Способ получения многослойной модифицированной поверхности титана

Изобретение относится к способам упрочнения и модификации поверхности, а именно лазерного упрочнения, и может быть использовано для повышения стойкости деталей из титановых сплавов. Способ получения многослойной модифицированной поверхности титановой пластины включает поверхностную лазерную обработку сторон пластины, причем упомянутую обработку осуществляют с обеих сторон пластины поочередно многоканальным диодным лазером мощностью 5 кВт, при этом на поверхность пластины наносят упрочняющие дорожки в виде сетки посредством проходов лазерного излучения по одной и той же дорожке, причем в область воздействия лазерного излучения осуществляют одновременную подачу инертного газа. Обеспечивается равномерность структуры, твердости и глубины упрочненного слоя титановой пластины.

 

Изобретение относится к способам упрочнения и модификации поверхности, а именно, лазерного упрочнения, и может использоваться для повышения стойкости деталей из титановых сплавов.

Известно, что лазерное упрочнение поверхности заметно улучшает прочностные характеристики титановых сплавов.

Титан представляет собой превосходный конструкционный материал, свойствами которого, такими как высокая удельная прочность, высокий предел выносливости, высокая стойкость к коррозионному растрескиванию под напряжением, химическая стойкость и биосовместимость, предопределяется возможность его применения по особому назначению в различных областях. Однако более широкому применению титана в значительной мере препятствует его малая стойкость к износу различных видов. Потребность в эффективных методах защиты изготовленных из титана деталей от износа возрастает еще и по той причине, что многие термические и химико-термические методы улучшения поверхностных слоев, используемые, например, для улучшения сталей, не применимы к титановым сплавам.

Современным известным методом получения обладающих исключительно высокой износостойкостью поверхностных слоев на деталях из титана и его сплавов является лазерное легирование из газовой фазы [1]. Первоначально подобная технология использовалась для обеспечения защиты эндопротезов суставов, как это описано, например, в патенте Германии [2]. Для этого поверхностный слой детали расплавляют лазерным излучением на глубину от 0,1 до 0,7 мм и расплав одновременно продувают азотом. Поскольку титан обладает высоким химическим сродством к реакционноспособным газам, таким, например, как азот, газ, которым продувают расплав, немедленно растворяется в расплаве, в котором при использовании азота образуется нитрид титана, выделяющийся из расплава в виде дендритов. После затвердевания расплава образуется поверхностный слой, состоящий из титановой материнской фазы с измененным, по сравнению с исходным состоянием, соотношением между α- и (β-фазами, а также высокодисперсных дендритов нитрида титана. Твердость такого поверхностного слоя по Виккерсу (HV) обычно составляет от 600 до 1200. Полученные таким путем поверхностные слои обладают исключительно высокой стойкостью к износу скольжения, абразивному износу или износу скольжения при осциллирующем движении.

В следующем источнике информации [3] раскрыт способ упрочнения поверхности изделий из титанового сплава, включающий поверхностную лазерную обработку в среде азота с предварительным нагревом до 300°С.

Недостатками этих способов являются: длительность поверхностного азотирования из-за сканирования поверхности лазерным лучом и недостаточная микротвердость поверхностного слоя.

Известен способ упрочнения металлических поверхностей, в котором при локальном плавлении поверхности высокоэнергетическим лазерным пучком в вакууме или атмосфере инертного газа в присутствии углерода происходит формирование карбида металла [4]. Предварительно на обрабатываемую поверхность наносят слой коллоидной дисперсии графита. При воздействии излучения непрерывного СO2-лазера мощностью 1,2-1,8 кВт с диаметром пятна фокусировки лазерного пучка 0,4-3 мм расплавленный титан реагирует с углеродом, образуя карбидный слой.

Недостатки данного способа: необходимость применения лазерного излучения высокой средней мощности для оплавления поверхности обрабатываемого титана, что ограничивает применение этого способа при высокоточной обработке; качество углеродосодержащего состава и равномерность его нанесения напрямую определяют объемную и поверхностную однородность получаемого покрытия.

Известен способ получения покрытия из микроструктурированного карбида титана на поверхности изделия из титана или титанового сплава с использованием лазерного излучения [5], отличающийся тем, что изделие помещают в реакционную среду, в качестве которой используют предельный углеводород, и обрабатывают поверхность фемтосекундным лазерным излучением в ближней инфракрасной области спектра с импульсной плотностью мощности 1017 Вт/м2 и десятипроцентным перекрытием областей лазерного воздействия.

Известен способ лазерного упрочнения поверхности титана и его сплавов [6], включающий чернение поверхности с последующей лазерной обработкой, отличающийся тем, что обработку ведут в воздушной среде при относительной влажности не более 20% лучом лазера с поперечной модой ТЕМ00 и с перекрытием соседних треков, при этом время взаимодействия лазерного луча с обрабатываемой поверхностью устанавливают в пределах 0,6≤t≤1,5 с, а скорость его перемещения - в пределах 0,2≤V≤1,5 см/с при плотности мощности излучения 103-104 Вт/см2, коэффициент перекрытия соседних треков устанавливают в пределах 0,8±0,1 диаметра лазерного луча.

Известен способ упрочнения металлических поверхностей, принятый за прототип, в котором формирование карбида металла происходит при локальном плавлении поверхности высокоэнергетическим лазерным пучком в вакууме или атмосфере инертного газа в присутствии углерода [7]. Предварительно на обрабатываемую поверхность наносят слой коллоидной дисперсии графита. При воздействии излучения непрерывного СO2-лазера мощностью 1,2-1,8 кВт с диаметром пятна фокусировки лазерного пучка 0,4-3 мм расплавленный титан реагирует с углеродом, образуя карбидный слой.

Недостатки данного способа: необходимость применения лазерного излучения высокой средней мощности для оплавления поверхности обрабатываемого титана, что ограничивает применение этого способа при высокоточной обработке; качество углеродосодержащего состава и равномерность его нанесения напрямую определяют объемную и поверхностную однородность получаемого покрытия.

В настоящее время лазерное упрочнение уже используется не только в авиационной, но и передовой автомобильной (для обработки деталей шасси, коробки передач) и медицинской отраслях (упрочнение коленных и бедренных имплантатов). При лазерном упрочнении используются импульсы с высокой интенсивностью - до 10*10 Вт/см2, это позволяет создать мощную ударную волну, направленную на упрочняемый материал. В деталях этот процесс выглядит следующим образом: на упрочняемую поверхность перед обработкой наносят два слоя, один из которых поглощает лазерное излучение - это нижний слой, прилегающий к металлу, а второй слой прозрачный, он находится на поверхности. В качестве поглощающего слоя используют специальную краску, а качестве прозрачно слоя сверху, обычно используют воду. Направленный на эти слои луч лазера беспрепятственно проходит через воду и начинает интенсивно испарять второй, нижний слой краски. Однако в это время слой воды начинает препятствовать резкому образования газа от испаряющегося нижнего слоя. Соответственно, энергия от образующегося газа взаимодействует в сторону, обратную от слоя воды, т.е. в сторону металла, упрочняя его таким образом. Т. к. весь вышеописанный процесс проходит крайне быстро, то упрочняющий эффект весьма ощутим, а глубина упрочнения, может достигать 1 мм.

В результате многих опытов и изысканий по данной теме, наметилась тенденция, что один «суперпучок» с энергией в 50 Дж и более, который обработает за один раз 0,5 см2, целесообразнее заменить несколькими пучками, покрывающими всего 1,5 мм2, но работающими намного интенсивнее. Такой путь позволяет многократно удешевить конструкцию, осуществляющую способ, сделать ее более производительной в условиях действующего производства. Если выйдет из строя один большой лазер, установка станет неработоспособной, а поломка маленького лазера в системе из десятков таких же, не особо отразится на работоспособности устройства [8].

При оценке противопульной стойкости титановых сплавов различными средствами выявлена перспективность применения титановых сплавов для брони как для машин легкой весовой категории, так и для средств индивидуальной бронезащиты (СИБ), так как позволяет снизить вес изделий на 15…20% в сравнении со стальным исполнением [9].

Техническим результатом заявляемого изобретения является прямое формирование микроструктурированного покрытия из карбида титана высокой фазовой однородности. Высокая твердость и устойчивость к агрессивным средам карбида титана определяет увеличения износостойкости и коррозионной стойкости обработанной поверхности. Образующаяся в процессе формирования микроструктура покрытия увеличивает его износостойкость за счет барьерного упрочнения.

Задача изобретения заключается в обеспечении равномерности структуры, твердости и глубины упрочненного слоя титановой пластины, за счет разработки способа упрочнения поверхностного слоя титановой пластины.

Поставленная задача решается тем, что в известном способе получения многослойной модифицированной поверхности титановой пластины, включающем поверхностную лазерную обработку сторон пластины, обработку осуществляют с обеих сторон пластины поочередно многоканальным диодным лазером мощностью 5 кВт., при этом на поверхность пластины наносят упрочняющие дорожки в виде сетки посредством проходов лазерного излучения по одной и той же дорожке, причем в область воздействия лазерного излучения осуществляют одновременную подачу инертного газа.

Пример:

Лазерному упрочнению подвергли пластины из титанового сплава марки ВТ23, размером 170 мм на 170 мм и толщиной 6,7 мм.Режимы обработки:

- мощность излучения - Р=4500 Вт;

- скорость перемещения луча - V=7,5 мм/с;

- диаметр лазерного луча - d=17 мм;

- коэффициент перекрытия - k=35%.

На поверхность образца наносили упрочняющие дорожки длиной во весь размер пластины (170 мм). Включение и выключение излучения производилось за пределами пластины с целью наиболее равномерного тепловвода. Обработка производилась в среде азота.

Луч с Р=4500 Вт, d=17 мм, V=7,5 мм/с и k=35% оставлял дорожку шириной порядка 15 мм.

Контроль глубины лазерной закалки и микроструктуры проводили стандартным металлографическим методом по срезу, выполненному перпендикулярно движению луча.

Оптимальные режимы обеспечили обработку поверхности с минимальным оплавлением.

Источники информации:

1. B.H.W.Bergmann, "Thermochemische Behandlung von Titan und Titanlegierungen durch Laserumschmelzen und Gaslegieren", Zeitschrift Werkstofftechnik, 16, 1985, cc. 392-405.

2. Патент DE №3917211.

3. Yang Y.L., Zhao G.J., Zhang D. Improving the surface property of TC 4 alloy by Laser nitriding and its mechanism// Asta Metallurgica Sinica. - 2006. - vol.19. - No 2. - p. 151-156.

4. Патент US № 4698237, МПК B05D 3/06, опубл.: 06.10.1987.

5. RU, 260375161 C1, C23C 8/12, опубл. 27.11.2016.

6. RU, 2183692 C22F 1/18, c23C 8/16, опубл. 20.06.2002.

7. Патент US № 4698237, МПК B05D 3/06, опубл.: 06.10.1987 (прототип).

8. Яшкова С.С. Лазерное поверхностное упрочнение // Молодой ученый. - 2017. - №1. - С. 99-101.

9. http://www.allbest.ru/ Титановые сплавы как броневые материалы для средств индивидуальной бронезащиты. К.т.н. Э.Н. Петрова, В.П. Яньков.

Способ получения многослойной модифицированной поверхности титановой пластины, включающий поверхностную лазерную обработку сторон пластины, отличающийся тем, что упомянутую обработку осуществляют с обеих сторон пластины поочередно многоканальным диодным лазером мощностью 5 кВт, при этом на поверхность пластины наносят упрочняющие дорожки в виде сетки посредством проходов лазерного излучения по одной и той же дорожке, причем в область воздействия лазерного излучения осуществляют одновременную подачу инертного газа.



 

Похожие патенты:

Изобретение относится к электропластической формообразующей обработке титан-никелевых сплавов для повышения их деформационной способности и эффекта памяти формы и может быть использовано в металлургии и машиностроении.

Изобретение относится к цветной металлургии, в частности к способам обработки алюминиево-кремниевых сплавов (силуминов). Способ модифицирования силумина включает облучение интенсивным импульсным электронным пучком силумина марки АК12 с энергией электронов 18 кэВ, частотой следования импульсов ƒ=0,3 Гц, длительностью импульса пучка электронов τ=50-150 мкс, плотностью энергии пучка электронов ES=10-25 Дж/см2 и количеством импульсов воздействия n=1-5, при этом облучение проводят на лицевой поверхности образца, расположенной над надрезом, имитирующим трещину, в среде аргона при остаточном давлении 0,02 Па.

Изобретение относится к области пластической обработки металлов, таких как алюминий и его сплавы, и может быть использовано в различных областях промышленности и науки для глубокого формования металлических материалов.

Изобретение относится к области металлургии, а именно к способам создания острой кубической текстуры в железоникелевых сплавах, и может быть использовано для создания магнитопроводов в электротехнических устройствах, а также в качестве лент-подложек при получении многослойных ленточных сверхпроводников второго поколения.

Изобретение относится к деформационнотермической обработке сплава TiNiTa с эффектом памяти формы и может быть использовано в медицине при изготовлении стентов. Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы включает термомеханическую обработку заготовки, сочетающую интенсивную пластическую деформацию и дорекристаллизационный отжиг.
Изобретение относится к способу получения пористого металлического тела из алюминиевого сплава, включающему постепенную плавку части пластины из алюминиевого сплава под воздействием источника тепла с использованием водорода в качестве порообразующего газа и постепенное отверждение металла.

Изобретение относится к способу изготовления алюминиевой фольги, а также алюминиевой фольге, снабженной интегрированными защитными элементами, и может быть использовано для упаковки медицинской продукции для защиты ее от подделки.

Изобретение относится к получению метаматериалов из структурных элементов на основе полупроводников, диэлектриков и металлов и может быть использовано в машиностроении и электронике в качестве материалов с улучшенными свойствами.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделия из деформируемого сплава ВТ23 характеризуется тем, что изделие нагревают до 850°С, выдерживают 1 ч, охлаждают в воде и подвергают старению при температуре 550°С в течение 10 ч.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделий из титанового сплава ВТ16 включает закалку путем нагрева до температуры 790-830°C, выдержки и охлаждения в воде.

Изобретение относится к способу ремонта охлаждаемых лопаток из жаропрочного суперсплава турбины газотурбинного двигателя. Способ включает предварительное удаление с поверхности пера лопатки теплозащитного покрытия, зачистку торца колодца пера лопатки от следов приработки, зачистку наружной и внутренней поверхности стенок колодца торца пера лопатки, установку и фиксацию лопатки в приспособлении, подачу соосно лазерному лучу потока металлического порошка, химический состав которого совпадает с материалом лопатки, наплавку торца колодца пера лопатки в среде защитного газа, термическую обработку в вакууме и контроль.

Изобретение относится к устройству для лазерной обработки материалов, находящихся под водой, и может быть использовано в машиностроении и в других отраслях народного хозяйства.

Изобретение относится к системе для автоматической подстройки сканирующей системы установки селективного лазерного сплавления. Видеокамера системы с объективом соединена с устройством управления, а маркеры расположены в поле зрения объектива видеокамеры на ростовой подложке рабочего стола.

Изобретение относится к способу изготовления деталей из жаропрочных сплавов на основе никеля, предназначенных для работы в условиях повышенных температур в газотурбинных двигателях.
Изобретение относится к способу комбинированной газолазерно-ультразвуковой резки листового металла и устройству для его осуществления (варианты). Технический результат состоит в повышении качества лазерного реза за счет уменьшения шероховатости при увеличении толщины листа и скорости резки.

Изобретение может быть использовано для сварки сформованных трубных заготовок из углеродистой стали диаметром от 530 до 1420 мм с толщиной стенок от 8 до 45 мм. Околошовную зону свариваемого участка трубы нагревают индуктором до и после выполнения сварки до температуры 200-350°С.

Изобретение относится к способу лазерной сварки и лазерной сварочной головке (1), закрепленной под фокусирующей линзой. Лазерная сварочная головка включает в себя по меньшей мере одно кольцевое сопло (5) для нагнетания защитного газа и защитную камеру (3) для защиты фокусирующей линзы посредством поперечного потока воздуха.

Изобретение относится к установке для лазерной обработки внутренней поверхности изделия. Оптическая система установки содержит размещенные в стойке и штанге зеркала, линзу, отклоняющий элемент и защитное стекло, установленные на выходной части штанги в головке.

Изобретение относится к области лазерной шаговой шовной сварки для соединения двух или более металлических заготовок, наложенных друг на друга. Система содержит источник лазерного излучения, опорную колонну, оптическую головку для фокусировки лазерного луча в зоне сварки, установленную с возможностью перемещения в осевом направлении вдоль опорной колонны, рабочий орган, установленный на опорной колонне с возможностью перемещения вместе с оптической головкой в положение сварки и с возможностью нажима на переднюю металлическую заготовку перед зоной сварки с заданной силой, уловитель лазерного излучения, расположенный с обратной стороны задней металлической заготовки напротив зоны сварки с датчиком для регистрации светового излучения, проникающего через зону сварки, и контроллер, выполненный с возможностью формирования корректировки силы нажима между свариваемыми заготовками.

Изобретение относится к области лазерной сварки и оборудования для нее. Клещи содержат источник лазерного излучения, опорную колонну, оптическую головку для фокусировки лазерного луча в зоне сварки, первый рабочий орган, установленный на опорной колонне и выполненный с возможностью прижима одной из металлических заготовок в положении сварки.

Изобретение относится к обрабатывающей головке (1) для обработки поверхности посредством лазерного луча. Обрабатывающая головка (1) включает в себя канал (2) для прохода лазера, имеющий продольную ось (A), по меньшей мере один канал (3) для подвода порошка и канал (4) охлаждения для охлаждения обрабатывающей головки (1). Обрабатывающая головка (1) выполнена по меньшей мере из двух частей и включает в себя корпус (5) и втулку (6). Втулка (6) предназначена для установки на корпусе (5). Канал (2) для прохода лазера и канал (3) для подвода порошка выполнены в корпусе (3). Корпус (3) по меньшей мере частично образует первую боковую стенку канала (4) охлаждения. Втулка (6) по меньшей мере частично образует вторую боковую стенку канала (4) охлаждения. 2 н. и 12 з.п. ф-лы, 4 ил.
Наверх