Полупроводниковый датчик диоксида азота

Изобретение относится к области газового анализа и может быть использовано для решения задач экологического контроля. Предложен полупроводниковый датчик диоксида азота, состоящий из полупроводникового основания, выполненного в виде поликристаллической пленки селенида цинка (ZnSe), которая нанесена на непроводящую подложку. Выполненный согласно изобретению датчик при существенном упрощении технологии его изготовления позволяет определять содержание диоксида азота с чувствительностью, в несколько раз превышающей чувствительность известных датчиков. 2 ил.

 

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей диоксида азота (NO2). Изобретение может быть использовано для решения задач экологического контроля.

Известен датчик (детектор) по теплопроводности, действие которого основано на различии между теплопроводностью паров вещества и газа-носителя (Вяхирев Д.А., Шушукова А.Ф. Руководство по газовой хроматографии. М.: Высш. школа, 1987. - 287 с). Однако, чувствительность такого датчика (детектора) ограничивается на вещества с теплопроводностью, близкой к теплопроводности газа-носителя. Например, при использовании этого датчика для анализа диоксида азота точность определения невысока.

Известен также датчик (сенсор) диоксида азота, состоящий из подложки, выполненной из поликристаллического Al2O3, чувствительного слоя в виде тонкой пленки из нанокристаллического диоксида олова, в который дополнительно введены наночастицы оксида никеля и золота, и платиновых электродов (Патент RU№ 2464554 М. кл. G01N 27/12, опубл. 20.10.2012). Газовый сенсор для индикации диоксида азота/А.М. Гаськов, М.Н. Румянцева, 2012), позволяющий определять содержание диоксида азота с большей чувствительностью, но имеющий ряд недостатков.

Недостатками известного устройства являются низкая селективность по отношению к NO2 (проявляет чувствительность и к СО), сложность конструкции, относительно высокая (по сравнению с комнатной) рабочая температура (125-200 °С), использование драгоценных металлов (Au, Pt), длительность и трудоемкость (сложность) его изготовления: формирование пленки чувствительного элемента происходит в несколько стадий, включая получение геля оловянной кислоты, промывку и сушку, модификацию поверхности диоксида олова золотом и оксидом никеля, сушку и последующую прокалку в температурном режиме: 80°С - 24 ч., 120°С - 10 ч., 160°С - 10 ч., 200°С - 10 ч., 300°С - 10 ч. и 350°С - 24 ч., нанесение платиновых электродов. Осуществление такого способа изготовления газового сенсора, отличающегося многостадийностью технологических операций, сопряжено с большими временными затратами.

Ближайшим техническим решением к изобретению (прототипом) (патент RU №2437087, опубл.20.12.2011г.) является газовый датчик, состоящий из полупроводникового основания, выполненного из поликристаллической пленки антимонида индия, легированного сульфидом кадмия, и подложки, которой служит электродная площадка пьезокварцевого резонатора.

Недостатками такого устройства является его недостаточная чувствительность при контроле микропримесей диоксида азота. Кроме того, конструкция устройства предусматривает в процессе его изготовления разработки специальной технологии, режима, программы температурного контроля и сам процесс легирования антимонида индия; операции напыления металлических электродов и прямых адсорбционных измерений.

Техническим результатом изобретения является создание датчика, характеризующегося повышенной чувствительностью и технологичностью его изготовления.

Указанный технический результат достигается тем, что в известном газовом датчике, содержащем полупроводниковое основание, нанесенное на электродную площадку пьезокварцевого резонатора, согласно изобретению, полупроводниковое основание выполнено в виде поликристаллической пленки селенида цинка, нанесенной на непроводящую подложку.

Сущность изобретения поясняется чертежом и таблицей, где представлены:

на фиг. 1 - конструкция заявляемого датчика;

на фиг. 2 - градуировочная кривая зависимости изменения pH изоэлектического состояния поверхности (∆pHизо) полупроводникового основания в процессе адсорбции при комнатной температуре от начального давления NO2 (PNO2);

в таблице - данные по влиянию диоксида азота на pH изоэлектрического состояния поверхности (∆pHизо) селенида цинка.

Таблица демонстрирует заметное влияние диоксида азота на pHизо поверхности полупроводникового основания - поликристаллической пленки селенида цинка, а градуировочная кривая наглядно указывает на высокую чувствительность полупроводникового основания к диоксиду азота.

Датчик состоит из полупроводникового основания 1, выполненного в виде поликристаллической пленки ZnSe, и непроводящей подложки 2 (фиг.1).

Принцип работы такого датчика основан на адсорбционно-десорбционных процессах, протекающих на полупроводниковой пленке, нанесенной на непроводящую подложку, и вызывающих изменение pH изоэлектрического состояния и, соответственно, силы активных центров ее поверхности.

Работа датчика осуществляется следующим образом.

Датчик помещают в находящуюся при комнатной температуре камеру (ею может быть обычная стеклянная трубка), через которую пропускают (или в которой выдерживают) анализируемый на содержание диоксида азота газ. При контакте пропускаемого газа с поверхностью полупроводниковой пленки ZnSe происходит избирательная адсорбция молекул NO2 и изменение pH изоэлектрического состояния поверхности. С помощью градуировочных кривых можно определить содержание диоксида азота в исследуемой среде.

Из анализа приведенной на фиг. 2. типичной градуировочной кривой, полученной с помощью заявляемого датчика и выражающей зависимость ∆pHизо от содержания диоксида азота (PNO2), следует: заявляемый датчик при существенном упрощении технологии его изготовления позволяет определять содержание диоксида азота с чувствительностью, в несколько раз превышающей чувствительность известных датчиков. Существенное упрощение технологии изготовления датчика обусловлено исключением разработки специальной технологии, режима, программы температурного контроля, самого процесса легирования полупроводникового основания, а также исключением операций нанесения на полупроводниковое основание металлических электродов и трудоемких измерений адсорбции.

Малые габариты устройства (рабочий объем менее 0,2 см3) в сочетании с малой массой пленки - адсорбента позволяют снизить постоянную датчика по времени до 10-20 мс.

Конструкция заявляемого датчика позволяет также улучшить и другие характеристики: быстродействие, регенерируемость, способность работать не только в статическом, но и динамическом режиме.

Таблица

Значения pH изоэлектрического состояния поверхности селенида цинка при различной обработке поверхности

Таблица

Значения pH изоэлектрического состояния (рНизо) поверхности селенида
цинка
Экспонирование на воздухе Обработка аргоном Экспонирование в диоксиде азота
8,20 7,95 4,50

Полупроводниковый датчик диоксида азота, содержащий полупроводниковое основание, нанесенное на непроводящую подложку, отличающийся тем, что полупроводниковое основание выполнено из поликристаллической пленки селенида цинка.



 

Похожие патенты:

Изобретение относится к медицине и может быть использовано для дифференциальной диагностики жировой болезни печени алкогольного и неалкогольного генеза. Для этого на суспензию эритроцитов пациента воздействуют неоднородным переменным электрическим полем.

Изобретение относится к измерительной технике и может быть использовано при мониторинге человека на опорной конструкции. Представлены сенсорное устройство и способ мониторинга человека сенсорным устройством, которое содержит измерительную электронику и сенсорную структуру (100), которые могут быть установлены на опорную конструкцию.

Изобретение относится к области анализа небиологических материалов путем электрофореза. В способе оценки константы диссоциации органических соединений методом капиллярного электрофореза с использованием ультрафиолетового (УФ) детектирования путем определения зависимости эффективной подвижности исследуемого органического соединения по отношению к маркеру от рН среды, выбора двух различных электролитических систем с разными значениями рН, в которых эффективные подвижности различаются значительно, и расчета значения константы диссоциации pK, при этом согласно изобретению растворители, полярный ацетон или неполярный бензол, одновременно используют в качестве маркера электроосмотического потока и растворителя анализируемого соединения.

Изобретение относится к газовому анализу, а именно к изготовлению датчиков контроля содержания оксидов азота в воздухе. Способ получения электропроводящей полимерной пленки поли-N,N-диметил-3,4-диметиленпирролиданий цианида (ПДМПЦ) на поверхности диэлектрической подложки с закрепленными контактами включает формирование слоя ПДМПЦ на поверхности диэлектрической подложки вытягиванием подложки в горизонтальном положении из водного раствора взаимодействующих компонентов: полимера, представляющего собой поли-N,N-диметил-3,4-диметиленпирролидиний хлорид (ПДМПХ), и модификатора, представляющего собой нитропруссид натрия (Na2[Fe(CN)5NO]).

Настоящая группа изобретений относится к способам и системам (вариантам) для выявления теплового старения и потемнения в датчиках кислорода. Явления теплового старения и потемнения можно различать по результату контроля изменения импеданса в элементе накачки и в элементе Нернста датчика кислорода после подачи переменного напряжения.

Изобретение относится к области измерительной техники и предназначено для аналитического контроля физико-химических свойств воды, в том числе и высокой степени очистки, и водных растворов в системах контроля технологических процессов на электростанциях, в аналитических лабораториях и других производствах.

Изобретение относится к конструкции и использованию датчиков твердых частиц в отработавших газах. Целью изобретения является идентификация и отфильтровывание твердых частиц отработавших газов перед выпуском отработавших газов в атмосферу.

Электрод сравнения для датчика кислорода, изготовленного из следующих компонентов в массовых концентрациях в процентах: 40-99,96 мас.% Cr; 0,01-30 мас.% Cr2O3; 0,01-10 мас.% MnO; 0,01-10 мас.% CoO и 0,01-10 мас.% NiO.

Изобретение относится к области ионометрии, а именно к разработке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем. Предлагаемое изобретение предназначено для прямого потенциометрического определения активности катионов кадмия в водных растворах и может быть использовано при экологическом мониторинге сточных вод, в технологических и биологических растворах.

Изобретение может использоваться для выявления и измерения микрорельефа поверхности из металлов и диэлектриков, а также с целями дефектоскопии поверхности и обнаружения неоднородности приповерхностных слоев.

Изобретение относится к газовому анализу, а именно к изготовлению датчиков контроля содержания оксидов азота в воздухе. Способ получения электропроводящей полимерной пленки поли-N,N-диметил-3,4-диметиленпирролиданий цианида (ПДМПЦ) на поверхности диэлектрической подложки с закрепленными контактами включает формирование слоя ПДМПЦ на поверхности диэлектрической подложки вытягиванием подложки в горизонтальном положении из водного раствора взаимодействующих компонентов: полимера, представляющего собой поли-N,N-диметил-3,4-диметиленпирролидиний хлорид (ПДМПХ), и модификатора, представляющего собой нитропруссид натрия (Na2[Fe(CN)5NO]).

Изобретение относится к газовому анализу, а именно к изготовлению датчиков контроля содержания оксидов азота в воздухе. Способ получения электропроводящей полимерной пленки поли-N,N-диметил-3,4-диметиленпирролиданий цианида (ПДМПЦ) на поверхности диэлектрической подложки с закрепленными контактами включает формирование слоя ПДМПЦ на поверхности диэлектрической подложки вытягиванием подложки в горизонтальном положении из водного раствора взаимодействующих компонентов: полимера, представляющего собой поли-N,N-диметил-3,4-диметиленпирролидиний хлорид (ПДМПХ), и модификатора, представляющего собой нитропруссид натрия (Na2[Fe(CN)5NO]).

Использование: для изготовления газовых сенсоров. Сущность изобретения заключается в том, что способ изготовления газового сенсора с наноструктурой со сверхразвитой поверхностью заключается в том, что образуют гетероструктуру из различных материалов, в которой формируют газочувствительный слой, после чего её закрепляют в корпусе сенсора, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников, газочувствительный слой формируют в виде наноструктуры со сверхразвитой поверхностью путем двухстадийного химического синтеза, на первой стадии которого формируется однородная тонкой пленка оксида цинка, представляющая собой зародышевый слой, а на второй стадии методом гидротермального синтеза формируются наностержни оксида цинка, образующие сверхразвитую поверхность.

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов.

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов.

Группа изобретений относится к области газового анализа, а именно к устройствам распознавания состава многокомпонентных газовых смесей и способам их изготовления.

Группа изобретений относится к области газового анализа, а именно к устройствам распознавания состава многокомпонентных газовых смесей и способам их изготовления.

Изобретение относится к области разработки газовых сенсоров хеморезистивного типа, используемых для детектирования газов. Способ изготовления хеморезистора на основе наноструктур оксида цинка электрохимическим методом характеризуется тем, что в емкости, оборудованной электродом сравнения и вспомогательным электродом, заполненной электролитом, содержащим нитрат-анионы и катионы цинка, осаждают наноструктуры оксида цинка на диэлектрическую подложку, оборудованную полосковыми электродами, выполняющими роль рабочего электрода, путем приложения к рабочему электроду постоянного электрического потенциала от -0,5 В до -1,1 В относительно электрода сравнения в течение 100-200 секунд и при температуре электролита в диапазоне 60-80°С, после чего подложку с осажденным нанослоем оксида цинка промывают дистиллированной водой и высушивают при комнатной температуре.

Изобретение относится к области разработки газовых сенсоров хеморезистивного типа, используемых для детектирования газов. Способ изготовления хеморезистора на основе наноструктур оксида цинка электрохимическим методом характеризуется тем, что в емкости, оборудованной электродом сравнения и вспомогательным электродом, заполненной электролитом, содержащим нитрат-анионы и катионы цинка, осаждают наноструктуры оксида цинка на диэлектрическую подложку, оборудованную полосковыми электродами, выполняющими роль рабочего электрода, путем приложения к рабочему электроду постоянного электрического потенциала от -0,5 В до -1,1 В относительно электрода сравнения в течение 100-200 секунд и при температуре электролита в диапазоне 60-80°С, после чего подложку с осажденным нанослоем оксида цинка промывают дистиллированной водой и высушивают при комнатной температуре.

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов.
Наверх