Способ снижения эффективной площади рассеивания оптико-электронного прибора

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения. Способ снижения эффективной площади рассеивания (ЭПР) оптико-электронного прибора (ОЭП) базируется на нанесении светопоглощающего покрытия на отражающие поверхности формирующей оптики ОЭП и поглощении им части локационного оптического излучения, измерении значения крутизны К выходного сигнала фотоприемника ОЭП и сравнении с пороговым значением Кn, если К≥Кn, то произведении по значениям крутизны К выходного сигнала фотоприемника ОЭП и величины поглощения локационного оптического излучения за пределами периметра отражающей поверхности вычисления требуемого значения изменения освещенности отражающей поверхности, осуществлении изменения освещенности отражающей поверхности на требуемое значение и поглощении части локационного оптического излучения за пределами отражающей поверхности. Изобретение позволяет снизить ЭПР до требуемого уровня. 1 ил.

 

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ (см., например, [1]) снижения эффективной площади рассеивания (ЭПР) оптико-электронного прибора (ОЭП), основанный на нанесении светопоглощающего покрытия на отражающие поверхности формирующей оптики ОЭП и поглощении им части локационного оптического излучения. Недостатком способа является недостаточный уровень снижения ЭПР при условии применения мощных зондирующих излучений. Это недостаток обусловлен принципами построения ОЭП, которые определяют основной вклад в формирование величины ЭПР поверхностью, находящейся в фокусе. При этом в способе-прототипе снижение ЭПР ОЭП носит постоянный фиксированный характер, без адаптации к величине плотности излучения, падающего на основные отражающие поверхности. В дополнение, возможности использование светопоглощающих покрытий ограниченно необходимостью сохранения пропускной способности формирующей оптики ОЭП.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является снижение ЭПР ОЭП до требуемого уровня.

Сущность изобретения заключается в адаптивном изменении величины энергетической освещенности отражающей поверхности, вносящей основной вклад в формирование ЭПР ОЭП, относительно скорости роста уровня регистрируемого зондирующего излучения.

Технический результат достигается тем, что в известном способе снижения ЭПР ОЭП, основанный на нанесении светопоглощающего покрытия на отражающие поверхности формирующей оптики ОЭП и поглощении им части локационного оптического излучения, измеряют значение крутизны К выходного сигнала фотоприемника ОЭП и сравнивают с пороговым значением Кn, если К≥Кn, то производят по значениям крутизны К выходного сигнала фотоприемника ОЭП и величины поглощения локационного оптического излучения за пределами периметра отражающей поверхности вычисление требуемого значение изменения освещенности отражающей поверхности, осуществляют изменение освещенности отражающей поверхности на требуемое значения, а часть локационного оптического излучения за пределами отражающей поверхности поглощают.

Отражающей способностью ОЭП характеризуется ЭПР [2]. В ОЭП снижение ЭПР обеспечивается использованием оптических фильтров, выбором типа формирующей оптики, нанесением светопоглощающих покрытий и т.п. (см., например, [1, 3]). Однако эффективность таких мер носит постоянный характер и в динамике изменения мощности зондирующего направленного оптического излучения может быть достаточно низкая. Это обуславливается тем, что при выборе оптимальных параметров зондирующего излучения основной вклад в величину ЭПР вносит поверхность, расположенная в фокусе или близко к нему [4]. В этой связи предлагается снизить ЭПР ОЭП путем уменьшения энергетической освещенности отражающей поверхности в зависимости от величины скорости роста уровня регистрируемого зондирующего оптического излучения, а также поглощения части его энергии.

Уменьшения энергетической освещенности отражающей поверхности, определяющей величину ЭПР ОЭП, можно осуществить перекрытием части входного оптического потока или его расфокусировкой. Последнее является более выигрышным по времени, т.е. менее инерционным. Предпочтение к выбору скорости роста уровня регистрируемого зондирующего излучения, как параметра для оценки величины расфокусировки изображения локационного сигнала, обусловлена временными требования к процессу снижения ЭПР. Так регистрация полного локационного оптического сигнала требует более длительного времени, а его крутизна - только части на временном интервале его роста. Уменьшения энергетической освещенности отражающей поверхности можно осуществить изменением положения элементов формирующей оптики или самой отражающей поверхности вдоль оптической оси ОЭП на требуемую величину. Однако, учитывая ограниченные конструктивные размеры отражающей поверхности и элементов формирующей оптики, диапазон расфокусировки изображения может не обеспечить требуемое значение ЭПР ОЭП. Также элементы, распложенные за периметром отражающей поверхности (технологические элементы ее крепления и т.п.) могут вносить существенный вклад в отраженный сигнал и при определенных конструктивных условиях компенсировать или увеличить ЭПР при расфокусировке изображения сигнала. Поэтому часть плотности локационного излучения при расфокусировке за границами периметра отражающей поверхности поглощают. При этом при расчете величины расфокусировки учитываю, какое количество плотности локационного излучения будет поглощено. Таким образом, обеспечивается снижение ЭПР ОЭП до требуемого уровня при ограниченном диапазоне изменения параметров формирующей оптики и с учетом конструктивных особенностей установки основной отражающей поверхности.

Заявленный способ поясняется схемой, представленной на фигуре 1. При этом на фигуре 1 исключены составные элементы ОЭП не отражающие сущность способа. На фигуре приняты следующие обозначения: 1 - формирующая оптика; 2 - привод изменения фокусного расстояния; 3 - подвижная формирующая линза; 4 - фотоприемник (ФП), находящийся в фокусе; 8 - детектор крутизны выходного сигнала ФП; 6 - вычислитель; 7 - блок управления приводом изменения фокусного расстояния; 8 - светопоглощающий материал (Δƒ - величина изменения фокусного расстояния). Локационный оптический сигнал поступает на вход ОЭП, после прохождения формирующей оптики 1 попадает на подвижную формирующую линзу 3, которая фокусирует оптический поток на ФП 4. Сигнал с выхода ФП 4 поступает на детектор крутизны импульса 5, который определяет ее величину. При этом значение крутизны импульса определяется плотностью оптического излучения подающего на ФП. Значение крутизны импульса поступает в вычислитель 6, который сравнивает с пороговым значением. При превышении крутизны импульса порогового значения вычислитель 6 определяет значение Δƒ и передает его в блок управления приводом изменения фокусного расстояния 7. Вычисление значения Δƒ осуществляется с учетом величины светопоглощения потока оптического излучения при расфокусировке, часть его энергии которого поглотится светопоглощающим материалом 8, расположенного за пределами периметра ФП 4. Блок управления приводом изменения фокусного расстояния 7 вырабатывает управляющий сигнал приводу изменения фокусного расстояния 2. Привод изменения фокусного расстояния 2 изменяет положение подвижной формирующей линзы 3 вдоль оптической оси ОЭП на требуемое значение.

Таким образом, у заявляемого способа появляются свойства, заключающиеся в возможности снижение ЭПР ОЭП до требуемого уровня, за счет изменения величины освещенности отражающей поверхности и поглощении части оптического излучения за пределами отражающей поверхности. Тем самым предлагаемый авторами способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ снижения ЭПР ОЭП, основанный на нанесении светопоглощающего покрытия на отражающие поверхности формирующей оптики ОЭП и поглощении им части локационного оптического излучения, измерении значения крутизны К выходного сигнала фотоприемника ОЭП и сравнении с пороговым значением Кn, если К≥Кn, то произведении по значениям крутизны К выходного сигнала фотоприемника ОЭП и величины поглощения локационного оптического излучения за пределами периметра отражающей поверхности вычисления требуемого значение изменения освещенности отражающей поверхности, осуществлении изменения освещенности отражающей поверхности на требуемое значения и поглощении части локационного оптического излучения за пределами отражающей поверхности.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые поглощающие энергию оптического излучения материалы, а также высокоскоростные приводы для осуществления расфокусировки.

1 Пархоменко В.А., Рыбаков А.Н., Устинов Е.М. и др. Патент RU №2350992. Устройство маскировки оптико-электронных приборов от средств лазерной пеленгации. М: РОСПАТЕНТ, 2009.

2 Малашин М.С., Каминский Р.П., Борисов Ю.Б. Основы проектирования лазерных локационных систем. М.: «Высшая школа», 1983, стр. 26-27

3 Первулюсов Ю.Б., Радионов С.А., Солдатов В.П. Под. Редакцией Якушенков Ю.Г. Проектирование оптико-электронных приборов. М.: «Логос», 2000, стр. 249-253.

4 Козирацкий Ю.Л., Гревцев А.И., Донцов А.А., Иванцов А.В., Кулешов П.Е. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов. М.: «ЗАО «Издательство «Радиотехника», 2015, стр. 26-32.

Способ снижения эффективной площади рассеивания оптико-электронного прибора, основанный на нанесении светопоглощающего покрытия на отражающие поверхности формирующей оптики оптико-электронного прибора и поглощении им части локационного оптического излучения, отличающийся тем, что измеряют значение крутизны К выходного сигнала фотоприемника оптико-электронного прибора и сравнивают с пороговым значением Кn, если К≥Кn, то производят по значениям крутизны К выходного сигнала фотоприемника оптико-электронного прибора и величины поглощения локационного оптического излучения за пределами периметра отражающей поверхности вычисление требуемого значения изменения освещенности отражающей поверхности, осуществляют изменение освещенности отражающей поверхности на требуемое значение, а часть локационного оптического излучения за пределами отражающей поверхности поглощают.



 

Похожие патенты:

Изобретение относится к полупроводниковым приборам для измерения интенсивности ультрафиолетового излучения. Технический результат заключается в повышении чувствительности и точности измерения интенсивности УФИ.

Изобретение относится к области экспериментальной стендовой базы измерения характеристики отражения материалов - двунаправленной коэффициента яркости, необходимого при решении задач определения полей яркости инфракрасного излучения тел сложной формы.

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано в составе эталонной техники для метрологического обеспечения высокоточной поверки средств измерений средней мощности коллимированного лазерного излучения.

Изобретение относится к измерительной технике и касается способа измерения параметров и характеристик источников излучения. При реализации способа приемник оптического излучения размещают с возможностью перемещения по трем координатам в облучаемой зоне исследуемого источника излучения.

Изобретение относится к области измерительной техники и предназначено для определения степени адаптации светотехнического оборудования (СТО) кабин транспортных средств.

Изобретение относится к инфракрасной технике и может быть использовано для обнаружения слабых сигналов инфракрасного излучения. Способ заключается в последовательной фиксации поступающего инфракрасного излучения и его преобразовании фотоприемником в электрический сигнал с последующим его усилением и нормализацией маскирующих сигнал шумов и детектированием при возрастающем уровне амплитудной селекции полученной смеси сигнала и нормального шума.

Изобретение относится к области космических технологий, в частности к способам полетной калибровки спутниковых сенсоров оптического диапазона в абсолютных энергетических единицах, и может быть использовано для калибровки спутниковых сенсоров высокого пространственного разрешения.

Изобретение относится к области измерения оптических характеристик объектов, более конкретно к области измерений яркостных характеристик объектов в лабораторных и натурных условиях.

Изобретение относится к области измерений характеристик светорассеяния оптико-электронных приборов (ОЭП) и может быть использовано в технике экспериментального измерения индикатрисы отражения, пеленгационной характеристики и эффективной площади рассеяния ОЭП в лабораторных условиях.

Изобретение относится к области измерений характеристик светорассеяния объектов. .

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения. Способ скрытия оптико-электронного средств (ОЭС) основан на поглощении части энергии оптического излучения, падающего на ОЭС, установке двух матричных оптико-электронных координатора (МОЭК) так, чтобы их приемные плоскости были перпендикулярны между собой и подстилающей поверхности, а в их поля зрения входила точка местоположения ОЭС, осуществлении координатной привязки и временной синхронизации работы фоточувствительных элементов МОЭК, приеме МОЭК рассеянного атмосферой излучения источника направленного оптического излучения и определении по координатам фоточувствительных элементов с максимальными выходными сигналами и по значениям моментов времени их регистрации пространственно-временных параметров траектории сканирования луча источника направленного оптического излучения подстилающей поверхности, вычислении параметров пространственного местоположения ОЭС и времени, затрачиваемого на уменьшение эффективной площади рассеивания (ЭПР) ОЭС до требуемого значения, критических пространственных параметров луча источника направленного оптического излучения относительно пространственных параметров местоположения ОЭС, осуществлении при достижении пространственных параметров луча источника направленного оптического излучения критических значений уменьшения ЭПР до требуемого значения. Изобретение обеспечивает повышение эффективности скрытия ОЭС. 2 ил.
Наверх