Интегрированная система топливопитания и маслообеспечения газоперекачивающего агрегата компрессорной станции

Изобретение относится к области машиностроения, а именно к средствам подготовки топливного газа в системе трубопроводного транспорта природного газа, и может найти применение в газовой промышленности, конкретнее в системах, обеспечивающих работу газоперекачивающих агрегатов (ГПА), установленных на компрессорных станциях (КС) магистральных газопроводов. Система топливопитания, интегрирована с системами маслообеспечения газоперекачивающих агрегатов, установленных в компрессорном цехе компрессорной станции, и содержит трубопроводы подвода, отвода топливного и импульсного газов, связывающие между собой блок очистки и осушки, подогреватель газа и блок редуцирования с регулятором давления. В блоке редуцирования к регулятору давления параллельно подсоединен детандер-генератор. Трубопровод природного газа, отбираемого из магистрального газопровода, после блока очистки и осушки и подогревателя газа разделяется на трубопровод топливного газа и трубопровод импульсного газа. Трубопровод топливного газа в блоке редуцирования разделяется на две ветви: первая ветвь подключена ко входу регулятора давления, а вторая ветвь подключена ко входу детандер-генератора, связанного электрическими цепями с потребителями электроэнергии компрессорной станции. Далее, обе ветви трубопровода топливного газа объединяются и подают топливный газ для подогрева в систему маслообеспечения одного, но не ограничиваясь этим, газоперекачивающего агрегата компрессорного цеха компрессорной станции. Каждая система маслообеспечения включает в свой состав два, но не ограничиваясь этим, соединенных между собой последовательногазомасляных теплообменника, первый из которых подключен к системе охлаждения масла компрессора газоперекачивающего агрегата, а второй подключен к системе охлаждения масла двигателя газоперекачивающего агрегата. К выходу второго газомасляного теплообменника подключен охладитель смазочного масла. В качестве греющего теплоносителя для нагрева топливного газа в газомасляных теплообменниках используется горячее масло, поступающее соответственно от компрессора газоперекачивающего агрегата и от его двигателя. Целью изобретения является повышение энергоэфективности работы газоперекачивающих агрегатов на компрессорных станциях магистральных газопроводов. 1 ил.

 

Изобретение относится к области машиностроения, а именно, к средствам подготовки топливного газа в системе трубопроводного транспорта природного газа, и может найти применение в газовой промышленности, конкретнее, в системах, обеспечивающих работу газоперекачивающих агрегатов (ГПА), установленных на компрессорных станциях (КС) магистральных газопроводов.

Компрессорные станции магистральных газопроводов представляют собой сложный и энергоемкий комплекс сооружений и оборудования для повышения давления сжатия газа при его добыче, транспортировке и хранении. Работа оборудования КС, как и работа ГПА, установленных в компрессорных цехах на КС, обеспечивается технологическими трубопроводами с запорно-регулирующей арматурой, системами маслообеспечения, электроснабжения, установками подготовки пускового, топливного и импульсного газов и пр. Все эти обслуживающие установки и системы, как правило, обеспечиваются для своего функционирования покупной электроэнергией извне.

Важнейшая задача топливно-энергетического комплекса - проведение активной энергосберегающей политики. Один из путей повышения энергетической эффективности работы КС - возможность получения дополнительной электроэнергии при работе оборудования на КС, например, при утилизации энергии сжатого газа, и направление такой электроэнергии на собственные нужды КС.

Известна установка подготовки топливного и импульсного газа (УПТИГ-АГЦ) завода «АвиагазЦентр-Газоподготовка», http://agc-gp.ru/gas conditioning equipment/installation preparation fuel and pulsed да s, представляющая собой моноблочные или состоящие из нескольких блок-контейнеров изделия полной заводской готовности. УПТИГ-АГЦ обеспечивает подачу импульсного газа, отбираемого из технологических трубопроводов обвязки компрессорной станции, для использования в пневмогидравлических системах приводов запорной арматуры. УПТИГ-АГЦ включает в себя узел очистки газа, узел осушки газа и хранения импульсного газа, узел учета расхода газа, узел редуцирования давления газа, а также систему автоматизированного управления, которая имеет возможность связи с САУ компрессорной станции для передачи информации и принятия управляющих команд. Однако, энергоэффективность известной установки невысока, поскольку энергия сжатого газа не утилизируется и не находит в ней применения.

Известна система топливного и пускового газа компрессорной станции, Козаченко А.Н. «Эксплуатация компрессорных станций магистральных газопроводов», М.: Нефть и газ, 1999, с. 57, 58. Система предназначена для очистки, осушки и поддержания требуемого давления и расхода топливного газа перед подачей в камеру сгорания и на пусковое устройство (турбодетандер). Система имеет блочное исполнение и включает в себя блок очистки, блок осушки, подогреватели, блок редуцирования топливного газа, трубопроводы, замерное устройство, пусковое устройство. В системе газ проходит первичную и, затем, более глубокую очистки от механических примесей и влаги, далее нагревается в огневом подогревателе до температуры 45÷50°С и поступает в блок редуцирования, после которого в сепараторе происходит повторная очистка газа от влаги, выделившейся при редуцировании. Затем газ поступает в топливный коллектор.

Основным недостатком известного технического решения является малая энергоэффективность работы ГПА вследствие дополнительного расхода электроэнергии, требующейся в системе маслообеспечения ГПА для аппаратов воздушного охлаждения смазочного масла двигателя и компрессора ГПА.

Целью изобретения является повышение энергоэфективности работы газоперекачивающих агрегатов на компрессорных станциях магистральных газопроводов.

Техническим результатом изобретения является разработка энергетически эффективной интегрированной системы, объединяющей систему топливопитания и системы маслообеспечения ГПА.

Поставленная цель достигается в системе топливопитания, интегрированной с системами маслообеспечения газоперекачивающих агрегатов, установленных в компрессорном цехе компрессорной станции, которая содержит трубопроводы подвода, отвода топливного и импульсного газов, связывающие между собой блок очистки и осушки, подогреватель газа и блок редуцирования с регулятором давления. В блоке редуцирования к регулятору давления параллельно подсоединен детандер-генератор, а трубопровод природного газа, отбираемого из магистрального газопровода, подключен на вход блока очистки и осушки, после которого проходит подогреватель газа и разделяется на трубопровод топливного газа и трубопровод импульсного газа. На выходе из трубопровода импульсного газа импульсный газ направляется потребителям компрессорной станции. Вход трубопровода топливного газа подсоединен ко входу блока редуцирования, в котором разделяется на две ветви: первая ветвь подключена ко входу регулятора давления, а вторая ветвь подключена ко входу детандер-генератора, связанного электрическими цепями с потребителями электроэнергии компрессорной станции. На выходе из блока редуцирования обе ветви трубопровода топливного газа объединяются и подают топливный газ для подогрева в систему маслообеспечения одного, но не ограничиваясь этим, газоперекачивающего агрегата компрессорного цеха компрессорной станции. Каждая система маслообеспечения включает в свой состав два, но не ограничиваясь этим, соединенных между собой последовательно газомасляных теплообменника, первый из которых подключен к системе охлаждения масла компрессора газоперекачивающего агрегата, а второй подключен к системе охлаждения масла двигателя газоперекачивающего агрегата. К выходу второго газомасляного теплообменника подключен охладитель смазочного масла. В качестве греющего теплоносителя для нагрева топливного газа в газомасляных теплообменниках используется горячее масло, поступающее соответственно от компрессора газоперекачивающего агрегата и от его двигателя.

Подключение в блоке редуцирования параллельно регулятору давления детандер-генератора и направление электрической энергии, вырабатываемой им, на собственные нужды КС, позволяет отказаться от закупаемой электроэнергии, и, повысив энергоэффективность, значительно снизить экономические расходы на содержание и обслуживание КС.

Установка в системах маслообеспечения ГПА двух газомасляных теплообменников, соединенных между собой последовательно, в которых для нагрева топливного газа используется горячее масло, соответственно, от компрессора и от двигателя ГПА позволяет повысить энергоэффективность работы ГПА, поскольку газомасляные теплообменники одновременно подключаются к системам охлаждения масла компрессора и двигателя и служат для достижения двух целей - подогрева топливного газа и охлаждения смазочного масла, так что отпадает необходимость устанавливать аппараты воздушного охлаждения масла (АВОМ).

Настоящее изобретение и его преимущества будут более понятны путем ссылки на последующее описание и прилагаемый чертеж. На чертеже схематично представлена интегрированная система топливопитания и маслообеспечения ГПА. Системы маслообеспечения показаны упрощенно: фильтры, насосы, электронагреватели, маслобаки, регулирующие клапаны не показаны. Различные требуемые вспомогательные системы, такие как трубопроводы, системы автоматики и регулирования исключены из чертежа в целях упрощения и ясности представления.

Интегрированная система топливопитания и маслообеспечения ГПА содержит блок 1 очистки и осушки природного газа, подогреватель 2 и блок редуцирования (на чертеже не обознаяен), содержащий шаровые краны 3, 6, 12, регулятор 4 давления, манометры 5, 9, обратный клапан 7, регулирующий кран 8, детандер-генератор 10, электроконтактный манометр 11. Также система содержит охладители 15, 19 смазочного масла, газомасляные теплообменники 13, 17 с входным трубопроводом топливного газа и с подключением к системе охлаждения масла компрессора ГПА, соответственно, 16 и 20, а также газомасляные теплообменники 14, 18 с входным трубопроводом топливного газа и с подключением к системе охлаждения масла двигателя ГПА, соответственно, 16 и 20

Интегрированная система топливопитания и маслоснабжения газоперекачивающего агрегата представлена на примере двух из нескольких возможных газоперекачивающих агрегатов, установленных в компрессорном цехе компрессорной станции, и работает следующим образом.

Природный газ из магистрального газопровода с температурой +15°С и давлением 50 бар подается по трубопроводу последовательно в блок 1 очистки и осушки, где очищается от механических примесей и влаги, и далее - в подогреватель 2 газа, где температура природного газа достигает +45°С. Далее, трубопровод природного газа разделяется на трубопровод топливного газа и трубопровод импульсного газа. Импульсный газ с давлением 50 бар по трубопроводу направляется потребителям импульсного газа компрессорной станции: для использования в пневмогидравлических системах приводов запорной арматуры (пневмоприводные краны технологического, топливного и пускового газов, подача газа к контрольно-измерительным и регулирующим приборам и т.п.).

В свою очередь, трубопровод топливного газа, на примере двух ГПА компрессорного цеха КС, проходит сквозь три системы газоперекачивающего агрегата: систему топливопитания и две системы маслообеспечения, объединяет их, интегрирует, направляет топливный газ в камеры сгорания газотурбинных двигателей двух ГПА.

После разделения с трубопроводом импульсного газа, трубопровод топливного газа подсоединяется ко входу блока редуцирования, где происходит редуцирование давления газа с входного значения до требуемых значений, а также автоматическое поддержание заданного выходного давления независимо от изменения расхода и входного давления газа. В блоке редуцирования трубопровод топливного газа разделяется на две ветви: первая ветвь проходит шаровой кран 3 и подключается на вход регулятора 4 давления. Шаровые краны 3 и 6 предназначены для регулирования расхода топливного газа, поток которого проходит по первой ветви через регулятор 4 давления. Регулятор 4 давления редуцирует давление газа с входного значения до требуемых значений, при этом температура топливного газа несколько снижается ~ на 10°С, а также снижается давление топливного газа до значения в в 25 бар. Манометр 5 показывает значение давления после регулятора 4. Вторая ветвь трубопровода топливного газа, пройдя обратный клапан 7 и регулирующий кран 8, подключается ко входу детандер-генератора 10. Детандер-генератор 10, используя энергию сжатого природного газа, вырабатывает электрическую энергию и передает ее по электрическим цепям потребителям электроэнергии компрессорной станции.

После детандер-генератора 10 температура топливного газа составляет +2°С, давление 25 бар. Обратный клапан 7 предназначен для отсечки второй «детандерной» ветви топливного газа в случае нарушения режима (поломки). Регулирующий кран 8 служит для обеспечения постоянства расхода топливного газа через детандер-генератор 10. Манометр 9 - индикатор номинального давления топливного газа на входе в детандер-генератор 10. Электроконтактный манометр 11 обеспечивает обратную связь и, в случае отклонения от нормы, выдает сигнал на регулирующий кран 8 для изменения входных параметров. В случае простоя детандер-генератора 10 или его ремонта, шаровой кран 12 отсекает вторую «детандерную» ветвь.

Далее, на выходе из блока редуцирования, обе ветви трубопровода топливного газа соединяются и подключаются на вход системы охлаждения масла компрессора и двигателя в системе маслообеспечения последовательно в двух газоперекачивающих агрегатах 16 и 20 компрессорного цеха КС. Ветвь трубопровода топливного газа, направляемая к газоперекачивающему агрегату 16, проходит последовательно соединенные между собой газомасляные теплообменники 13 и 14, первый из которых подключен к системе охлаждения масла компрессора (на чертеже не показан) газоперекачивающего агрегата 16. Топливный газ нагревается до температуры +30°С за счет тепла масла компрессора ГПА, при этом масло компрессора охлаждается до температуры +40…+50°С. Газомасляный теплообменник 14 подключен к системе охлаждения масла двигателя (на чертеже не показан) газоперекачивающего агрегата 16, и топливный газ подогревается до температуры +67°С, а масло от двигателя ГПА, требующее охлаждения, охлаждается до температуры +40…70°С. Давление топливного газа на входе в ГПА составляет 24 бар. К выходу газомасляного теплообменника 14 подключен охладитель 15 смазочного масла для возможного доохлаждения смазочного масла двигателя, в случае превышения температуры смазочного масла на выходе из теплообменника выше допустимых значений.

Ветвь трубопровода топливного газа, направляемая к газоперекачивающему агрегату 20, также проходит последовательно соединенные между собой газомасляные теплообменники 17 и 18, где топливный газ подогревается теплом смазочного масла, одновременно его охлаждая, и подается на вход ГПА 20, обеспечивая его работоспособность. К выходу газомасляного теплообменника 18 подключен охладитель 19, который при необходимости, доохлаждает смазочное масло для двигателя ГПА 20. Для работы интегрированной системы исполнение газомасляных теплообменников 13 и 14, 17 и 18 может быть различным. Они могут быть выполнены в виде кожухотрубных, пластинчатых или пластинчато-ребристых теплообменников.

Функционирование интегрированной системы показано на примере двух ГПА КС, при этом, в компрессорном цехе КС могут быть установлены три и более ГПА и ветви трубопровода топливного газа направлены, соответственно, также и в системы маслообеспечения этих ГПА.

Таким образом, применяя в системе топливопитания ГПА детандер-генератор, вырабатывающий электроэнергию на собственные нужды КС, снижаем энергозависимость ГПА. Объединяя (интегрируя) трубопроводом топливного газа важные системы ГПА: топливопитания и маслообеспечения и используя в системе маслообеспечения ГПА газомасляные теплообменники, одновременно охлаждающие смазочное масло в системах охлаждения масла двигателя и компрессора ГПА, и нагревающие топливный газ в системе топливопитания ГПА, получаем возможность отказаться от необходимости установки энергоемких аппаратов воздушного охлаждения масла (АВОМ), и, в целом, значительно повысить энергоэффективность работы газоперекачивающих агрегатов компрессорной станции.

Система топливопитания, интегрированная с системами маслообеспечения газоперекачивающих агрегатов, установленных в компрессорном цехе компрессорной станции, содержащая трубопроводы подвода, отвода топливного и импульсного газов, связывающие между собой блок очистки и осушки, подогреватель газа и блок редуцирования с регулятором давления, характеризующаяся тем, что в блоке редуцирования к регулятору давления параллельно подсоединен детандер-генератор, а трубопровод природного газа, отбираемого из магистрального газопровода, подключен на вход блока очистки и осушки, после которого проходит подогреватель газа и разделяется на трубопровод топливного газа и трубопровод импульсного газа, на выходе из которого импульсный газ направляется потребителям компрессорной станции, вместе с тем вход трубопровода топливного газа подсоединен ко входу блока редуцирования, в котором разделяется на две ветви: первая ветвь подключена ко входу регулятора давления, а вторая ветвь подключена ко входу детандер-генератора, связанного электрическими цепями с потребителями электроэнергии компрессорной станции, при этом на выходе из блока редуцирования обе ветви трубопровода топливного газа объединяются и подают топливный газ для подогрева в систему маслообеспечения одного, но не ограничиваясь этим, газоперекачивающего агрегата компрессорного цеха компрессорной станции, при этом каждая система маслообеспечения включает в свой состав два, но не ограничиваясь этим, соединенных между собой последовательно газомасляных теплообменника, первый из которых подключен к системе охлаждения масла компрессора газоперекачивающего агрегата, а второй подключен к системе охлаждения масла двигателя газоперекачивающего агрегата, кроме этого к выходу второго газомасляного теплообменника подключен охладитель смазочного масла, а в качестве греющего теплоносителя для нагрева топливного газа в газомасляных теплообменниках используется горячее масло, поступающее соответственно от компрессора газоперекачивающего агрегата и от его двигателя.



 

Похожие патенты:

Группа изобретений относится к газовой промышленности и может быть использована для снабжения как природным, так и сжиженным углеводородным газом (СУГ) отдаленных от централизованной системы газоснабжения районов.

Изобретение относится к технике турбостроения, а именно к устройствам регулирования давления в газовой магистрали с помощью турбодетандеров, и может быть использовано на газораспределительных станциях для выработки электрической энергии.

Группа изобретений относится к системам распределения газов, которые могут быть использованы в газораспределительных станциях для подачи газа к потребителям. Автоматическая газораспределительная станция в первом варианте содержит модуль подготовки газа высокого давления и модуль редуцирования.

Изобретение относится к нефтегазодобывающей промышленности, в частности к эксплуатации узлов очистки газа, и может быть использовано при выработке газа из устройств очистки, например компрессорных станций.

Изобретение относится к области теплоэнергетики, конкретно к применению природного газа в средствах выработки энергии и холода за счет использования перепада давления природного газа на газораспределительных станциях (ГРС).

Изобретение относится к распределению газа для систем или станций, регулирующих давление на двух или большем количестве магистралей. Устройство для равномерного распределения потока между первой магистралью (1) для подачи газа и второй магистралью (2) для подачи газа в системе регулирования давления содержит первый блок (8) управления первого регулирующего устройства (4) для регулирования давления в первой магистрали (1) до первого заданного рабочего давления (Р1), второй блок (19) управления второго регулирующего устройства (6) для регулирования давления во второй магистрали (2) до второго заданного давления (Р2), пневматический трубопровод (19) для соединения между первым блоком (8) управления и вторым регулирующим устройством (6) для регулирования давления во второй магистрали (2) до первого заданного давления (Р1), и пневматический выключатель (20) для прерывания пневматического соединения для регулирования давления во второй магистрали (2) до второго заданного давления (Р2).

Изобретение относится к области газоснабжения и может быть использовано в составе газораспределительных станций (ГРС) и газорегуляторных пунктов (ГРП) для редуцирования давления природного газа с попутной утилизации энергии потока газа для повышения автономности и безотказности систем ГРС и ГРП.

Изобретение относится к технике распределения газов и может быть использовано для очистки природных газов от вредных примесей: капель конденсата, кристаллогидратов углеводородов и механических частиц в газораспределительных станциях (ГРС) и газораспределительных пунктах (ГРП).

Изобретение относится к устройствам регулирования давления в газовой магистрали с помощью турбодетандеров и может быть использовано на газораспределительных станциях для выработки электрической энергии.

Изобретение относится к газораспределительным станциям, располагаемым на ответвлениях магистральных трубопроводов, и может быть использовано в газовой промышленности.
Наверх