Способ неинвазивного акустического спектрального скрининга сосудов сердца

Изобретение относится к области медицины, а именно к кардиологии. Предложен способ неинвазивного акустического спектрального скрининга сосудов сердца, заключающийся в том, что генерируют электрический сигнал акустических шумов в области сердца виброакустическим датчиком, размещаемым на груди пациента в области сердца, усиливают и преобразуют сигнал в цифровую форму, фильтруют его с выделением полного частотного диапазона и записывают последний за выбранный интервал времени съема сигнала в устройство дальнейшей обработки, формируют с помощью быстрого преобразования Фурье амплитудно-частотную спектрограмму в выбранном частотном диапазоне за выбранное время наблюдения, на ней выявляют участки частотного спектра, коррелирующие с наличием или отсутствием стенозов в сосудах сердца. С целью повышения достоверности и точности диагностики отклонение спектральной энергии в коррелирующих с патологией участках спектра частот вычисляют и представляют суммарным отношением этих энергий к полной энергии сигнала всего его рабочего диапазона частот, что исключает влияние на уровень энергии выбранных спектральных участков степени усиления сигналов на разных стадиях, их поглощения в тканях пациента, зависимого от индекса массы тела, пола, возраста и сопутствующих заболеваний, а диагностический результат определяют по отклонению полученного суммарного значения относительной доли спектрального компонента в полной энергии от заданной границы, составляющей 40%. Изобретение обеспечивает уменьшение погрешности оценки отклонения суммарного значения относительных величин спектральных энергий в заданных участках частотного спектра снимаемого сигнала за заданное время наблюдения относительно экспериментально установленной границы этого параметра в сторону понижения для случаев чистых сосудов, или в сторону повышения для случаев наличия стенозов в сосудах сердца. 2 з.п. ф-лы, 4 ил.

 

Изобретение может быть использовано в медицине, а именно в кардиологии. Способ использует проведение спектрального анализа считываемых с поверхности тела пациента в области сердца шумов сосудов в выбранном диапазоне частотного спектра за заданное время наблюдения и соответствующую обработку сигнала, которые позволяют получить параметр, дающий возможность с большой достоверностью определить целесообразность выполнения селективной коронарографии (СКГ) пациентам при отборе последних на это небезобидное хирургическое вмешательство. В ходе отработки предлагаемого способа в условиях городской клинической больницы №5 в Нижнем Новгороде авторами создан прибор МимСАДАСК (Микромоторная Спектральная Акустическая Диагностика АСК - инициалы автора), реализующий предложенный способ и позволяющий неинвазивно, просто и быстро выполнять необходимые диагностические исследования. Учитывая тот факт, что по результатам проведения СКГ в текущем году в больнице оказалось более 40% больных с чистыми или гемодинамически незначимыми стенозами сосудов сердца, а стоимость каждого обследования равна 22000 рублей, нетрудно видеть, что оптимизация отбора больных на СКГ сулит немалые выгоды.

Авторам известны близкие способы и технические средства контроля поражения сосудов. В частности, способ диагностики атеросклеротического поражения сосудов поверхностной локализации представлен изобретением №1718620 А61В 7\04. В нем звуковые пульсовые колебания регистрируют в точке проекции сосуда на поверхность тела в диапазоне от 20 до 1000 Гц и для оценки склеротического поражения сосуда выбирают участок спектра частот от 180 до 230 Гц. Способ хорошо диагностирует проблемы сонной артерии, и это подтверждается рентгеноконтрастной ангиографией. Проблемы коронарного стеноза решает система электронного стетоскопа для оценки уровня ИБС у пациента, представленная патентом US-2009\0177107. Делают быстрое преобразование Фурье сигнала из четвертого левого межреберного пространства пациента по амплитуде в зависимости от частоты с выявлением его колоколообразного роста в участке спектра от 50 до 80 Гц и по превышению заданного порога судят о наличии коронарного стеноза.

Ближайшее решение проблемы стенозов представлено патентом US-6048319, где устройство реализует представленный в нем способ. Это устройство выполняет акустический скрининг для обнаружения коронарного стеноза обработкой тонов сердца, где по уровню акустической энергии в диапазоне двух октав вблизи 20 Гц во время диастолы судят о наличии и степени коронарного стеноза. Из диапазона сердечно-сосудистых звуков в интервале частот 6-45 Гц вырезают участок 15-45 Гц, считая реакцию уровня сигнала в этом интервале частот на наличие стенозов в несколько десятков раз выше более высокочастотного участка из диапазона от 17 до 120 Гц. Вычисляют среднюю диастолическую мощность в диапазоне 20-40 Гц и по ее приросту на 5 дб у больных судят о наличии ИБС. Спектральную мощность в выбираемых участках спектра вычисляют с помощью быстрого преобразования Фурье. Лучший результат при выявлении стенозов получают при комбинации спиральных мощностей на низких (20-40 Гц) и высоких частотах.

В ходе предварительной исследовательской работы авторами предполагаемого изобретения было реализовано несколько модификаций технических решений с разными типами микрофонов для съема сигналов с пациента и разными выборами частотных зон и программной обработки. В наших работах информативными оказались близкие к прототипу участки частот, а именно 22-42 Гц, 51-80 Гц и в очень редких случаях (порядка 1%) полезно учесть добавку участка частот 80-120 Гц.

Однако, авторы прототипа отмечают плохое влияние на результат диагностики факторов поглощения сигналов тканью пациента, ИМТ (индекса массы тела), пола, возраста и сопутствующих заболеваний. И даже принятие некоторых мер коррекции этих ошибок не позволяет обеспечить высокую достоверность диагностики.

Авторы предлагаемого изобретения с учетом выбора участков частотного спектра, в значительной степени коррелирующих со стенозообразованием в сосудах сердца, реализовали способ программной обработки спектральных энергий этих участков за время наблюдения, позволяющий нейтрализовать влияние многих факторов образования ошибок. В частности, вместе с вышеназванными факторами учитывается разброс уровня усиления сигналов на разных участках устройств реализации способа. Лучшим для получения наиболее информативного сигнала оказался виброакустический и, в частности, пьезоакселерометрический датчик со встроенным в него предусилителем для обеспечения лучшей помехоустойчивости. Полный диапазон рабочих частот для этого сигнала выбран от 3 до 300 Гц. На частотах выше 300 Гц не обнаружено полезных гармоник сигнала. Участок частот ниже 3 Гц отсечен частотным фильтром, чтобы исключить ненужное участие сердечного ритма. Удалось существенно повысить достоверность и точность проводимой диагностики. Для эффективной оценки влияния отклонения уровня спектральной энергии в выбранном участке частотного спектра сигнала на результаты диагностики ее прирост выражают относительной величиной ее доли в энергии полного сигнала. Для окончательной диагностики суммируются относительные доли выбранных спектральных энергий в выделенных участках частотного спектра. Из разных способов фиксации датчика на груди пациента более простым и дающим хорошую повторяемость результатов замеров оказался вариант крепления датчика липкой лентой (скотчем). Первоначально для определения нужных для диагностики участков частотного спектра весь рабочий диапазон частот был разбит на мелкие участки, и спектрограмма строилась из набора мелких полосок спектральных энергий, отнесенных к полной энергии сигнала во всем рабочем диапазоне частот за время наблюдения. Для компьютерной обработки сигнал записывали в течение 1 минуты. Это позволяло при необходимости вырезать для обработки более качественный (от помех) кусок записи с меньшим временем регистрации. Позже в приборной реализации способа достаточным оказалось время наблюдения порядка 15-30 секунд. После определения границ, коррелиующих со стенозами участков частотного спектра, стали в расчет брать спектральные энергии полных таких выбранных участков.

Для проведения статистических исследований возможностей предлагаемого способа набор наблюдений больных вели в период с января по ноябрь 2018 г. в одинаковых условиях: больных диагностировали только лежа на спине в спокойном состоянии, и датчик крепили на груди пациентов в точках V1 и V5, используемых в электрокардиографии. В дальнейшем целесообразно продолжить исследования этих диагностик в других положениях больных и с учетом наличия лекарственной терапии и динамических нагрузок. Но уже то, что удалось получить в клинической апробации способа, может позволить с большой достоверностью и высокой точностью определять отсутствие или наличие клинически значимых стенозов сосудов сердца.

Итак, решаемой здесь технической задачей является создание способа неинвазивного виброакустического спектрального скрининга сосудов сердца с повышенной достоверностью определения отсутствия или наличия стенозов в сосудах. Достигаемым техническим результатом является уменьшение погрешности оценки отклонения суммарного значения относительных величин спектральных энергий в заданных участках частотного спектра снимаемого сигнала за заданное время наблюдения относительно экспериментально установленной границы этого параметра в сторону понижения для случаев чистых сосудов, или в сторону повышения для случаев наличия стенозов в сосудах сердца. Для достижения такого результата в предложенном способе, заключающемся в том, что генерируют электрический сигнал виброакустическим датчиком, размещенным на груди пациента в области сердца в положении лежа на спине, усиливают и преобразуют сигнал в цифровую форму, с помощью быстрого преобразования Фурье формируют амплитудно-частотную спектрограмму в рабочем диапазоне частот, на ней выделяют участки частотного спектра, коррелирующие со стенозообразованием в сосудах сердца, определяют спектральную энергию в этих участках частот за время наблюдения, отличающийся тем, что оценивают отклонение суммарного значения отношений этих энергий к энергии полного сигнала всего диапазона частот от заданной границы, получаемой из экспериментальных исследований. В частности, в нашем приборе с заданным масштабированием его шкалы эта граница находится на 40%.Длительная апробация способа в условиях кардиологического отделения городской клинической больницы №5 Н.Новгорода (см. «Протокол клинической апробации…») показала, что погрешность отсутствия стенозов в сосудах сердца при показаниях прибора менее или равных 40% не превышала 1%. В окончательном решении способ реализован в устройстве, представленном на Фото 1. Это прибор МимСАДАСК. На рис. 1 приведен пример спектрограмм пациента со стенозированными сосудами сердца при выборе полного диапазона частот исследуемого сигнала от 3 до 1000 Гц с расчетом спектральных энергий на коротких частотных участках (от единиц до десятков Гц) всего спектра. Это делали для выявления коррелируюших со стенозами участков спектра. То же сделано в примере на Рис. 2, но в полном диапазоне частот от 3 до 500 Гц. Время регистрации сигнала для компьютерной обработки в этих примерах взято порядка 1 минуты. На Рис. 3 приведен пример программной реализации способа для приборного решения. Рабочий диапазон частот от 3 до 300 Гц. Выделены необходимые для диагностики стенозов два участка частот (разным цветом) для выбранного пациента. Полные результаты исследований представлены в сводной таблице «Протокола клинической апробации способа...» (прилагается к Заявке). Предлагаемый способ осуществляют следующим образом. Для оценки состояния сосудов сердца пациента с освобожденной от одежды грудной клеткой укладывают на спину. Далее для съема сигналов с точек VI и V5 последовательно приклеивают пьезоакселерометрический датчик липкой лентой (скотчем). В исследовательской части работы с датчика сигнал в течение 1 минуты записывали на японский регистратор Olympus WS-200S в формате WMA. Позже на компьютере проводили дальнейшую обработку сигнала с предварительным его преобразованием в формат WAV. В ходе длительных таких исследований выявились вышеприведенные участки спектра, активно реагирующие на наличие или отсутствие стенозов в сосудах сердца. Эти исследования легли в основу приборной реализации способа. После изготовления прибора перешли к его использованию с заданным программным временем съема сигнала, равным 15 секундам. Этого вполне достаточно. После сформировавшейся в дальнейшей апробации прибора границе раздела случаев наличия или отсутствия стенозов в сосудах сердца стало возможным достоверно говорить о чистых сосудах при суммарном относительном уровне спектральной энергии в показании прибора меньше или равном 40%. Учитывая тот факт, что статистически порядка 40% пациентов за истекший год оказались по результатам СКГ с чистыми или с гемодинамически незначимыми стенозами, можно с применением предложенного способа проводить более качественный отбор пациентов на СКГ, и избежать значительного количества проведения дорогого, небезобидного, инвазивного хирургического вмешательства у многих пациентов. Предложенный авторами способ диагностики показал лучшие по сравнению с известными решениями такой проблемы возможности по повышению достоверности и точности оценок стенозирования сосудов сердца, и может принести существенный вклад в развитие диагностик в кардиологии.

1. Способ неинвазивного акустического спектрального скрининга сосудов сердца, заключающийся в том, что генерируют электрический сигнал акустических шумов в области сердца виброакустическим датчиком, размещаемом на груди пациента в области сердца, усиливают и преобразуют сигнал в цифровую форму, фильтруют его с выделением полного частотного диапазона и записывают последний за выбранный интервал времени съема сигнала в устройство дальнейшей обработки, формируют с помощью быстрого преобразования Фурье амплитудно-частотную спектрограмму в выбранном частотном диапазоне за выбранное время наблюдения, на ней выявляют участки частотного спектра, коррелирующие с наличием или отсутствием стенозов в сосудах сердца, отличающийся тем, что с целью повышения достоверности и точности диагностики отклонение спектральной энергии в коррелирующих с патологией участках спектра частот вычисляют и представляют суммарным отношением этих энергий к полной энергии сигнала всего его рабочего диапазона частот, что исключает влияние на уровень энергии выбранных спектральных участков степени усиления сигналов на разных стадиях, их поглощения в тканях пациента, зависимого от индекса массы тела, пола, возраста и сопутствующих заболеваний, а диагностический результат определяют по отклонению полученного суммарного значения относительной доли спектрального компонента в полной энергии от заданной границы, составляющей 40%.

2. Способ по п. 1 позволяет контролировать отсутствие стенозов с точностью не более 1% за время наблюдения порядка 15-30 секунд при рабочем диапазоне частот от 3 до 300 Гц с фрагментами частотного спектра, коррелирующими со стенозами сосудов сердца низкочастотным от 22 до 42 Гц, высокочастотным от 51 до 80 Гц и при наличии у пациента зажимов сосудов мышечной тканью сердца частотным участком от 80 до 120 Гц с последующим суммированием в окончательном результате их относительных уровней спектральных энергий в интервалах указанных частот к полной энергии сигнала за время наблюдения и сравнивают результат с заданной границей.

3. Способ по пп. 1 и 2 при реализации предполагает для повышения помехоустойчивости в выносном пьезоакселерометре наличие встроенного предусилителя.



 

Похожие патенты:

Группа изобретений относится к медицинской технике, а именно к средствам для аускультации тела. Устройство содержит корпус, имеющий заданные размеры и выполненный с возможностью расположения в рабочем положении относительно заданной части тела, при этом указанный корпус имеет проксимальный конец и дистальный конец, причем указанный проксимальный конец корпуса содержит отверстие, имеющее заданные размеры и предназначенное для взаимодействия с заданной частью тела, когда указанный корпус находится в рабочем положении, корпус содержит по меньшей мере акустическую захватную камеру, первичную резонансную камеру и вторичную резонансную камеру, акустическая захватная камера дополнительно расположена с примыканием к указанному отверстию, вторичная резонансная камера расположена между акустической захватной камерой и первичной резонансной камерой с обеспечением звуковой связи между ними, причем предусмотрен по меньшей мере один измерительный преобразователь, по меньшей мере частично расположенный в соответствующей одной из указанных камер и выполненный с возможностью преобразования акустического сигнала в электрический сигнал.

Изобретение относится к медицинской технике. Электронный медицинский стетоскоп содержит акустический приемник пьезоэлектрического типа (1), согласующий каскад (2), устройство усиления и фильтрации, блок эталонных фонограмм (22) и блок анализа (23), сенсорный переключатель (19) и аналого-цифровой преобразователь (11).

Изобретение относится к медицинской технике и может быть использовано для аускультации. Комбинированный приемник для регистрации дыхательных звуков на поверхности грудной клетки представляет собой корпус (10) с внутренней массивной накладкой (9), стетоскопическую насадку (11), имеющую с внешней стороны дна плоскую поверхность, и два датчика.

Изобретение относится к медицине, в частности к стоматологии, и может быть использовано для диагностики качества лечения зубов. Ведут запись шумов в процессе жевания без пищи и в процессе пережевывания разнообразной по твердости и консистенции пищи.

Изобретение относится к области медицинской диагностической техники. Электронный фонендоскоп содержит МЭМС-микрофон с цифровым выходом, выполненные в виде одной микросхемы устройство фильтрации и усиления, контроллер и устройство беспроводной передачи и приема, с которой соединен цифровой выход МЭМС-микрофона, при этом устройство фильтрации и усиления, контроллер и устройство беспроводной передачи и приема, МЭМС-микрофон и источник питания расположены на одной печатной плате, а в качестве устройства беспроводной передачи и приема использовано устройство беспроводной передачи и приема, обеспечивающее применение технологии интернета вещей.

Изобретение относится к медицинской технике, а именно к средствам автоматической оценки сигнала фонокардиограммы. Устройство обработки сигналов содержит фонокардиограммный интерфейс, данные которого собраны от пациента в соответствии с соответствующим набором собираемых свойств этого сигнала, выбранных из по меньшей мере одного из места прослушивания, информации о том, дышал пациент или задерживал дыхание, информации о том, был ли пациент в покое или выполнял физические упражнения перед сбором сигнала; процессор, выполненный с возможностью анализа первого сигнала фонокардиограммы, использующего его соответствующий набор собираемых свойств, и обеспечения анализа и доверительного значения анализа; и устройство управления последовательностью операций, выполненное с возможностью определения возможно ли, что последующий сигнал фонокардиограммы, если он собран от пациента в соответствии с другим набором собираемых свойств, повысит точность анализа, и в таком случае координации сбора последующего сигнала фонокардиограммы от пациента в соответствии с другим набором собираемых свойств.

Группа изобретений относится к медицине. Способ обнаружения мощности сигнала тона сердца для диагностирования ишемической болезни сердца ИБС осуществляют с помощью системы для обнаружения мощности на низких частотах.

Изобретение относится к медицине и может быть использовано для неинвазивного и неионизирующего контроля состояния легочных тканей. Способ включает излучение широкополосного кодированного акустического сигнала, прием сигнала не менее чем одним расположенным на поверхности грудной клетки измерительным акустическим датчиком, построение графика модуля взаимно-корреляционной функции сигналов, выделение и определение по графику величин задержек максимумов взаимно-корреляционной функции с последующим картированием легких.

Изобретение относится к средствам для определения положения источника звука. Система содержит принимающий блок для приема направляющих звуковых сигналов по меньшей мере от двух направляющих акустических датчиков и для приема команды выбора, содержащей тип сегмента сигнала, соответствующего источнику звука, причем по меньшей мере два направляющих акустических датчика расположены в головке стетоскопа, блок выбора для выбора сегмента из каждого направляющего звукового сигнала, вычислительный блок для вычисления разности между сегментами, выбранными из направляющего звукового сигнала, и генерирующий блок для генерации сигнала индикации перемещения, чтобы направлять перемещение головки стетоскопа к источнику звука в соответствии с разностью.

Группа изобретений относится к медицине. При осуществлении способа определения диапазона частот и способа выявления заболеваний сердца осуществляют регистрацию фонокардиограмм первой группы от первой группы здоровых пациентов и второй группы от второй группы пациентов, страдающих указанным заболеванием сердца.
Наверх