Способ удаления асфальтосмолопарафиновых отложений из нефтедобывающей скважины

Изобретение предназначено для применения в нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения, например асфальтосмолопарафиновые отложения (АСПО). При осуществлении способа в колонну лифтовых труб скважины закачивают растворитель и ожидают определенное время для растворения отложений, периодически перемешивая растворитель. В колонне лифтовых труб организуют спуско-подъемные операции глубинного малогабаритного манометра на геофизическом кабеле с обратной связью в два этапа. На первом этапе манометр несколько раз спускают до глубинного насоса и поднимают до устья скважины с тем, чтобы по зависимости статического давления в колонне лифтовых труб от вертикальной глубины манометра определить зоны с отложениями по росту градиента давления. На втором этапе спуско-подъемные операции производят в этих зонах с целью перемешивания растворителя с частичками АСПО. Повышается эффективность удаления отложений за счет рационального использования органического растворителя и сокращения времени удаления отложений. 2 ил.

 

Предлагаемое изобретение относится к сфере скважиной добычи нефти и может быт использовано на месторождениях нефти, где в подъемных трубах скважин наблюдается образование и накапливание тяжелых компонент нефти и других сопутствующих веществ.

Проблема заполнения колонны насосно-компрессорных труб (НКТ) - лифтовых труб нефтедобывающих скважин асфальтосмолопарафиновыми отложениями (АСПО) стала основной для многих нефтяных компаний страны в последние годы из-за ухудшения структуры запасов нефти. Несмотря на применение ингибиторов АСПО колонна НКТ способна за несколько месяцев эксплуатации практически заполниться отложениями.

Наиболее привлекательным для удаления АСПО из колонны НКТ без подъема труб на поверхность земли, является применение органических растворителей. Во многих нефтяных компаниях растворитель закачивают в межтрубное пространство, который через определенное время приходит на прием насоса и растворяет отложившиеся асфальтены, смолы и парафины. Растворитель при своем движении сверху вниз смешивается с нефтью в межтрубном пространстве и частично теряет свои растворяющие способности.

Известно изобретение «Способ определения объема отложений в колонне лифтовых труб добывающей скважины» по патенту РФ №2381359. (опубл. 10.02.2010, бюл. 4), по которому растворитель доставляется в колонну насосно-компрессорных труб через межтрубное пространство, а момент заполнения колонны труб растворителем определяется по его появлению на устье скважины (отбираются пробы с выкидной линии скважины). Способ обеспечивает количественную диагностику объема отложений в трубах, но не предусматривает интенсификацию процесса их удаления путем растворения.

Известно изобретение «Способ удаления солевых отложений в скважине и устройство для его осуществления» по а.с. СССР №1068589 (опубл. 23.01.1984), по которому разнонаправленное движение растворителя отложений организовано с помощью энергии глубинного насоса и насоса, находящегося на поверхности земли на устье скважины. По изобретению не определяется степень прохождения растворителя вниз по колонне лифтовых труб и не диагностируется эффективность процесса растворения солевых отложений.

Наиболее близким к заявляемому изобретению является технология, опубликованная в журнале Нефтепромысловое дело, №5 за 2017 год (статья «Управляемые технологии обработки скважин растворителями асфальтосмолопарафиновых отложений», с. 34-38). Сущность технологии заключается в контроле и регулировании воздействия растворителем на АСПО в колонне лифтовых труб с помощью датчика давления, заблаговременно установленного над глубинным насосом. Способ имеет два недостатка: во-первых, необходимо скважину предварительно комплектовать датчиком давления, во-вторых, давление по датчику является интегральной характеристикой. Полученная информация не раскрывает местоположения отложений по длине колонны труб при их неравномерном расположении по длине колонны НКТ.

Технической задачей по изобретению является создание технологии удаления отложений путем заполнения колонны НКТ скважины растворителем, выявления на первом этапе зоны с АСПО и целевого создания в этой зоне динамического воздействия, следствием которого будет перемешивание растворителя.

Поставленная задача решается тем, что по способу удаления АСПО из нефтедобывающей скважины, который заключается в том, что в колонну насосно-компрессорных труб (НКТ) скважины закачивают растворитель, оказывают на растворитель динамическое воздействие и ожидают определенное время для растворения отложений по изобретению в колонне лифтовых труб организуют спуско-подъемные операции глубинного малогабаритного манометра на геофизическом кабеле с обратной связью в два этапа: на первом этапе манометр несколько раз спускают до глубинного насоса и поднимают до устья скважины с тем, чтобы по зависимости статического давления в колонне лифтовых труб от вертикальной глубины манометра определить зоны с отложениями по росту градиента давления, на втором этапе спуско-подъемные операции производят в этих зонах с целью перемешивания растворителя с частичками АСПО.

На фиг. 1 показан процесс спуска или подъема глубинного манометра в колонну лифтовых труб с отложениями, на фиг. 2 - градиент гидростатического давления по гипотетической скважине. На фиг. 1 условно обозначены позициями 1- обсадная колонна, 2 - колонна лифтовых труб (колонна НКТ), 3 - отложения по длине колонны НКТ, 4 - глубинный насос с обратным клапаном, 5 - перепускной клапан типа КОТ-93, 6 - органический растворитель, 7 - глубинный манометр (датчик давления), 8- геофизический кабель с функцией обратной связи с манометром, 9 - устьевой ролик спуско-подъемных операций, 10 - сальниковое устройство, 11 - подъемник геофизических приборов, 12 - передвижной насосный агрегат.

Заявленный способ реализуется выполнением следующих процедур:

1. Скважину с отложениями 3 в колонне НКТ выводят из эксплуатации путем остановки работы насоса 4.

2. Из колонны НКТ выпускают в атмосферу попутный нефтяной газ и через сальниковое устройство 10 в колонну НКТ спускают на геофизическом кабеле 8 манометр 7 до глубинного насоса 4 и клапана 5.

3. С помощью насосного агрегата 12 в колонну НКТ закачивают органический растворитель 6. Скважинная продукция из колонны НКТ будет вытесняться в межтрубное пространство через перепускной клапан 5.

4. В зависимости от объема отложений в колонне НКТ растворитель за определенное время начнет приближаться к манометру 7, вследствие чего гидростатическое давление Р начнет стабилизироваться на величине, соответствующем давлению столба растворителя без скважинной продукции.

5. После достижения давления Р неизменной во времени величины P1 манометр с постоянной скоростью поднимают до устья скважины и повторяют эту процедуру - спуск и подъем до насоса и обратно с тем чтобы по зависимости давления от вертикальной глубины определить участки ствола колонны НКТ с максимальным градиентом (приростом) давления относительно вертикальной составляющей глубины скважины.

Известно что один кубометр органического растворителя может трансформировать из твердого состояния в жидкое до 300 кг и более асфальтосмолопарафиновых веществ (АСПВ), благодаря этому плотность раствора повышается на 6-7%. Поэтому на участке колонны лифтовых труб с интенсивными отложениями АСПВ под воздействием органического растворителя произойдет и значительное повышение гидростатического давления на единицу вертикальной глубины колонны труб - градиент гидростатического давления. Результат по гипотетической скважине показан на фиг. 2, где: участки 1-2 и 3-4 характеризуют НКТ без отложений, и где рост давления обеспечивает чистый растворитель с постоянной плотностью.

Прямолинейный участок 1-2-5 получен сразу после заполнения колонны лифтовых труб растворителем, который еще не успел воздействовать на асфальтосмолопарафиновые отложения.

На участке 2-3 имеются АСПО, они начинают растворяться в реагенте через 1 час и более, и повышают плотность растворителя из-за того, что асфальтены, смолы и парафины имеют плотность до 1000 кг/м3 и более.

6. В выявленной зоне с интенсивными отложениями АСПВ (по графику на фиг. 2 участок 2-3) производят последующие спуско-подъемные операции глубинного манометра чтобы достигнуть перемешивания растворителя, насыщенного частичками асфальтенов, смол и парафинов с еще относительно чистым растворителем. Благодаря движению манометра и геофизического кабеля вверх и вниз ускоряется конвективный перенос вверх чистого и менее плотного растворителя из зоны 3-4 в зону 2-3 и, наоборот, более тяжелого растворителя с АСПВ из зоны 2-3 в зону 3-4.

Со временем угол наклона участка 2-3 к оси «вертикальная глубина скважины» - Нверт будет увеличиваться и стабилизируется на постоянной величине. Такой постоянный во времени градиент давления будет свидетельствовать о насыщении растворителя частичками АСПВ и потере реагента растворяющей способности. Необходимо заменить растворитель на свежий реагент или пустить скважину в эксплуатацию.

По изобретению предложен двухэтапный способ удаления АСПО из колонны лифтовых труб. На первом этапе находится зона с повышенным количественным присутствием АСПО, а на втором этапе именно в этой зоне и осуществляется динамическое воздействие растворителем на выявленные отложения путем перемещения манометра и геофизического кабеля вверх и вниз по колонне насосно-компрессорных труб.

На наш взгляд, такой подход выполняет поставленную техническую задачу, дает возможность использовать реагенты рационально и отвечает критериям новизна и существенное отличие от ранее известных способов применения органических растворителей на осложненных скважинах.

Способ удаления асфальтосмолопарафиновых отложений из нефтедобывающей скважины, заключающийся в том, что в колонну лифтовых труб скважины закачивают растворитель и ожидают определенное время для растворения отложений, периодически перемешивая растворитель, отличающийся тем, что в колонне лифтовых труб организуют спуско-подъемные операции глубинного малогабаритного манометра на геофизическом кабеле с обратной связью в два этапа: на первом этапе манометр несколько раз спускают до глубинного насоса и поднимают до устья скважины с тем, чтобы по зависимости статического давления в колонне лифтовых труб от вертикальной глубины определить зоны с отложениями по росту градиента давления, на втором этапе спуско-подъемные операции производят в этих зонах с целью перемешивания растворителя с частичками асфальтосмолопарафиновых отложений.



 

Похожие патенты:

Изобретение относится к нефтегазовой отрасли. В способе очистки призабойной зоны пласта (ПЗП) от глинистых образований удаляют рыхлую часть глинистых образований путем промывки ПЗП технической водой, после чего закачивают в ПЗП очищающий реагент на водной основе и выдерживают упомянутый реагент до разрушения плотной части глинистых образований.

Изобретение относится к газодобывающей промышленности и может быть применено для дозированной подачи ингибиторов коррозии и метанола в технологические трубопроводы газоконденсатных скважин и в магистральные газопроводы.

Группа изобретений относиться к нефтедобыче. Технический результат - уменьшение налипание битума и/или тяжелых нефтяных материалов на металлические поверхности, такие как буровые головки, бурильная колонна, обсадная колонна и тому подобное, хорошая способность к биологическому разложению и низкая токсичность для водных организмов добавки против образования.

Изобретение относится к способам оценки эффективности ингибитора/диспергатора асфальтена при использовании сырой нефти. Способ оценки эффективности ингибитора/диспергатора асфальтена в сырой нефти, содержит: a) взвешивание первой металлической контрольной пластины; погружение первой металлической контрольной пластины или ее части в первую пробу, в течение первого выбранного периода времени, причем первая проба содержит аликвоту сырой нефти; добавление осаждающего вещества к первой пробе в течение первого выбранного периода времени; извлечение первой металлической контрольной пластины из первой пробы в конце первого выбранного периода времени; и высушивание и взвешивание первой металлической контрольной пластины; b) взвешивание второй металлической контрольной пластины; погружение второй металлической контрольной пластины или ее части во вторую пробу в течение второго выбранного периода времени, где вторая проба содержит аликвоту сырой нефти и ингибитор/диспергатор асфальтена; добавление осаждающего вещества ко второй пробе в течение второго выбранного периода времени; извлечение второй металлической контрольной пластины из второй пробы в конце второго выбранного периода времени; и высушивание и взвешивание второй металлической контрольной пластины; c) определение массы асфальтенов, осажденных на первой металлической контрольной пластине и массы асфальтенов, осажденных на второй металлической контрольной пластине; и d) определение процента ингибирования осаждения асфальтена.
Изобретение относится к добыче нефти, газа или воды из скважин, пробуренных в подземном пласте. Способ обработки повреждения пласта месторождения в подземном пласте месторождения, в котором повреждение пласта вызвано следующими причинами: фильтрационными корками буровых флюидов на масляной основе, фильтрационными корками буровых флюидов на водной основе, нефтепромысловыми отложениями, асфальтеном, парафином, воском, резьбовой смазкой, эмульсией или водяным блоком, включает: введение в подземный пласт месторождения флюида для обработки, содержащего воду и по меньшей мере одно из следующих соединений циклодекстрина или крахмала с ферментом, способным генерировать циклодекстрин из крахмала, а также создание условий флюиду для обработки для устранения повреждения пласта.

Изобретение описывает ингибитор асфальтосмолопарафиновых отложений для парафинистых и высокопарафинистых смолистых нефтей содержит сополимер алкилакрилатов С16-С20 с акрилатом додециламина и толуол, характеризующийся тем, что дополнительно содержит окисленную нефтеполимерную смолу при следующем соотношении компонентов, мас.

Изобретение относится к нефтяной промышленности и может быть использовано на объектах добычи нефти или газа. Устройство включает блок подключения скважинный, корпус которого выполнен в виде трубопровода со сквозным отверстием и соединительными фланцами по краям, насос и емкость для поверхностно-активного вещества.

Изобретение предназначено для применения в нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения, например асфальтосмолопарафиновые отложения.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам предотвращения образования твердых отложений минеральных солей, содержащих радиобарит, на оборудовании для добычи углеводородов.

Изобретение относится к растворителям для устранения асфальтеновых отложений в стволах скважин и эксплуатационных трубопроводах. Способ обработки ствола скважины, проникающего в подземный пласт, для устранения асфальтеновых отложений, содержащихся в стволе скважины, включающий обеспечение растворителя асфальтенов, который состоит из диметилсульфида, и введение указанного растворителя асфальтенов в ствол скважины.

Изобретение предназначено для применения в нефтедобывающей промышленности и может быть использовано при эксплуатации скважин, в лифтовых трубах которых образуются различного рода отложения, например асфальтосмолопарафиновые отложения. При осуществлении способа в колонну лифтовых труб скважины закачивают растворитель и ожидают определенное время для растворения отложений, периодически перемешивая растворитель. В колонне лифтовых труб организуют спуско-подъемные операции глубинного малогабаритного манометра на геофизическом кабеле с обратной связью в два этапа. На первом этапе манометр несколько раз спускают до глубинного насоса и поднимают до устья скважины с тем, чтобы по зависимости статического давления в колонне лифтовых труб от вертикальной глубины манометра определить зоны с отложениями по росту градиента давления. На втором этапе спуско-подъемные операции производят в этих зонах с целью перемешивания растворителя с частичками АСПО. Повышается эффективность удаления отложений за счет рационального использования органического растворителя и сокращения времени удаления отложений. 2 ил.

Наверх