Коммутационная плата на нитриде алюминия для силовых и мощных свч полупроводниковых устройств, монтируемая на основании корпуса прибора

Использование: для высокомощных силовых и СВЧ полупроводниковых устройств. Сущность изобретения заключается в том, что коммутационная плата содержит пластину из нитрида алюминия со сквозными отверстиями, сформированными лазерной микрообработкой, металлизированные отверстия и металлический топологический рисунок из системы металлов толщиной от 3 до 300 мкм с защитным слоем из химического никеля и золота, сформированные методами вакуумного напыления, гальванического осаждения, травления через пленочный фоторезист, при этом на коммутационной плате выполнена толстая двусторонняя металлизация до 300 мкм, паяльная маска с окнами, двусторонний слой припоя в открытых окнах паяльной маски и дополнительный слой припоя в местах крепления мощных навесных элементов и монтажа платы к основанию корпуса прибора, обеспечивающие в совокупности с металлизированными отверстиями отведение тепла в плату и от платы в корпус, а выполнение металлизированных отверстий обеспечивает монтаж высокой плотности за счет двухуровневой разводки металлического топологического рисунка. Технический результат: обеспечение возможности улучшения теплоотвода от радиоэлементов и токоведущих дорожек, расположенных на коммутационной плате. 1 з.п. ф-лы, 1 ил.

 

Коммутационная плата на нитриде алюминия для силовых
и мощных СВЧ полупроводниковых устройств, монтируемая
на основании корпуса прибора.

Заявленное изобретение относится к конструкции и технологии изготовления коммутирующих керамических плат на основе нитрида алюминия для высокомощных силовых и СВЧ полупроводниковых устройств.

Из уровня техники известна металлизированная керамическая подложка для электронных силовых модулей и способ металлизации керамики патент (RU 2490237, опубл. 20.08.2013). Металлизированная керамическая подложка для электронных силовых модулей содержит керамическую пластину из оксида или нитрида алюминия, на которой сверху и снизу размещены адгезионные слои на основе молибдена и марганца, слои порошкообразной меди и пластины медной фольги. Пластины медной фольги, слои порошкообразной меди и адгезионные слои могут иметь единый топологический рисунок. Для выполнения металлизации после нанесения на керамическую пластину адгезионных слоев проводят их вжигание при температуре 1320-1350°C. Слои порошкообразной меди наносят методом холодного газодинамического напыления. Затем проводят отжиг при температуре 900-1100°C. На слои порошкообразной меди устанавливают пластины медной фольги толщиной 100-700 мкм и проводят отжиг при температуре 850-1000°C. Отжиг может проводиться под давлением 0,7-1,6кгс/мм2 в среде водорода или в вакууме. Для обеспечения необходимого давления во время отжига подложка может быть помещена в специальную фиксирующую оправку.

Недостатком указанного аналога является сложность технологического процесса монтажа, недостаточная плотность монтируемых элементов, связанная с отсутствием переходных проводящих отверстий.

Из уровня техники известна, выбранная в качестве наиболее близкого аналога керамическая плата (JP2000058995A, опубл. 25.02.2000), содержащая вертикальное сквозное отверстие, образованное в керамической печатной плате из оксида или нитрида алюминия. Проводник сквозного отверстия, который образован в отверстии, состоит из металлизированного слоя основания, который отпечатан на внутренней периферийной поверхности отверстия и покрыт слоем, сформированным на поверхности металлизированного слоя, Металлизированный слой формируется путем печати W или Mo проводящей пасты на внутренней периферийной поверхности. Защитный слой образован путем покрытия поверхности металлизированного слоя с помощью Cu или Ag. Схема проводки, сформированная на поверхности пластины, также имеет двухслойную структуру из металлизированного слоя основания и позолоченного слоя.

Недостатком указанного в качестве наиболее близкого аналога устройства является то, что данные устройства невозможно использовать во вторичных источниках питания, поскольку у них недостаточно низкое тепловое сопротивление.

Техническим результатом заявленного изобретения является улучшение теплоотвода от радиоэлементов и токоведущих дорожек, расположенных на коммутационной плате и повышение плотности коммутации.

Заявленный технический результат достигается за счет создания коммутационной платы на нитриде алюминия для высокомощных силовых и СВЧ полупроводниковых устройств, монтируемой на основание корпуса прибора, содержащей пластину из нитрида алюминия со сквозными отверстиями, сформированными лазерной микрообработкой, металлизированные отверстия и металлический топологический рисунок из системы металлов толщиной от 3 до 300 мкм с защитным слоем из химического никеля и золота, сформированные методами вакуумного напыления, гальванического осаждения, травления через пленочный фоторезист, при этом на коммутационной плате выполнена толстая двусторонняя металлизация до 300 мкм, паяльная маска с окнами, двусторонний слой припоя в открытых окнах паяльной маски, и дополнительный слой припоя в местах крепления мощных навесных элементов и монтажа платы к основанию корпуса прибора, обеспечивающие в совокупности с металлизированными отверстиями отведения тепла в плату и от платы в корпус, а выполнение металлизированных отверстий обеспечивает монтаж высокой плотности за счет двухуровневой разводки металлического топологического рисунка.

Заявленное изобретение проиллюстрирована фигурой 1 на которой изображена коммутационная плата.

На фиг.1 позиции обозначают следующее:

1 - пластина из нитрида алюминия;

2 - сквозные отверстия;

3 - медный слой металлизации;

4 - защитный слой;

5 - паяльная маска;

6 - навесной элемент;

7 - слой припоя;

8 - прибор, на котором монтируется коммутационная плата.

Заявлена конструкция двухсторонней коммутации платы из нитрида алюминия, имеющая повышенный коэффициент теплопроводности, для монтажа высокомощных силовых и СВЧ полупроводниковых устройств. Плата монтируется на основании корпуса прибора.

Плата изготавливается следующим образом. На пластину из нитрида алюминия со сформированными методом лазерной микрообработки сквозными отверстиями, формировали двусторонний медный слой металлизации, сформированный вакуумным напылением и гальваническим осаждением 3-300 мкм меди. Топологический рисунок формировали травлением с помощью пленочной фоторезистивной маски. Далее формировали на медном топологическом рисунке защитный слой из химического никеля и золота. Двустороннюю паяльную маску с окнами под навесные элементы и места для крепления к основанию корпуса, формировали методом офсетной печати. Припой наносили методом окунания. Далее проводили монтаж элементов и припайку платы в основании корпуса. В окнах паяльной маски на нижней стороне платы под высокомощными навесными элементами и в точках крепления к основанию корпуса размещен слой припоя для соединения коммутационной платы с прибором, а также для дополнительного теплоотвода от теплонагруженных элементов.

Преимущество изготовления плат из нитрида алюминия вместо стеклотекстолита связано с сочетанием у этого материала его физикомеханических и электрических свойств, хорошая адгезия металлизации к подложке, высокая теплопроводность (> 170 Вт/м*К), диэлектрическая проницаемость (8,7), диэлектрические потери (3*10-4), хорошие электроизоляционные свойства (>109 Ом) и коэффициент теплового расширения (4.5·10–6 °С–1 при нагреве от 20 до 1000 °C). Данные параметры позволяют надежно изолировать токопроводящие шины и эффективно отводить тепло от активных радиоэлементов.

В качестве примера изготовления можно привести следующий технологический маршрут изготовления платы для вторичных источников питания. На коммутационной плате со сформированными методами лазерной микрообработки отверстиями методами магнетронного напыления и гальваники наносился слой меди толщиной 100 мкм и формировались переходные проводящие отверстия. Процесс травления меди в хлорном железе проводился по маске пленочного фоторезиста марки ordyl am-140. Далее на сформированный рисунок проводников и металлизированных отверстий наносились слои химического никеля (4-6) мкм и химического золота 0, 1 мкм. Далее на подложку наносили паяльную маску peters elpemer 2467, методом офсетной печати. После формировался рисунок в паяльной маске. Затем в окна паяльной маски методом окунания в расплав наносился припой ПОС 61.

Таким образом, созданием заявленной коммутационной платы достигается основная задача, актуальная для силовых и мощных СВЧ модулей, а именно теплоотвод от радиоэлементов и токоведущих дорожек, расположенных на коммутационной плате. Радиоэлектронная аппаратура, в том числе современная приемо-передающие модули, блоки цифровой обработки сигналов и т.д., предъявляет жесткие требования к параметрам электрического сигнала. Поэтому в большинстве случаев необходимо проведение преобразования электрической энергии от первичного источника (аккумуляторные батареи, топливные элементы и т.д.). Эту роль выполняют высокомощных силовых полупроводниковых устройств, состоящие из нескольких функциональных узлов, обеспечивающих стабильность требуемых значений питающих напряжений, постоянных и переменных токов, электроизоляцию цепей питания друг от друга, эффективное подавление пульсаций во вторичных питающих цепях постоянного тока и т.п. Основные требования к современным источникам вторичного электропитания это стабильность выходных параметров, малые массогабаритные характеристики, большой срок безотказной работы и высокая надежность.

1. Коммутационная плата на нитриде алюминия для высокомощных силовых и СВЧ полупроводниковых устройств, монтируемая на основание корпуса прибора, содержащая пластину из нитрида алюминия со сквозными отверстиями, сформированными лазерной микрообработкой, металлизированные отверстия и металлический топологический рисунок из системы металлов толщиной от 3 до 300 мкм с защитным слоем из химического никеля и золота, сформированные методами вакуумного напыления, гальванического осаждения, травления через пленочный фоторезист, отличающаяся тем, что на коммутационной плате выполнена толстая двусторонняя металлизация до 300 мкм, паяльная маска с окнами, двусторонний слой припоя в открытых окнах паяльной маски и дополнительный слой припоя в местах крепления мощных навесных элементов и монтажа платы к основанию корпуса, обеспечивающие в совокупности с металлизированными отверстиями отведение тепла в плату и от платы в корпус, а выполнение металлизированных отверстий обеспечивает монтаж высокой плотности за счет двухуровневой разводки металлического топологического рисунка.

2. Коммутационная плата по п.1, отличающаяся тем, что в паяльной маске дополнительно выполнены окна для точек монтажа с нанесенным на них припоем.



 

Похожие патенты:

Настоящее изобретение касается аммиачных композиций, включающих в себя по меньшей мере одно гидроксоцинковое соединение и по меньшей мере два соединения элементов 3-й главной подгруппы.

Изобретение относится к контрольно-измерительной технике. .
Изобретение относится к способам резки хрупких неметаллических материалов, в частности к способам электроискровой резки полупроводниковых пластин типа (BixSb1-x)2(Te ySe1-y)3, обладающих низкой электропроводностью (порядка 1000 Ом·см-1).

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в микроэлектромеханических системах в качестве датчиков, при производстве конденсаторов и индуктивностей для средств сотовой телефонной связи, а также для оптической волоконной связи на матричных полупроводниковых лазерах.

Изобретение относится к технологии производства компонентов электронной техники, в частности полупроводниковых тензорезисторов, и может быть использовано при изготовлении датчиков механических величин.

Изобретение относится к измерительной технике и может быть использовано приизгот'овлении полупроводниковых преобразователей механических величин. .

Изобретение относится к электронной технике и предназначено для создания дискретных полупроводниковых приборов и сверхбыстродействующих интегральных схем. .
Наверх