Патенты автора Белоусов Юрий Васильевич (RU)

Изобретение относится к газовой промышленности и может найти применение при организации процесса ожижения природного газа. Установка для производства сжиженного природного газа подключена к источнику подачи природного газа и включает соединенные бустер-компрессор, теплообменники предварительного и окончательного охлаждения, блок осушки и блок очистки. Основной трубопровод с потоком природного газа делится на трубопровод продукционного потока и трубопровод технологического потока. Трубопровод технологического потока проходит через первый регулирующий клапан, технологический эжектор, теплообменник окончательного охлаждения, теплообменник предварительного охлаждения и к выходу для подачи потребителю. Трубопровод продукционного потока проходит через второй регулирующий клапан, продукционный эжектор, сепаратор предварительного разделения, дроссель и сепаратор окончательного разделения. Трубопровод с паровой фазой из сепаратора предварительного разделения подсоединен ко входу всасывающей камеры технологического эжектора, а трубопровод с паровой фазой из сепаратора окончательного разделения подсоединен ко входу всасывающей камеры продукционного эжектора. Задача изобретения - энергосбережение и повышение энергоэффективности процесса производства СПГ. 1 ил.

Изобретение относится к области теплоэнергетики и может найти применение на теплоэлектроцентралях (ТЭЦ) при их новом строительстве или техническом перевооружении на более энергетически эффективное оборудование. Система производства экологически чистого топлива подключена к ТЭЦ, оборудованной паровым котлом и использующей в качестве топлива топливный газ, поступающий от газораспределительной станции. Система содержит блок производства сжиженного природного газа, блок производства водорода методом электролиза, один, но не ограничиваясь этим, газомасляный теплообменник, один, но не ограничиваясь этим, детандер с электрогенератором и блок подготовки воды для фильтрации и очистки потока конденсата от водоуловителей градирни. Газомасляный теплообменник и детандер соединены между собой последовательно и подсоединены на линии поступления топливного газа. Электрогенератор детандера связан электрической связью с блоком производства сжиженного природного газа и с блоком производства водорода, а блок подготовки воды подключен к выходу водоуловителей градирни и соединен трубопроводами подвода, отвода потока конденсата с электролизером блока производства водорода. Газомасляный теплообменник подсоединен к системе маслообеспечения теплофикационной паровой турбины, а также к системе отвода дымовых газов котла теплоэлектроцентрали. Задача изобретения - организация производства экологически чистого топлива: сжиженного природного газа и водорода при эксплуатации ТЭЦ с паровым котлом, повышение энергетической эффективности и в целом эффективности работы такой ТЭЦ. 1 ил.

Изобретение относится к области теплоэнергетики и может найти применение на теплоэлектроцентралях (ТЭЦ) при их новом строительстве или техническом перевооружении на более энергетически эффективное оборудование. Система производства экологически чистого топлива подключена к ТЭЦ, оборудованной парогазовой установкой и использующей в качестве топлива топливный газ от газораспределительной станции. Система содержит блок производства сжиженного природного газа, блок производства водорода методом электролиза, два, но не ограничиваясь этим, газомасляных теплообменника, один, но не ограничиваясь этим, детандер с электрогенератором и блок подготовки воды для фильтрации и очистки потока конденсата от водоуловителей градирни. Газомасляные теплообменники и детандер соединены между собой последовательно и подсоединены на линии поступления топливного газа. Электрогенератор детандера связан электрической связью с блоком производства сжиженного природного газа и с блоком производства водорода, а блок подготовки воды подключен к выходу водоуловителей градирни и соединен трубопроводами подвода, отвода потока конденсата с электролизером блока производства водорода. Оба газомасляных теплообменника подсоединены к системам маслообеспечения газовой и теплофикационной паровой турбин, а также к системе отвода дымовых газов котла-утилизатора теплоэлектроцентрали. Задача изобретения - организация производства экологически чистого топлива: сжиженного природного газа и водорода при эксплуатации ТЭЦ с парогазовой установкой, повышение энергетической эффективности и в целом эффективности работы такой ТЭЦ. 1 ил.

Изобретение относится к области очистки газов путем сорбции и может найти применение в нефтеперерабатывающей, газовой, химической и других отраслях промышленности для промышленной адсорбции газов. Адсорбер содержит наполненную гранулированным сорбентом цилиндрическую обечайку с внутренней резьбой на внутренней стенке в торцевых областях, с верхней и нижней крышками. Верхняя и нижняя крышки фиксируются на торцах обечайки кольцевыми гайками, установленными на внутренней резьбе обечайки. Подводящие и отводящие штуцеры, служащие для обвязки адсорбера трубопроводами, расположены во внутренней полости кольцевых гаек. При этом в обечайке установлены верхний и нижний основные дисковые рассекатели, которые посредством кольцевых гаек поджимаются крышками к ступенчатым упорам, выполненным на внутренней стенке обечайки в ее торцевых областях. Техническим результатом изобретения является повышение эффективности и надежности работы адсорбера. 6 з.п. ф-лы, 5 ил.

Изобретение относится к области теплоэнергетики, более точно, к системам производства электроэнергии, сжиженного и компримированного природного газа в условиях ГРС. Система подключена к ГРС, включаемой между магистральным газопроводом высокого давления и потребительским газопроводом, и включает детандер-генератор, три последовательно установленных кожухотрубных теплообменных аппарата, блок управляющего контроллера и блок сжижения природного газа. Блок сжижения содержит компрессор высокого давления и холодильную машину с компрессором. Во всех кожухотрубных теплообменных аппаратах нагреваемым теплоносителем является природный газ. Первый теплообменный аппарат подключен к выходу компрессора высокого давления блока сжижения, второй - к выходу холодильной машины блока сжижения, а третий - к выходу компрессора холодильной машины блока сжижения. Выход третьего теплообменного аппарата подключен к входу детандер-генератора, выход которого соединен с потребительским газопроводом. Генератор связан электрической связью с блоком управляющего контроллера, который связан с блоком сжижения, с электропотребителями газораспределительной станции и с электросетью. Технический результат - повышение энергоэффективности и энергонезависимости. 1 ил.

Изобретение относится к технологиям сжижения природного газа, а именно к технологии сжижения природного газа с использованием внешнего холодильного цикла, и может быть использовано на площадках, имеющих доступ к природному газу. Газ высокого давления подают в блок ртутной очистки, потом осушают и после осушки поток газа подают в первый теплообменный аппарат предварительного охлаждения, в котором охлаждают хладагентом в виде пропилена, или направляют по байпасной линии на очистку. Затем газ очищают и направляют его во второй теплообменный аппарат предварительного охлаждения. Затем газ переохлаждают смесевым хладагентом в теплообменном аппарате охлаждения и в теплообменном аппарате сжижения, после которого полученный переохлажденный поток сжиженного природного газа высокого давления дросселируют с получением сжиженного природного газа низкого давления, который пропускают через низкотемпературный сепаратор. Полученный сжиженный природный газ направляют на хранение. Техническим результатом группы изобретений является повышение качества получаемого сжиженного газа; повышение энергетической эффективности установки сжижения природного газа, обеспечение универсальности и снижения массогабаритных характеристик установки. 2 н. и 12 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области теплоэнергетики, более точно, к производству электроэнергии, холода, сжиженного природного газа при редуцировании природного газа на газораспределительных станциях (ГРС). Система оптимального распределения электроэнергии, вырабатываемой при редуцировании природного газа, подключена к газораспределительной станции, включаемой между магистральным газопроводом высокого давления и потребительским газопроводом, и имеет в своем составе один, но не ограничиваясь этим, детандер-генератор, блок хладообеспечения, блок управляющего контроллера, блок сжижения природного газа и блок осушки. Вход детандер-генератора подключен к выходу блока осушки, а выход детандер-генератора соединен трубопроводами подвода, отвода природного газа с потребительским газопроводом, с блоками сжижения и хладообеспечения. Генератор детандер-генератора связан электрической связью с блоком управляющего контроллера, который, в свою очередь, связан электрической связью с блоками осушки, сжижения, хладообеспечения и с электропотребителями газораспределительной станции. Подключение блока управляющего контроллера с функциями анализа работы всех блоков системы, потребления электроэнергии, управления, перенаправления потоков электроэнергии, и установление электрической связи с ним генератора детандер-генератора позволяет максимально оптимизировать распределение потоков электроэнергии, вырабатываемой детандер-генератором при редуцировании природного газа на ГРС. Технический результат - повышение экономической эффективности работы ГРС за счет оптимизации распределения электрической энергии, вырабатываемой при редуцировании природного газа на ГРС. 1 ил.

Изобретение относится к области теплоэнергетики. Система производства электроэнергии смонтирована на газораспределительной станции (ГРС) и подключена к блоку сжижения природного газа. Система включает соединенные трубопроводами подвода, отвода природного газа теплообменник-утилизатор, детандер-генератор, блок очистки в блоке сжижения природного газа с подогревателями газа и аппарат воздушного охлаждения. Поток природного газа, подаваемый по магистральному газопроводу, разделен на две ветви: первая подключена на первый вход теплообменника-утилизатора и далее на вход детандер-генератора, после прохождения которого газ по первой ветви направляется потребителям газораспределительной станции, а вторая ветвь подключена на вход блока очистки в блоке сжижения природного газа, а выход блока очистки подсоединен ко второму входу теплообменника-утилизатора, второй выход которого подсоединен ко входу аппарата воздушного охлаждения, на выходе из которого газ направляется потребителям газораспределительной станции. Установлена электрическая связь с генератором детандер-генератора. Технический результат изобретения - повышение энергетической и экологической эффективности работы ГРС, обеспечение ее энергонезависимости, получение сжиженного природного газа высокого качества. 1 ил.

Изобретение относится к производству сжиженного природного газа (СПГ) на газораспределительной станции (ГРС) магистрального газопровода. Прямой поток природного газа высокого давления разделяют на технологический и продукционный потоки, расширяют технологический поток газа и возвращают его обратным потоком с охлаждением продукционного потока газа. Дросселируют продукционный поток газа после его охлаждения, разделяют парожидкостную смесь на паровую и жидкостную фазы с последующим направлением в обратный поток несконденсировавшегося природного газа. Сжимают обратный поток, охлаждают и возвращают в цикл. Отбирают дополнительный поток природного газа из магистрального трубопровода, осушают в блоке осушки, очищают в блоке очистки и делят на два потока. Первый соединяют с прямым потоком перед разделением на технологический и продукционный потоки, а второй охлаждают, расширяют в детандере и соединяют с обратным потоком перед его нагревом. Часть потока нагревают посредством подогревателя газа и направляют на регенерацию адсорбента осушки и очистки. Часть обратного потока газа перед компрессором направляют для обеспечения работы подогревателей газа. Технический результат изобретения - повышение энергетической эффективности процесса производства сжиженного природного газа на ГРС. 1 ил.

Изобретение относится к газовой промышленности, конкретно, к технологиям производства сжиженного природного газа и компримированного природного газа на газораспределительных станциях (ГРС). Поток природного газа из магистрального газопровода направляют в бустер-компрессор, на выходе из которого поток природного газа низкого давления подогревают и направляют потребителю в газораспределительную сеть. Поток природного газа высокого давления пропускают через первый теплообменный аппарат, охлаждают и осушают, после чего этот поток разделяют на два потока: первый направляют потребителю, а второй, в качестве продукционного потока, направляют на сжижение. Продукционный поток очищают, охлаждают в теплообменных аппаратах и в дополнительном теплообменном аппарате внешним хладагентом, подаваемым от холодильной машины, и пропускают через дроссель для получения парожидкостной смеси, от которой отделяют жидкую фазу и направляют ее потребителю. Из паровой фазы формируют обратный поток, подогревают и подают в газораспределительную сеть. Организуют поток высокотемпературного теплоносителя, который греют в первом теплообменном аппарате и направляют в блок очистки для нагрева адсорбента. Поток природного газа низкого давления от бустер-компрессора перед подачей в газораспределительную сеть подогревают обратным потоком в трехпоточном теплообменном аппарате предварительного охлаждения или в теплообменнике-утилизаторе. Технический результат изобретения - повышение надежности и упрощение процесса. 3 н.п. ф-лы, 2 ил.

Изобретение относится к газоперерабатывающей промышленности и может использоваться для сжижения природного газа. Трубопровод подвода природного газа подключен после смесителя к входу блока компрессии, на выходе из которого подключен к входу блока сжижения и проходит последовательно первый противоточный теплообменный аппарат, блок осушки блока комплексной очистки, первый вспомогательный теплообменный аппарат, блок очистки, дополнительный теплообменный аппарат и вторые вспомогательный и противоточный теплообменные аппараты и далее через дроссель-эжектор подключен на вход фазового сепаратора, на выходе из которого трубопровод с жидкой фазой подключен к криогенной емкости. Верхний выход криогенной емкости и вход дроссель-эжектора соединены трубопроводом отвода пара. На выходе из второго противоточного теплообменного аппарата от трубопровода прямого потока ответвляется трубопровод дополнительного потока, который после выхода из блока сжижения через смеситель подключен на вход блока компрессии. К паровому выходу фазового сепаратора подключен трубопровод обратного потока, который при выходе из блока сжижения делится на две ветви. Первая ветвь подключена на вход блока компрессии, а вторая - на вход блока газовой электростанции. Технический результат - повышение надежности и автономности комплекса и упрощение его конструкции. 1 ил.

Группа изобретений относится к газоперерабатывающей промышленности. Комплекс сжижения природного газа содержит блоки комплексной очистки, компрессии, сжижения и блок газовой электростанции. Блок сжижения содержит модуль удаления инертных газов, дроссель-эжектор, дроссельный клапан, дроссельный вентиль, фазовый сепаратор и два противоточных теплообменных аппарата, между которыми подключен вспомогательный теплообменный аппарат, соединенный с блоком холодильной машины. На выходе из второго противоточного теплообменного аппарата от трубопровода прямого потока ответвляется трубопровод, который подключен на вход дроссельного клапана и при выходе из блока сжижения через смеситель подключен на вход блока компрессии. К выходу фазового сепаратора подключен трубопровод обратного потока, который при выходе из блока сжижения делится на две ветви: первая ветвь подключена на вход блока компрессии, а вторая ветвь - на вход блока газовой электростанции. От трубопровода обратного потока на выходе из фазового сепаратора ответвляется ветвь, подключенная на вход ректификационной колонны модуля удаления инертных газов. От трубопровода с жидкой фазой перед дроссельным вентилем ответвляется дополнительная ветвь, подключенная через конденсатор к ректификационной колонне. Технический результат - обеспечение 100% сжижения природного газа, повышение качества продукционного СПГ. 2 н.з. ф-лы, 2 ил.

Изобретение относится к сжижению природного газа на газораспределительной станции. Комплекс сжижения природного газа содержит блоки сжижения, блок энергообеспечения, блоки турбодетандер-электрогенераторов, дожимной компрессор, детандер-электрогенератор и блок хранения. Детандер-электрогенератор подключен параллельно к блоку редуцирования газораспределительной станции, а его выход подключен к входу блока энергообеспечения. Блоки сжижения смонтированы попарно в теплоизолированных кожухах и соединены между собой. Каждый блок сжижения содержит теплообменные аппараты, продукционный сепаратор и блок низкотемпературной сепарации продукционного потока. Блоки турбодетандер-электрогенераторов смонтированы попарно в отдельных кожухах, и их выходы подключены к входу блока энергообеспечения. Трубопровод подачи природного газа после блоков фильтрации, осушки и демеркуризации разделен на трубопровод детандерного потока и трубопровод продукционного потока. Трубопровод с отпарным газом подключен к выходу блока хранения и разделен на количество ветвей по количеству блоков сжижения, каждая из которых подключена на вход четырехпоточного теплообменника в соответствующем блоке сжижения. Технический результат изобретения - повышение качества сжиженного природного газа, снижение габаритов комплекса. 3 н.п. ф-лы, 3 ил.

Изобретение относится к газовой промышленности, к трубопроводному транспорту газа, в частности к способам опорожнения участков газопроводных линий от содержащегося в них газа. При реализации способа опорожнения участков трубопроводов от газа в многониточных магистральных газопроводах в одной из нитей газопровода отключают опорожняемый участок трубопровода посредством запорно-отключающих устройств. Газ из опорожняемого участка трубопровода направляют в бустер-компрессор, установленный между нитями газопровода, идущими в одном коридоре, газ в трубопроводах которых находится под разными давлениями: под более высоким и под относительно низким. Посредством распределительного устройства бустер-компрессора направляют в его приводные полости поочередно газ из трубопроводов с газом более высокого и с газом относительно низкого давления. Приводной газ для бустер-компрессора отбирают из трубопровода с газом более высокого давления. Отобранный газ из опорожняемого участка трубопровода компримируют в бустер-компрессоре и отправляют этот компримированный газ в любой другой трубопровод. Отработанный газ из привода бустер-компрессора направляют в трубопровод с газом относительно низкого давления. Технический результат - повышение экономической эффективности, упрощение и повышение экологичности процесса опорожнения участков трубопроводов от газа. 1 ил.

Изобретение относится к сжижению природного газа в условиях компрессорной станции магистрального газопровода. Система сжижения природного газа включает установку подготовки топливного и импульсного газов, газоперекачивающий агрегат с системами маслообеспечения и топливопитания, дожимающий компрессор и блок ожижения, содержащий четыре теплообменных аппарата: четырехпоточный предварительного охлаждения, двухпоточный технологического потока, трехпоточный криогенный и двухпоточный окончательного охлаждения, а также детандер-генератор, ректификационные колонны и сепараторы технологического и продукционного потоков. Система маслообеспечения и топливопитания содержит по меньшей мере два соединенных между собой последовательно газомасляных теплообменных аппарата, первый из которых подключен к системе охлаждения масла компрессора газоперекачивающего агрегата, а второй - к системе охлаждения масла двигателя газоперекачивающего агрегата. К выходу второго газомасляного теплообменного аппарата подключен охладитель смазочного масла. Перед блоком ожижения установлены управляемые клапаны с функцией отключения блока ожижения и направления потока природного газа через установку подготовки топливного и импульсного газов и, далее, через систему маслообеспечения и топливопитания на вход газоперекачивающего агрегата. Технический результат - повышение термодинамической эффективности процесса получения СПГ. 1 ил.

Изобретение относится к области машиностроения, а именно к средствам подготовки топливного газа в системе трубопроводного транспорта природного газа, и может найти применение в газовой промышленности, конкретнее в системах, обеспечивающих работу газоперекачивающих агрегатов (ГПА), установленных на компрессорных станциях (КС) магистральных газопроводов. Система топливопитания, интегрирована с системами маслообеспечения газоперекачивающих агрегатов, установленных в компрессорном цехе компрессорной станции, и содержит трубопроводы подвода, отвода топливного и импульсного газов, связывающие между собой блок очистки и осушки, подогреватель газа и блок редуцирования с регулятором давления. В блоке редуцирования к регулятору давления параллельно подсоединен детандер-генератор. Трубопровод природного газа, отбираемого из магистрального газопровода, после блока очистки и осушки и подогревателя газа разделяется на трубопровод топливного газа и трубопровод импульсного газа. Трубопровод топливного газа в блоке редуцирования разделяется на две ветви: первая ветвь подключена ко входу регулятора давления, а вторая ветвь подключена ко входу детандер-генератора, связанного электрическими цепями с потребителями электроэнергии компрессорной станции. Далее, обе ветви трубопровода топливного газа объединяются и подают топливный газ для подогрева в систему маслообеспечения одного, но не ограничиваясь этим, газоперекачивающего агрегата компрессорного цеха компрессорной станции. Каждая система маслообеспечения включает в свой состав два, но не ограничиваясь этим, соединенных между собой последовательногазомасляных теплообменника, первый из которых подключен к системе охлаждения масла компрессора газоперекачивающего агрегата, а второй подключен к системе охлаждения масла двигателя газоперекачивающего агрегата. К выходу второго газомасляного теплообменника подключен охладитель смазочного масла. В качестве греющего теплоносителя для нагрева топливного газа в газомасляных теплообменниках используется горячее масло, поступающее соответственно от компрессора газоперекачивающего агрегата и от его двигателя. Целью изобретения является повышение энергоэфективности работы газоперекачивающих агрегатов на компрессорных станциях магистральных газопроводов. 1 ил.

Изобретение относится к газовой промышленности и может найти применение на газораспределительных станциях (ГРС). В месте поступления природного газа из магистральной сети в газораспределительную сеть устанавливают бустер-компрессор с газовым приводом и с распределительным устройством. Направляют в бустер-компрессор природный газ из магистральной сети и используют этот газ одновременно в качестве приводного и компримируемого газов. В процессе работы бустер-компрессора производят компримированный природный газ и, одновременно с этим, отработанный природный газ из привода бустер-компрессора направляют потребителям в газораспределительную сеть. Ко входу распределительного устройства бустер-компрессора подключают двухпоточный теплообменный аппарат. Поток природного газа направляют в двухпоточный теплообменный аппарат, в котором подогревают этот поток перед подачей в распределительное устройство и газовый привод бустер-компрессора за счет рекуперации тепла адиабатического сжатия компримированного в бустер-компрессоре природного газа. Техническим результатом изобретения является повышение надежности работы бустер-компрессора. 2 н.п. ф-лы, 1 ил.

Изобретение относится к газовой промышленности. Комплекс сжижения природного газа на газораспределительных станциях (ГРС) подключен к магистральному газопроводу и содержит криогенный блок, исполненный в виде соединенных между собой блоков сжижения с возможностью отключения и/или подключения этих блоков. Комплекс также содержит блоки фильтрации, осушки, демеркуризации и очистки газа, блоки турбодетандер-электрогенераторов и энергообеспечения, блок возврата паров и блок хранения. Трубопровод подачи природного газа после прохождения блоков фильтрации, осушки и демеркуризации разделен на два: трубопровод продукционного потока и трубопровод детандерного потока. Криогенный блок состоит из трех блоков сжижения, каждый из которых содержит теплообменные аппараты, продукционный сепаратор и блок низкотемпературной сепарации продукционного потока природного газа. Все блоки турбодетандер-электрогенераторов подключены к входам блока энергообеспечения, а их количество соответствует количеству блоков сжижения в криогенном блоке. Технический результат изобретения – повышение надежности и повышение качества сжиженного природного газа. 1 ил.

Изобретение относится к области турбомашиностроения и может найти применение в газовой промышленности для компримирования природного газа на компрессорных станциях (КС) магистральных газопроводов. Изобретение может использоваться как при реконструкции работающих газоперекачивающих агрегатов КС, так и при производстве новых газоперекачивающих агрегатов. К выхлопной системе газотурбинного двигателя газоперекачивающего агрегата посредством теплообменника-испарителя, расположенного в соосно с выхлопной трубой, подключена установка, состоящая из органического цикла Ренкина (ОЦР), для преобразования тепла продуктов сгорания. Теплообменник-испаритель установлен с возможностью беспрепятственного пропускания продуктов сгорания через свободное сечение вдоль оси выхлопной трубы, а его теплообменные поверхности в соответствии с вариантами изобретения расположены снаружи и/или внутри выхлопной трубы, по ее окружности, одновременно с этим, газомасляные теплообменники блока подготовки топливного газа последовательно соединены по тракту топливного газа, а между ними с последовательным подключением к ним установлен детандер-генератор с функцией редуцирования газа, при этом один из газомасляных теплообменников подключен к системе маслообеспечения газотурбинного двигателя, а второй подключен к системе маслообеспечения нагнетателя газоперекачивающего агрегата. Изобретение позволяет создать агрегат имеющий вышенный кпд газотурбинной установки. 3 н.п ф-ы, 4 ил.

Изобретение относится к области машиностроения и теплотехники и может найти применение при разработке или модернизации газоперекачивающих агрегатов с газотурбинными установками. При реализации данного способа подогрева топливного газа одновременно обеспечивают дополнительный подогрев топливного газа и полное энергоснабжение газоперекачивающего агрегата. Для этого к выхлопной системе газотурбинного двигателя газоперекачивающего агрегата подключают установку, состоящую из органического цикла Ренкина (ОЦР). Теплообменник-экономайзер установки ОЦР выполняют трехпоточным. Отбирают поток топливного газа из магистрального газопровода, фильтруют и направляют на нагрев в блок с газомасляными теплообменниками для подготовки топливного газа, где поочередно: нагревают поток топливного газа в первом газомасляном теплообменнике горячим маслом, отбираемым от нагнетателя газоперекачивающего агрегата, редуцируют в детандере, нагревают во втором газомасляном теплообменнике горячим маслом, отбираемым от газотурбинного двигателя газоперекачивающего агрегата, и нагревают в теплообменнике-экономайзере ОЦР горячим органическим теплоносителем. Завершая подогрев потока топливного газа, направляют его в топливную систему газотурбинного двигателя газоперекачивающего агрегата. Устанавливают электрическую связь с генератором детандера и с турбиной ОЦР и направляют электрическую энергию на энергоснабжение газоперекачивающего агрегата, при этом регулируют количество производимой электроэнергии, изменяя площадь теплообменных поверхностей теплообменника-испарителя ОЦР. Изобретение позволяет повысить энергоэффективность процессов производства компримированного природного газа. 1 ил.

Изобретение относится к технологиям производства сжиженного природного газа (СПГ). Способ производства СПГ включает разделение потока природного газа на технологический и продукционный потоки, расширение технологического потока газа и возвращение его обратным потоком с охлаждением продукционного потока газа, дросселирование продукционного потока газа после его охлаждения, разделение полученной парожидкостной смеси на паровую и жидкостную фазы с последующим направлением в обратный поток несконденсировавшегося природного газа. Процесс сжижения организуют на компрессорной станции магистрального газопровода. Замыкая цикл сжижения, сжимают обратный поток в компрессоре цикла и возвращают сжатый природный газ в цикл. Перед разделением потока в цикле сжижения поток охлаждают в предварительном теплообменнике. Пополняя цикл, отбирают дополнительный поток природного газа от компрессора газоперекачивающего агрегата, расширяют и направляют в дополнительный теплообменник на охлаждение технологического потока, после чего пропускают через предварительный теплообменник и направляют в цикл сжижения. Техническим результатом изобретения является снижение удельных энергозатрат на единицу продукта, повышение термодинамической эффективности цикла сжижения. 1 ил.

Изобретение относится к газовой промышленности, а именно к компримированию природного газа на газораспределительных станциях (ГРС). Система содержит бустер-компрессор, детандер, аппарат воздушного охлаждения и теплообменник. Вход бустер-компрессора подключен к магистральному газопроводу и природный газ двумя потоками направляется в бустер-компрессор для компримирования и для обеспечения работы его привода. На двух выходах бустер-компрессора формируются линии выхода природного газа, по первой из которых выходит произведенный компримированный природный газ через аппарат воздушного охлаждения и теплообменник для подачи в системы производства сжиженного природного газа. Одновременно с этим, по второй линии отработанный в приводе бустер-компрессора природный газ направляется через детандер и теплообменник первой линии потребителям в газораспределительную сеть. Техническим результатом является повышение эффективности производства компримированного природного газа. 1 ил.

Изобретение относится к газовой промышленности, конкретно к технологиям производства сжиженного природного газа (СПГ) на газораспределительных станциях (ГРС). Комплекс сжижения природного газа на ГРС подключен к магистральному газопроводу и исполнен в виде соединенных между собой функциональных блоков, содержит блоки фильтрации, осушки, демеркуризации и очистки газа, криогенный блок, блоки энергообеспечения, турбоэлектрогенератора и турбодетандер-компрессорного аппарата, а также блок возврата паров и блок хранения. Трубопровод подачи природного газа после прохождения блоков фильтрации, осушки и демеркуризации разделен на два: трубопровод продукционного потока и трубопровод детандерного потока. Криогенный блок состоит из двух блоков сжижения: первого и второго, содержащих теплообменные аппараты, продукционный сепаратор и блоки низкотемпературной сепарации детандерного и/или продукционного потоков природного газа. Блоки низкотемпературной сепарации предназначены для ограничения концентрации тяжелых углеводородов как в продукционном потоке природного газа, так и в детандерном. Технический результат изобретения - повышение качества СПГ при увеличении его производительности. 1 ил.

Изобретение относится к области машиностроения и теплотехники, а именно к средствам подготовки топливного газа. Агрегатный газомасляный блок (АГМБ) расположен в отдельном транспортабельном каркасе и содержит блоки фильтрации газа, замера расхода газа, два подключенных между собой последовательно газомасляных теплообменника и дополнительный газомасляный теплообменник для подогрева пускового газа. Между последовательно соединенными газомасляными теплообменниками установлен детандер-генератор с функцией редуцирования газа. Как вариант, АГМБ содержит блоки фильтрации газа, замера расхода газа, два подключенных между собой последовательно газомасляных теплообменника и дополнительный газомасляный теплообменник для подогрева пускового газа. Между последовательно соединенными газомасляными теплообменниками установлен детандер-генератор с функцией редуцирования газа. Одновременно и дополнительно, к выходу газомасляного теплообменника, использующего в качестве греющего теплоносителя горячее масло газотурбинного привода ГПА, последовательно подключен электронагреватель топливного газа. Технический результат – повышение КПД ГПА. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области теплоэнергетики, конкретно к применению природного газа в средствах выработки энергии и холода за счет использования перепада давления природного газа на газораспределительных станциях (ГРС). Установка для комбинированного электро- и хладоснабжения на ГРС смонтирована между газопроводом высокого давления и газопроводом низкого давления и содержит основную линию подачи природного газа на детандер, кинематически соединенный с электрогенератором, блок осушки, установленный перед детандером, и теплообменник, вход которого подключен к выходу детандера. Установка содержит основной подогреватель газа, подключенный в линии газопровода высокого давления перед блоком осушки, и дополнительную линию подачи природного газа, которая проходит от второго выхода основного подогревателя газа через регулятор давления и соединяется с основной линией подачи природного газа в газопроводе низкого давления, при этом к выходу теплообменника подсоединен дополнительный подогреватель газа с регулятором для регулирования температуры газа, направляемого в газопровод низкого давления, а теплообменник соединен трубопроводами подвода и отвода хладоносителя с потребителем холода. Целью изобретения являются повышение экономической эффективности утилизации потенциальной энергии природного газа на ГРС, упрощение конструкции установки для такой утилизации. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области сжижения газов и может быть использовано при переработке природного газа на газораспределительной станции (ГРС). Отбираемый из магистрального газопровода природный газ, осушенный и очищенный от примесей, разделяют на три потока, которые одновременно направляют: первый поток как продукционный - на сжижение, второй и третий как вспомогательные - на обеспечение электроэнергией и хладагентами агрегатов прохождения продукционного потока. Вспомогательные потоки газа направляют соответственно в основной и вспомогательный детандеры, расширяют и пропускают в качестве охладителей через теплообменники и далее с выровненными значениями температуры и давления объединяют в один поток для направления потребителю. Газ продукционного потока охлаждают до температуры минус 50÷70°С, переохлаждают газообразным хладагентом до температуры минус 100÷120°С, направляют в теплообменник сжижения, дросселируют переохлажденный поток от сверхкритических давлений до 2÷8 бар и получают переохлажденный сжиженный природный газ для использования. Организуют замкнутый цикл прохождения газообразного хладагента. Технический результат - получение на ГРС 100% сжижения потока природного газа при исключении энергетических затрат. 2 н.п. ф-лы, 1 ил.

Изобретение относится к газовой промышленности, конкретно к технологиям производства компримированного природного газа, и может найти применение на газораспределительных станциях (ГРС). Способ производства компримированного природного газа на газораспределительной станции, при котором в месте поступления природного газа из магистральной сети в газораспределительную сеть устанавливают бустер-компрессор с газовым приводом, направляют в бустер-компрессор природный газ из магистральной сети и используют этот газ одновременно в качестве приводного и компримируемого газов. В процессе работы бустер-компрессора производят компримированный природный газ для технологических нужд и, одновременно с этим, отработанный природный газ из привода бустер-компрессора направляют потребителям в газораспределительную сеть. Изобретение направлено на повышение энергетической эффективности процессов производства компримированного природного газа на ГРС. 2 н.п. ф-лы, 1 ил.

Группа изобретений относится к газовой промышленности, а именно, к технологиям производства сжиженного природного газа и компримированного природного газа на газораспределительных станциях. Способ производства сжиженного природного газа и компримированного природного газа на газораспределительной станции (ГРС), энергонезависимый, при котором одновременно производят сжиженный и компримированный природный газ. Природный газ отбирают из магистрального газопровода, разделяют на два потока: первый поток направляют на ожижение природного газа и, одновременно с этим, второй поток направляют на компримирование природного газа. Второй поток пропускают поочередно через второй компрессор и аппарат воздушного охлаждения. Одновременно с этим, первый поток на ожижение фильтруют, очищают в адсорбере, охлаждают в по меньшей мере одном теплообменнике и разделяют на два потока: технологический и продукционный. Технологический поток направляют на детандер, с генератором которого устанавливают электрическую связь двигателей первого компрессора, который используют при ожижении продукционного потока входящего первого потока газа, и второго компрессора, который используют при компримировании входящего второго потока газа, а также двигателей вентиляторов аппаратов воздушного охлаждения. Продукционный поток пропускают через первый компрессор, охлаждают в аппарате воздушного охлаждения, затем дополнительно охлаждают в по меньшей мере одном теплообменнике и пропускают через дроссель для получения парожидкостной смеси. От нее отделяют жидкую фазу и, завершая проход продукционного потока, направляют ее для скачивания потребителю сжиженного природного газа. Из паровой фазы формируют обратный поток, направляют его через теплообменники продукционного потока, соединив с выходящим после детандера расширенным и низкотемпературным технологическим потоком. Комплекс для реализации способа включает в себя две линии. Первая линия подачи природного газа содержит блок фильтрации, адсорбер, теплообменник и разделяется на технологическую, продукционную и обратную линии. Продукционная линия содержит первый компрессор, аппарат воздушного охлаждения и по меньшей мере один теплообменник, дроссель, сепаратор и соединена с хранилищем сжиженного природного газа. Обратная линия берет начало в сепараторе, проходит через теплообменники продукционной линии и соединена на выходе с газораспределительной сетью. Технологическая линия содержит детандер и подключена к обратной линии, одновременно с этим вторая линия подачи природного газа содержит второй компрессор, аппарат воздушного охлаждения и соединена с потребителями компримированного природного газа, а генератор детандера связан посредством электрической связи с двигателями первого и второго компрессоров, а также с двигателями вентиляторов аппаратов воздушного охлаждения. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к области машиностроения и теплотехники и может быть использовано в газотурбинных приводах газоперекачивающих агрегатов для разогрева газоперекачивающих агрегатов. Газоперекачивающий агрегат содержит компрессор, газотурбинный привод, газомасляный теплообменник, контуры системы смазки и охлаждения подшипников газотурбинного привода и контур системы подачи топливного газа в камеру сгорания газотурбинного привода, маслобак с установленным в нем нагревателем масла и датчиками контроля температуры масла. Способ включает нагрев масла в маслобаке, подачу его в газомасляный теплообменник для нагрева топливного газа, который при запуске агрегата направляют в камеру сгорания газотурбинного привода, при этом предварительно осуществляют предпусковой нагрев до температур 30°C÷60°C газомасляного теплообменника с помощью установленных и неподвижно закрепленных на всей его внешней поверхности электрических нагревателей и с одновременным использованием нагретого в маслобаке масла, при этом в пусковом режиме в разогретый газомасляный теплообменник с циркулирующим горячим маслом поочередно для нагрева подают холодный пусковой газ, а при переходе на рабочий режим нагревают и основной поток холодного топливного газа, после чего нагретый топливный газ направляют в модуль редуцирования для придания ему необходимых для запуска агрегата температуры и давления и направления его далее в камеру сгорания газотурбинного привода. Изобретение позволяет сократить время запуска при низких температурах окружающей среды и снизить металлоемкость оборудования. 1 ил.

Изобретение относится к области машиностроения. Система нагрева топливного газа с когенерационной установкой, в которой когенерационная установка подключена к блоку управления, соединена трубопроводами подвода и отвода топливного газа с агрегатным блоком подготовки топливного газа (АБПТГ) и двигателем газоперекачивающего агрегата (ГПА) и содержит в своей конструкции два последовательно подключенных теплообменника: газомасляный теплообменник (ГМТ) и теплообменник-утилизатор тепла выхлопных газов (ТУВГ), в которых греющими теплоносителями выступают соответственно горячее масло и выхлопные газы газотурбинного двигателя когенерационной установки. Одновременно, в систему подогрева природного газа АБПТГ подключен дополнительный газомасляный теплообменник, в котором греющим теплоносителем выступает горячее масло двигателя ГПА, а к ТУВГ подключен остаточный теплообменник-утилизатор, посредством которого оставшееся тепло выхлопных газов когенерационной установки, прошедших через ТУВГ и нагревших топливный газ, направляется на отопление помещения. В трубопроводе топливного газа перед входом нагретого топливного газа в двигатель ГПА смонтирован и подключен к когенерационной установке как минимум один взрывозащищенный трубчатый электронагреватель для дополнительного электроподогрева топливного газа. Электроэнергия, вырабатываемая когенерационной установкой, направляется дополнительно для работы как минимум одного вентилятора аппарата воздушного охлаждения газа и как минимум одного электрического калорифера. Изобретение позволяет повысить эффективность работы системы. 2 з.п. ф-лы, 1 ил.

Изобретение относится к вентиляторным установкам регулируемой производительности. Система управления аппаратами воздушного охлаждения содержит регуляторы, датчики температуры, вентиляторы и теплообменники в аппаратах воздушного охлаждения, а также входной коллектор и выходной коллектор для охлаждаемой среды. В систему дополнительно введены датчик температуры охлаждаемой среды, установленный на входном коллекторе, датчик температуры охлажденной среды, установленный на выходном коллекторе, и администратор верхнего уровня, электрически связанный со всеми аппаратами воздушного охлаждения системы, а также с датчиками температур охлаждаемой среды и охлажденной среды, установленными на входном и выходном коллекторах. Администратор верхнего уровня включается в работу системы исключительно в случае планового или аварийного отключения одного или нескольких аппаратов воздушного охлаждения. Изобретение направлено на надежное обеспечение отказоустойчивости системы, упрощение ее аппаратного оформления. 1 з.п. ф-лы, 1 ил.

Способ и аппарат предназначены для регулируемого охлаждения масла в газотурбинных установках газоперекачивающих агрегатов, в аппаратах воздушного охлаждения масла или масловоздушной смеси. Для первой системы регулирования измеряют температуру охлаждаемых масла или масловоздушной смеси и с помощью электрической связи передают ее значение на микропроцессорный регулятор, изменяя частоту вращения рабочих колес группы верхних вентиляторов аппарата воздушного охлаждения. Для второй рециркуляционной системы регулирования измеряют температуру воздушного потока, поступающего на вход охладителя, изменяя по ее значениям, по необходимости, частоту вращения рабочих колес группы нижних рециркуляционных вентиляторов. При помощи регулирующих механизмов управляют верхними и нижними воздушными клапанами охладителя, заслонками канала рециркуляции, выходными заслонками групп нижних и верхних вентиляторов аппарата воздушного охлаждения. Технический результат - эффективное поддержание температуры охлаждаемых масла или масловоздушной смеси на заданном уровне, исключение их застывания в масляных каналах теплообменных секций при низких температурах окружающей среды. 2 н.п. ф-лы, 1 ил.

Изобретение относится к вентиляторным установкам регулируемой производительности

Изобретение относится к области энергетики

Изобретение относится к энергетическому машиностроению и может быть использовано при создании турбин для газовой промышленности

Изобретение относится к теплотехнике и может найти применение в газотурбинных установках газоперекачивающих агрегатов

Изобретение относится к охлаждающим устройствам, в которых хладагентом является воздух, и может быть использовано в аппаратах воздушного охлаждения масла

 


Наверх