиналами выходного напряжения от первичного источника ограниченной мощности, например солнечной батареи, и вторичного источника электроэнергии, например аккумуляторной батареи, заключающийся в стабилизации напряжения на нагрузках и согласовании работы первичного и вторичного источников электроэнергии, причем вначале стабилизируют напряжение на нагрузке, имеющей максимальное выходное напряжение питания, посредством параллельного стабилизированного преобразователя, содержащего силовой транзисторный ключ и схему управления с широтно-импульсным модулятором, а стабилизацию напряжения остальных нагрузок проводят от шин питания первой нагрузки сериесными стабилизированными преобразователями, при этом согласование работы первичного и вторичного источников электроэнергии проводят только на первом уровне стабилизации напряжения, кроме того, первичный источник ограниченной мощности делят на «m» секций, отличающийся тем, что силовой транзисторный ключ параллельного короткозамкнутого стабилизированного преобразователя делят так же на «m» единичных силовых транзисторных ключей и каждую секцию первичного источника ограниченной мощности стабилизируют соответствующим силовым транзисторным ключом параллельного стабилизированного преобразователя, при этом управление силовыми транзисторными ключами проводят от общей схемы управления с широтно-импульсным модулятором. При этом количество секций первичного источника ограниченной мощности выбирают исходя из соотношения:

m≥Рпи/Рд, где

Рпи - мощность первичного источника ограниченной мощности;

Рд - мощность дежурной нагрузки искусственного спутника Земли.

Известный способ позволяет достичь высоких удельных энергетических характеристик автономной системы электропитания ИСЗ, однако вопросы обеспечения функциональной надежности известным способом решаются недостаточно.

Известен КА (патент RU №2227108), содержащий устройства и приборы, установленные на обшивках сотовых панелей со встроенным жидкостным коллектором и имеющие входы и выходы, соединенные между собой трубопроводами.

Недостатком известного КА является то, что в нем решаются вопросы обеспечения температурного режима бортовых устройств и приборов КА, но не рассматриваются вопросы надежности его длительной эксплуатации по целевому назначению.

Наиболее близким по технической сущности заявляемому КА является КА, описанный в патенте RU №2164881, содержащий отсек с целевой аппаратурой, герметичный приборный отсек, агрегатный отсек с комплексной двигательной установкой, систему терморегулирования с гидравлическими контурами и приборами для отбора, подвода и сброса тепла, в том числе выполненными в виде термоплат со штатными и технологическими гидравлическими каналами, систему электропитания, состоящую из солнечной батареи, установленного в приборном отсеке комплекса автоматики и стабилизации напряжения, размещенных в агрегатном отсеке никель-водородных аккумуляторных батарей, установленных внутри каждой батареи датчиков давления, чувствительных к изменению текущей электрической емкости батарей, а также бортовой комплекс управления с бортовой вычислительной машиной, причем указанные датчики давления через устройства преобразования сигнала включены в канал обмена информацией между указанными комплексом автоматики и стабилизации напряжения и бортовой вычислительной машиной, которая снабжена программой, корректирующей режим работы аппарата в зависимости от глубины разряда аккумуляторных батарей и определяющей суммарную глубину разряда. Этот КА принят за прототип.

Недостатком известного КА является то, что в его конструкции не достаточно решены вопросы оптимальной компоновки для снижения электрических потерь и соответственного повышения удельных энергетических характеристик автономной системы электропитания КА, а так же обеспечения функциональной надежности (живучести) при внезапных отказах связанных преимущественно с нерасчетными режимами эксплуатации.

Задачей заявляемого изобретения является повышение удельных энергетических характеристик и функциональной надежности автономной системы электропитания КА.

Поставленная задача решается тем, что в способе питания нагрузки постоянным током в автономной системе электропитания космического аппарата от первичного источника ограниченной мощности, например солнечной батареи, и вторичного источника электроэнергии, например аккумуляторной батареи, заключающегося в стабилизации «n» номиналов напряжения нагрузки и согласовании работы первичного и вторичного источников электроэнергии, причем вначале стабилизируют напряжение на нагрузке, имеющей максимальное входное напряжение питания посредством параллельного короткозамкнутого стабилизированного преобразователя, а стабилизацию напряжения остальных нагрузок проводят от шин питания первой нагрузки сериесными стабилизированными преобразователями, при этом согласование работы первичного и вторичного источников электроэнергии проводят только на первом уровне стабилизации напряжения, число вторичных источников электроэнергии выбирают четным, а солнечную батарею выбирают ориентированной и размещенной на двух крыльях, связанных с автоматикой космического аппарата через поворотные токосъемные устройства, при этом систему электропитания выполняют из двух независимых каналов с половиной аккумуляторных батарей и одним крылом солнечных батарей в каждом канале, а нагрузку распределяют между каналами системы электропитания исходя из компоновки космического аппарата. Кроме того, два независимых канала системы электропитания объединяют по общим шинам через корпус космического аппарата. Дополнительно, противоположные общим шинам полярности равнозначного выходного напряжения двух независимых каналов системы электропитания связывают электрическими шинами. При этом в космическом аппарате для реализации способа питания нагрузки постоянным током в автономной системе электропитания космического аппарата, содержащего приборный блок, выполненный в форме прямоугольного параллелепипеда, устройства и приборы, установленные на внешних и внутренних сторонах приборного блока, в том числе система электропитания, состоящая из двух крыльев солнечной батареи, связанных с приборным блоком через поворотные токосъемные устройства, стабилизированного преобразователя напряжения, аккумуляторных батарей, устройств контроля аккумуляторных батарей, солнечные батареи с поворотными токосъемными устройствами располагаются на «северной» и «южной» сторонах приборного блока в направлении, перпендикулярном плоскости геостационарной орбиты, либо для других орбит - перпендикулярном плоскости «Земля-Солнце-космический аппарат», причем половина (от четного числа) аккумуляторных батарей, а также половина стабилизированного преобразователя напряжения, конструктивно разделенного на два независимых канала, также устанавливаются на «северной» и «южной» сторонах приборного блока.

Действительно, разделение системы электропитания на два независимых канала позволяет обеспечить более оптимальную компоновку КА для повышения удельных энергетических характеристик системы электропитания, и одновременно повышает функциональную надежность системы электропитания.

Суть предлагаемого способа можно пояснить на примере функциональной схемы автономной системы электропитания, представленной на фиг. 1.

Система электропитания состоит из двух независимых, функционально равнозначных каналов. Цифровые обозначения на каналах совпадают. Описание дано применительно к одному каналу и полностью распространяется на другой канал.

Каждый канал системы электропитания содержит солнечную батарею (первичный источник ограниченной мощности) 1, состоящую из секций 11, 12, …1m, подключенную к нагрузке 2 через диоды РД1, РД2, …РДm (в цепи каждой секции соответственно) и выходной фильтр 3. Аккумуляторные батареи 4/1 и 4/2 (в примере используются 2 аккумуляторные батареи в каждом канале), подключенные через зарядные преобразователи 5/1 и 5/2 и через разрядные преобразователи 6/1 и 6/2 к входу выходного фильтра 3, при этом входы разрядных преобразователей подключены к выходу выходного фильтра 3. Параллельный стабилизированный преобразователь 7 входом подключен к выходу выходного фильтра 3, а силовыми транзисторными ключами K1, К2,…Кm подключен к каждой соответствующей секции первичного источника ограниченной мощности.

Кроме того, к клеммам «+» и «-» нагрузки 2 подключено (n-1) сериесных преобразователей 81, 82,…8n-1 к выходу которых подключены нагрузки 21, 22,…2n-1, где n - количество используемых номиналов напряжения в автономной системе электропитания. В настоящее время на КА, как правило, используют два номинала выходного напряжения: повышенное (60-100 В) для целевой аппаратуры (сеансной нагрузки) и 27 В для питания обеспечивающих систем.

Зарядный преобразователь состоит из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе Тр, транзисторах Т1 и Т2, выпрямителя на диодах D1 и D2.

Разрядный преобразователь 6 состоит из регулирующего ключа 11, управляемого схемой управления 12.

Параллельный стабилизированный преобразователь 7 состоит из «m» единичных силовых транзисторных ключей К1, К2, …Кm управляемых общей схемой управления 13.

Сериесные преобразователи 81, 82,…8n-1 состоят из регулирующих ключей 14, управляемых схемами управления 15 и выходных фильтров 16.

Схемы управления преобразователями 10, 12, 13, 15 выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения.

Устройство работает следующим образом.

В процессе эксплуатации питание нагрузки 2 осуществляется от солнечной батареи 1, состоящей из секций 11, 12, …1m, «развязанных» диодами РД1, РД2, …РДm (в цепи каждой секции соответственно), через выходной фильтр 3. При этом все секции постоянно подключены к нагрузке 2 и не коммутируются. Стабилизация напряжения на нагрузке 2 осуществляется параллельным короткозамкнутым стабилизированным преобразователем 7.

Аккумуляторные батареи 4 работают преимущественно в режиме хранения и периодических подзарядов от солнечной батареи 1 через зарядный стабилизированные преобразователи 5. При прохождении теневых участков орбиты, либо при нарушении ориентации, нагрузка 2 питается от аккумуляторной батареи 4 через разрядные преобразователи 6.

Сериесные преобразователи 81, 82,…8n-1 постоянно работают в одном режиме от стабильного напряжения первой нагрузки 2.

Для защиты от воздействия статических разрядов при эксплуатации КА два независимых канала системы электропитания объединяют по общим шинам через корпус космического аппарата 18.

Для демпфирования возможного возникновения отличий по выходной мощности независимых каналов в процессе эксплуатации КА, а так же на случай неравномерной (по объективным причинам) загрузки каналов потребителями, противоположные общим шинам полярности равнозначного выходного напряжения двух независимых каналов системы электропитания, связывают электрическими шинами 17.

Разделение автономной системы электропитания на два независимых канала позволяет повысить функциональную надежность системы электропитания.

На рисунке фиг. 2 представлен схематично вид КА 21 стабилизированного по трем осям на круговой, например, геостационарной орбите 22 вокруг Земли 19.

При этом КА содержит три оси ориентации:

- ось X, касательная к орбите и имеющая такое же направление, что и вектор линейной скорости КА 19;

- ось Y, перпендикулярная плоскости орбиты 22 и ориентированная в направлении Север-Юг (С-Ю) Земли 19;

- ось Z, перпендикулярная осям X и Y и ориентированная на Землю 19. КА так же содержит солнечные батареи, имеющие два крыла 23/1 и 23/2, направленных соответственно к Северу и Югу по своим продольным осям, здесь совпадающим с осью Y и ориентируемых относительно корпуса вокруг оси вращения, приблизительно совпадающей с осью Y, под действием двух приводных двигателей (на рисунке не показано), управляемых раздельно. Эти приводные двигатели предназначены для удержания крыльев солнечных батарей в направлении на Солнце.

Как видно из рисунка, плоскости параллелепипеда (приборного блока КА) смежные с крыльями солнечных батарей (северная и южная стороны параллелепипеда), практически не подвергаются воздействию солнечного излучения, поэтому на них располагают (на рисунке не показано) «теплонапряженные» силовые элементы: по половине (от четного числа) аккумуляторных батарей, а также по половине стабилизированного преобразователя напряжения (конструктивно разделенного на два независимых канала). Одновременно такое расположение сокращает длины линий (кабелей) связи между солнечными и аккумуляторными батареями, а так же позволяет сократить линии связи до потребителей (нагрузки). Это позволит повысить удельные энергетические характеристики автономной системы электропитания КА.

Таким образом, предлагаемый способ питания нагрузки постоянным током в автономной системе электропитания космического аппарата и космический аппарат для его реализации позволяют повысить удельные энергетические характеристики и функциональную надежность автономной системы электропитания КА.

1. Способ питания нагрузки постоянным током в автономной системе электропитания космического аппарата от первичного источника ограниченной мощности, например солнечной батареи, и вторичного источника электроэнергии, например аккумуляторной батареи, заключающийся в стабилизации «n» номиналов напряжения нагрузки и согласовании работы первичного и вторичного источников электроэнергии, причем вначале стабилизируют напряжение на нагрузке, имеющей максимальное входное напряжение питания посредством параллельного короткозамкнутого стабилизированного преобразователя, а стабилизацию напряжения остальных нагрузок проводят от шин питания первой нагрузки сериесными стабилизированными преобразователями, при этом согласование работы первичного и вторичного источников электроэнергии проводят только на первом уровне стабилизации напряжения, отличающийся тем, что число вторичных источников электроэнергии выбирают четным, а солнечную батарею выбирают ориентированной и размещенной на двух крыльях, связанных с автоматикой космического аппарата через поворотные токосъемные устройства, при этом систему электропитания выполняют из двух независимых каналов с половиной аккумуляторных батарей и одним крылом солнечных батарей в каждом канале, а нагрузку распределяют между каналами системы электропитания исходя из компоновки космического аппарата.

2. Способ питания нагрузки постоянным током в автономной системе электропитания космического аппарата по п. 1, отличающийся тем, что два независимых канала системы электропитания объединяют по общим шинам через корпус космического аппарата.

3. Способ питания нагрузки постоянным током в автономной системе электропитания космического аппарата по п. 2, отличающийся тем, что противоположные общим шинам полярности равнозначного выходного напряжения двух независимых каналов системы электропитания связывают электрическими шинами.

4. Космический аппарат для реализации способа питания нагрузки постоянным током в автономной системе электропитания космического аппарата по п. 1, содержащий приборный блок, выполненный в форме прямоугольного параллелепипеда, устройства и приборы, установленные на внешних и внутренних сторонах приборного блока, в том числе система электропитания, состоящая из двух крыльев солнечной батареи, связанных с приборным блоком через поворотные токосъемные устройства, стабилизированного преобразователя напряжения, аккумуляторных батарей, устройств контроля аккумуляторных батарей, отличающийся тем, что солнечные батареи с поворотными токосъемными устройствами располагаются на «северной» и «южной» сторонах приборного блока в направлении, перпендикулярном плоскости геостационарной орбиты, либо для других орбит - перпендикулярном плоскости «Земля-Солнце-космический аппарат», причем половина (от четного числа) аккумуляторных батарей, а также половина стабилизированного преобразователя напряжения, конструктивно разделенного на два независимых канала, также устанавливаются на «северной» и «южной» сторонах приборного блока.



 

Похожие патенты:

Изобретение относится к транспортным средствам. Способ управления гибридной силовой установкой транспортного средства, имеющего двигатель и избирательно подключаемые при помощи преобразователя постоянного тока в постоянный высоковольтную и низковольтную системы электроснабжения, содержит этапы, на которых определяют, целесообразно ли выполнить автоматическую остановку двигателя для уменьшения расхода топлива.

Изобретение относится к подаче электроэнергии к вспомогательному оборудованию транспортных средств. Система электропитания включает в себя первую схему, вторую схему и контроллер напряжения.

Использование: в области электротехники. Технический результат - уменьшение вероятности возникновения аварийной ситуации из-за нарушения энергобаланса системы электропитания (СЭП).

Использование: в области электротехники. Технический результат - повышение надежности системы автономного электроснабжения.

Группа изобретений относится к серверу и системе зарядки-разрядки, а также к способу управления сервером. Система содержит сервер и множество зарегистрированных транспортных средств, каждое из которых оснащено заряжаемым-разряжаемым аккумулятором и соединено с сервером с возможностью информационного обмена.

Группа изобретений относится к электротехнике и представляет собой трансформатор постоянного тока электродинамического типа. Технический результат состоит в расширении эксплуатационных возможностей.

Изобретение относится к зарядке транспортных средств. В способе зарядки транспортного средства управляют выходным напряжением преобразователя постоянного тока посредством устройства управления при подключении к внешнему источнику электроэнергии, так что нулевой ток течет в и из вспомогательной аккумуляторной батареи в ответ на состояние заряда вспомогательной аккумуляторной батареи, превышающее пороговое значение.

Использование: в области электротехники. Технический результат - повышение эффективности и надежности эксплуатации установки в неблагоприятных, отдаленных и/или высокоширотных условиях с одновременным сохранением и улучшением функциональных возможностей при эксплуатации и значительным снижением вмешательства оператора во время развертывания и эксплуатации.

Изобретение относится к электротехнике, а именно к системам электропитания (СЭП) автономных объектов, использующих в качестве накопителей энергии аккумуляторные батареи.

Использование: в области электротехники. Технический результат – повышение эффективности преобразования мощности с использованием только одного каскада преобразования мощности.

Изобретение относится к энергетическому оборудованию космических аппаратов (КА). Установка содержит ядерный реактор, радиационную защиту, холодильник-излучатель и систему развертывания (в виде стержневой рамы) из сложенного состояния в рабочее.

Изобретение относится к энергетическому оборудованию космических аппаратов (КА). Установка содержит ядерный реактор, радиационную защиту, холодильник-излучатель и систему развертывания (в виде стержневой рамы) из сложенного состояния в рабочее.

Изобретение относится к электротехнике и касается байпасных переключателей в аккумуляторной батарее космического аппарата для парирования отказа аккумулятора путем организации обходной цепи в батарее.

Изобретение относится к наземным электротехническим испытаниям космических аппаратов. Способ заключается в проведении заряда и разряда аккумуляторных батарей (АБ) с активным термостатированием и контролем температуры штатных АБ и в хранении их без проведения термостатирования.

Изобретение относится к наземным электротехническим испытаниям космических аппаратов. Способ заключается в проведении заряда и разряда аккумуляторных батарей (АБ) с активным термостатированием и контролем температуры штатных АБ и в хранении их без проведения термостатирования.

Изобретение относится к системам энергоснабжения космических аппаратов (КА). Способ преобразования энергии при энергоснабжении КА включает подачу на электроды металл-водородного аккумулятора постоянного электрического тока при его заряде в кислородно-водородном цикле газовой смесью из компонент для преобразования энергии электрохимических связей в механическую энергию, подключение к электродам аккумулятора токовой нагрузки при его разряде путем преобразования в кислородно-водородном цикле механической энергии указанной газовой смеси в энергию электрохимических связей, измерение давления и температуры сжатых газов смеси в процессе заряда и разряда аккумулятора.

Изобретение относится к изготовлению и наземным испытаниям космических аппаратов (КА), преимущественно телекоммуникационных спутников. Система электропитания КА содержит солнечную батарею (1), подключенную к нагрузке (3) через соединители (1-3, 1-2), и стабилизированный преобразователь напряжения (2), а также аккумуляторную батарею (5), подключенную к стабилизатору (2).

Изобретение относится к изготовлению и наземным испытаниям космических аппаратов (КА), преимущественно телекоммуникационных спутников. Система электропитания КА содержит солнечную батарею (1), подключенную к нагрузке (3) через соединители (1-3, 1-2), и стабилизированный преобразователь напряжения (2), а также аккумуляторную батарею (5), подключенную к стабилизатору (2).

Использование: в области электротехники. Технический результат - исключение возможности возникновения электростатических разрядов между цепочками фотодиодов солнечной батареи, уменьшение напряжения на вторичных обмотках трансформаторов и уменьшение габаритной мощности силовых элементов энергопреобразующих устройств, а также минимизация массогабаритных параметров системы электропитания автоматического космического аппарата в целом.

Изобретения относятся к энергообеспечению космических аппаратов (КА), преимущественно геостационарных спутников с трехосной ориентацией. Способ включает зарядку-разрядку и хранение аккумуляторов в заряженном состоянии.

Группа изобретений относится к системе электропитания космического аппарата. В способе питания нагрузки постоянным током в автономной системе электропитания КА от первичного источника, например солнечной батареи, и вторичного источника электроэнергии, например аккумуляторной батареи, стабилизируют «n» номиналов напряжения нагрузки и согласовывают работу первичного и вторичного источников электроэнергии на первом уровне стабилизации напряжения. Число вторичных источников электроэнергии выбирают четным, а СБ - ориентированной и размещенной на двух крыльях, связанных с автоматикой КА через поворотные токосъемные устройства. Систему электропитания выполняют из двух независимых каналов с половиной АБ и одним крылом СБ в каждом канале. В КА, реализующем способ, СБ с поворотными токосъемными устройствами располагаются на «северной» и «южной» сторонах приборного блока в направлении, перпендикулярном плоскости геостационарной орбиты либо плоскости «Земля-Солнце-КА». Техническим результатом группы изобретений является повышение энергетических характеристик и надежности системы электропитания. 2 н. и 2 з.п. ф-лы, 2 ил.

Наверх