Способ получения гидрозоля монодисперсного нанокремнезема для изготовления бетона

Изобретение может быть использовано в химической промышленности. Получение гидрозоля монодисперсного нанокремнезема осуществляется с использованием золь-гель синтеза. В реакционной смеси используют аммиак в качестве катализатора для гидролиза тетраэтоксисилана, этанол в качестве растворителя, а также добавляют полисорбат в качестве стабилизатора. Этанол отгоняют при нагреве с одновременным подводом воды. Полисорбат удаляют из полученного гидрозоля нанокремнезема путем масляной флотации с добавлением легкого алифатического предельного углеводорода с плотностью менее 700 кг/м3 и температурой кипения в районе 40-70°С и отстаивают до полного разделения на две фракции. Нижняя фракция представляет собой гидрозоль монодисперсного нанокремнезема, а верхняя фракция представляет собой смесь легкого алифатического предельного углеводорода и полисорбата, которую разделяют при помощи отгонки для повторного использования. Предложенное изобретение обеспечивает получение гидрозоля монодисперсного нанокремнезема с малым количеством этанола, не более 0,1%, готового к использованию при изготовлении бетонов. 3 табл., 2 пр.

 

Изобретение относится к химической промышленности, в частности, к области получения водных растворов наночастиц кремнезема, используемых в составе бетонов для их упрочнения.

Из современного уровня техники известен способ получения кремнезема в форме молекулярного силиказоля, растворенного в среде безводного органического растворителя (патент RU №2140393). Его недостатком является применение безводных растворителей, что негативно влияет на качество бетона.

Известно множество термических способов получения аморфного кремнезема (патенты RU №№2195427, 2387608, 2021203, 2021203, 2021203). Недостатком всех упомянутых технических решений является применение обжига, что усложняет получение кремнезема и повышает энергозатраты.

Известен способ получения мелкодисперсных кремнеземов из хлорсиланов (патент RU №2447020). Недостатком является необходимость высушивания реакционной смеси для отделения спирта, что приводит к агрегированию порошка и увеличению размеров частиц.

Известны способы получения кремнезема из природного сырья (патенты RU №№2179153, 2375303). Упомянутые способы либо не обеспечивают получения кремнезема наномасштабного размера, либо предполагают высокоэнергоемкое измельчение до наноразмера.

Известны способы получения золей кремнезема с использованием ионообменной смолы (патенты RU №№2363655, 224474, 2363656). Во всех случаях способы предполагают наличие силикатов щелочных металлов для стабилизации наночастиц, также негативно влияет на прочность бетона.

Известны также способы получения наноразмерного (коллоидного) кремнезема из природного сырья (патенты RU №№2296103, 2323889, 2537406). Способы обеспечивают получения нанокремнезема из специфических источников с малым сроком годности.

Наиболее близким к предлагаемому изобретению является (патент CN №101602508, МПК В82В 3/00; С01В 39/00, публ. 16.12.2009) способ получения гидрозоля сферических частиц монодисперсного нанокремнезема, включающий получение гидрозоля кремнезема путем использования золь-гель синтеза (метода Стебера), в котором используется аммиак в качестве катализатора для гидролиза тетраэтоксисилана и этанола в качестве растворителя. После завершения реакции большая часть этанола улетучивается путем нагревания раствора, затем в полученный раствор добавляется водный раствор нашатырного спирта. Недостатком прототипа, по мнению заявителя, является то, что получаемый раствор нанокремнезема содержит этанол (не менее 2%), что негативно влияет на прочность бетона. Таким образом, способ неэффективно использовать для изготовления бетона.

Органические примеси, такие как этанол, используемые при получении нанокремнеземов, способны значительно снижать прочность бетонов (таблица 1). Очистка водного раствора (гидрозоля) нанокремнезема от этанола позволяет улучшить качество получаемых бетонов с его использованием.

Задачей изобретения является повышение прочности бетона при сохранении физико-механических свойств (атмосферостойкость, стойкость к истиранию и стабильность при хранении) и сокращении расхода гидрозоля нанокремнезема.

Задача решается за счет того, что в реакционную смесь предварительно, вводят, в качестве стабилизатора, полисорбат, а после проведения золь-гель синтеза этанол отгоняют с одновременным подводом воды, после чего стабилизатор удаляют из полученного гидрозоля нанокремнезема.

Технический эффект от применения предлагаемого способа заключается в получении гидрозоля монодисперсного нанокремнезема с малым количеством этанола (не более 0,1%), готового к использованию при изготовлении бетонов, а также в возможности повторного использования полисорбата и легкого алифатического предельного углеводорода, полученных при помощи отгонки последнего (перегонки) из верхней фракции, образованной при масляной флотации.

Предлагаемый способ получения гидрозоля монодисперсного нанокремнезема для изготовления бетона осуществляют следующим образом.

Предварительно замешивают реакционную смесь, состоящую (по массе) из этанола (60-65%), стабилизатора - полиоксиэтилен сорбитан моноолеата (полисорбат) (10-15%), воды (15%) и тетраэтоксисилана (не менее 5%), затем по каплям добавляют нашатырный спирт до достижения уровня рН=8 и перемешивают в течение 90 минут (золь-гель синтез). После проведения золь-гель синтеза, этанол отгоняют при температуре около 60°С с одновременным подводом воды, причем содержание этанола не допускается выше 0,1% по массе от концентрации гидрозоля нанокремнезема. Затем, полисорбат удаляют из полученного гидрозоля нанокремнезема путем масляной флотации, а именно добавлением (петролейного эфира) перемешиванием не менее 10 минут при скорости не менее 10000 об/мин, отстаивают до полного разделения на две фракции, нижняя из них представляет собой гидрозоль монодисперсного нанокремнезема.

Исследования показали, что полисорбаты могут являться эффективными стабилизаторами монодисперсного кремнезема в этаноле [Singh, L.P., Bhattacharyya, S.K., Singh, Р., & Ahalawat, S. (2012). Granulometric synthesis and characterisation of dispersed nanosilica powder and its application in cementitious system. Advances in Applied Ceramics, 111(4), 220-227]. Также они традиционно применяются в качестве стабилизаторов водных дисперсий. Однако для дальнейшего отделения стабилизатора при помощи масляной флотации полисорбат должен удовлетворять следующим условиям:

- высокий уровень ГЛБ (>15), что позволяет эмульгировать добавляемый углеводород с наименьшим размером частиц, тем самым достигается наибольшая площадь поверхности капель углеводорода, которые способны отделить из раствора молекулы стабилизатора

- высокой молекулярной массой, что говорит о высоком весе каждой осевшей молекулой стабилизатора на единице поверхности капли углеводорода, что улучшает отделение стабилизатора от водного раствора.

- низкой вязкостью в водном растворе, что улучшает расслоение получаемых эмульсий;

- низкой критической концентрацией мицеллообразования (ККМ), что говорит о низкой остаточной концентрации стабилизатора в водной среде гидрозоля нанокремнезема после проведения масляной флотации.

Среди всех стабилизаторов нанокремнезема в этаноле наилучшим для проведения масляной флотации оказался полиоксиэтилен сорбитан моноолеат (таблица 2).

При интенсивном перемешивании полученного после синтеза и отгонки этанола водного раствора нанокремнезема и полисорбата (62,5 и 12,5%% по объему соответственно) с легким алифатическим предельным углеводородом (25% по объему) получаются эмульсии с наименьшим размером частиц, что говорит о самом эффективном использовании углеводорода. Углеводород должен выполнять следующим требованиям: плотность менее 700 кг/м3, температура кипения в районе 40-70°С, нерастворимость в воде, растворимость для этанола. Полученная эмульсия в течение некоторого времени расслаивается на две фракции: верхняя, представленная частицами углеводорода, содержащего в себе остатки этанола и окруженного молекулами полисорбата, нижняя - очищенный гидрозоль нанокремнезема с водой. Более высокая плотность углеводорода не обеспечивает необходимого для масляной флотации расслаивания. Окончание процесса расслаивания оценивают визуально, по снижению мутности в нижней фракции. Низкая температура кипения углеводорода (менее 40°С) требует дополнительного термостатирования при интенсивном перемешивании. Температура выше 70°С не позволит произвести отгонку верхней фракции для регенерации полисорбата и углеводорода.

Проведенные исследования показали, что снижение концентрации этанола в полученном гидрозоле нанокремнезема способствует увеличению прочности бетона. Результат показателей, сравнительный с прототипом, отражен в таблице 3.

При необходимости экономии гидрозоля нанокремнезема и при превышении прочности бетона выше необходимой, можно снижать количество введенного нанокремнезема. Ухудшение прочих физико-механических свойств не происходило.

Пример 1

Замешивали реакционную смесь, состоящую из этанола (64% от общей массы) и воды (15% от общей массы), с добавлением полиоксиэтилен сорбитан моноолеат (ТВИН-80) (15% от общей массы) в качестве стабилизатора. После полного видимого растворения добавляли тетраэтоксисилан (6% от общей массы). Далее происходило смешивание компонентов в нормальных условиях (в течение 30 мин.); затем производили гидролиз - добавление по каплям нашатырного спирта и поддерживание уровня рН=8 в течение 90 мин. Далее проводилась отгонка этанола (с его конденсацией в сборнике) при температуре 60°С и одновременный постепенный подвод воды в течение 180 минут из расчета получаемой концентрации нанокремнезема 0,1% от общей массы раствора. Концентрация этанола в растворе контролировалось рефрактометрически и по количеству конденсата в сборнике. Затем добавляли петролейный эфир (марки 40-70 по ТУ 6-02-1244-83), перемешивали не менее 10 минут при скорости не менее 10000 об/мин. Полученная эмульсия расслаивалась в делительной воронке в течение 3 суток. Далее отделялась нижняя фракция, представляющая собой гидрозоль нанокремнезема. Испытание мелкозернистого бетона (соотношение цемент : песок : вода 1:3:0,5), приготовленного при добавлении нанокремнезема 0,1% от массы цемента, показывает увеличение прочности на сжатие по сравнению с контрольным составом на 41% (42,3 МПа) (таблица 3).

Верхняя фракция, представляющая собой смесь полисорбата и петролейного эфира, была разделена при помощи отгонки петролейного эфира при температуре 90°С, что позволило использовать их повторно.

Пример 2

Замешивали реакционную смесь, состоящую из этанола (64% от общей массы) и воды (15% от общей массы), с добавлением полиоксиэтилен сорбитан моноолеат (ТВИН-80) (15% от общей массы) в качестве стабилизатора. После полного видимого растворения добавляли тетраэтоксисилан (6% от общей массы). Далее происходило смешивание компонентов в нормальных условиях (в течение 30 мин.); затем производили гидролиз - добавление по каплям нашатырного спирта и поддерживание уровня рН=8 в течение 90 мин. Далее проводилась отгонка этанола (с его конденсацией в сборнике) при температуре 60°С и одновременный постепенный подвод воды по каплям в течение 180 минут из расчета получаемой концентрации нанокремнезема 0,1% от общей массы раствора. Концентрация этанола в растворе контролировалось рефрактометрически и по количеству конденсата в сборнике. Затем добавлялся гексан (технический), перемешивался не менее 10 минут при скорости не менее 10000 об/мин. Полученная эмульсия расслаивалась центрифугированием (при 3000 об/мин, длительностью 60 мин). Далее отделялась нижняя фракция, представляющая собой гидрозоль нанокремнезема. Испытание мелкозернистого бетона (соотношение цемент : песок : вода 1:3:0,5), приготовленного при добавлении нанокремнезема 0,05% от массы цемента, показывает увеличение прочности на сжатие по сравнению с контрольным составом на 26% (37,9 МПа) (таблица 3).

Верхняя фракция, представляющая собой смесь полисорбата и гексана, была разделена при помощи отгонки гексана при температуре 80°С, что позволило использовать их повторно.

Применение предлагаемого способа позволяет получить гидрозоль монодисперсного нанокремнезема с малым количеством этанола (не более 0,1%), готового к использованию при изготовлении качественного, прочного бетона.

Таким образом, задача, стоящая перед изобретением, решена.

Влияние этанола на прочность бетона (Соотношение цемент : песок : вода = 1:3:0,5 с добавкой нанокремнезема 0,01% от массы цемента).

Сравнение применяемых стабилизаторов для получения нанокремнезема в этаноле в стандартных условиях (25°C).

Сравнение бетонов с добавкой нанокремнезема по показателю прочности на сжатие.

Способ получения гидрозоля монодисперсного нанокремнезема для изготовления бетона, включающий получение гидрозоля путем использования золь-гель синтеза, в котором в реакционной смеси используют аммиак в качестве катализатора для гидролиза тетраэтоксисилана и этанол в качестве растворителя, в реакционную смесь перед синтезом добавляют полисорбат в качестве стабилизатора, отличающийся тем, что затем этанол отгоняют при нагреве с одновременным подводом воды, после чего полисорбат удаляют из полученного гидрозоля нанокремнезема путем масляной флотации с добавлением легкого алифатического предельного углеводорода с плотностью менее 700 кг/м3 и температурой кипения в районе 40-70°С и отстаивают до полного разделения на две фракции, нижняя из которых представляет собой гидрозоль монодисперсного нанокремнезема, а верхняя фракция представляет собой смесь легкого алифатического предельного углеводорода и полисорбата, которую разделяют при помощи отгонки.



 

Похожие патенты:

Изобретение относится к способам получения силикагеля. Способ включает смешение раствора жидкого стекла с раствором сернокислого алюминия с эквивалентной концентрацией оксида алюминия 0,25-1,15 моль/дм3 в присутствии диспергированного кремнезема, выбранного из ряда: КСМГ, АСМК, МСКГ, аэросил, белая сажа, в количестве 5-30 мас.% от получаемого водостойкого силикагеля, но не ограничиваясь им, образовавшийся в результате смешения растворов золь формуют в шарики силикагеля посредством капельной подачи золя в минеральное масло, а сформованные шарики выдерживают в циркулирующем потоке раствора сульфата натрия, после чего осуществляют их последовательную промывку сначала раствором серной кислоты, потом водой, сушку, прокалку.

Изобретение относится к способам получения силикагеля. Способ включает смешение раствора жидкого стекла с раствором сернокислого алюминия с эквивалентной концентрацией оксида алюминия 0,25-1,15 моль/дм3 в присутствии диспергированного кремнезема, выбранного из ряда: КСМГ, АСМК, МСКГ, аэросил, белая сажа, в количестве 5-30 мас.% от получаемого водостойкого силикагеля, но не ограничиваясь им, образовавшийся в результате смешения растворов золь формуют в шарики силикагеля посредством капельной подачи золя в минеральное масло, а сформованные шарики выдерживают в циркулирующем потоке раствора сульфата натрия, после чего осуществляют их последовательную промывку сначала раствором серной кислоты, потом водой, сушку, прокалку.

Изобретение относится к способам получения силикагеля. Способ включает смешение раствора жидкого стекла с раствором сернокислого алюминия с эквивалентной концентрацией оксида алюминия 0,25-1,15 моль/дм3 в присутствии диспергированного кремнезема, выбранного из ряда: КСМГ, АСМК, МСКГ, аэросил, белая сажа, в количестве 5-30 мас.% от получаемого водостойкого силикагеля, но не ограничиваясь им, образовавшийся в результате смешения растворов золь формуют в шарики силикагеля посредством капельной подачи золя в минеральное масло, а сформованные шарики выдерживают в циркулирующем потоке раствора сульфата натрия, после чего осуществляют их последовательную промывку сначала раствором серной кислоты, потом водой, сушку, прокалку.

Изобретение относится к технике пожаротушения, а именно к технологиям и устройствам для взрывопожаропредотвращения и тушения пожара в виде быстротвердеющей неорганической пены на основе вспененного геля кремнезема SiO2, и может быть использовано для взрывопожаропредотвращения в начальной стадии возникновения аварийных ситуаций в закрытых помещениях и на открытых площадках и при тушении пожаров горючих материалов.

Изобретение относится к химической промышленности, защищенной полиграфии, сельскому хозяйству, электронике и осветительной технике и может быть использовано при изготовлении полимерных пленок для создания искусственного освещения теплиц и оранжерей, светодиодов, визуализаторов ИК-излучения, приборов ночного видения, дозиметров, дисплеев для отображения буквенно-числовой информации.
Изобретение относится к области химической технологии и предназначено для утилизации отходов производства, содержащих фторсиликаты: тетрафторид кремния, кремнефтористую кислоту, гексафторсиликат натрия.

Изобретение относится к композиции для получения нанокомпозитов с перестраиваемой полимерной матрицей, которые могут быть использованы в современной высокотехнологичной промышленности, начиная от конструкционных материалов нового поколения до высокопроизводительных солнечных батарей, матриц для жидкокристаллических дисплеев, сверхплотных массивов для хранения информации и др.

Изобретение относится к производству силикагеля. Способ включает смешение раствора жидкого стекла с эквивалентной концентрацией оксида натрия 1,48-1,82 моль/дм3 с раствором сернокислого алюминия с эквивалентной концентрации оксида алюминия 0,25-0,45 моль/дм3.

Изобретение может быть использовано для получения защитного покрытия на металлических поверхностях, например железных, оцинкованных железных, алюминиевых. Состав содержит соединения хрома и кремния, при этом в качестве соединения хрома он содержит водный раствор соли трехвалентного хрома, в качестве которой используют нитрат хрома или кислые фосфаты хрома (моно- и дизамещенные) или их смеси, а в качестве соединения кремния - золь кремниевой кислоты.

Изобретение относится к области получения нанопористых материалов на основе кремний-алюминиевых аэрогелей и может быть использовано для создания чувствительных элементов измерительных устройств газовых сенсоров, используемых в энергетике, химической промышленности, а также анализа выдыхаемого воздуха - в медицине.

Изобретение относится к области исследования и анализа материалов и может быть использовано в инфракрасной спектроскопии. Образцы фуллерена C60 для съемки спектров пропускания инфракрасного излучения изготавливают механическим втиранием порошка C60 в полированную поверхность бромида калия.

Изобретение относится к способам получения высокопрочных материалов, а именно композиционной керамики на основе стабилизированного диоксида циркония и корунда с добавлением диоксида кремния.

Изобретение относится к способу получения полимерного композита и может быть использовано при изготовлении материалов в различных направлениях в медицине, сельском хозяйстве, экологии, в которых используют препараты, содержащие железо.
Изобретение относится к уплотнительному элементу для динамических приложений. Уплотнительный элемент с твердостью по Шору A 60-100 включает эластомерный материал, содержащий каучук, и распределенные в эластомерном материале углеродные нанотрубки в количестве от 0,1 до 15 phr в расчете на 100 вес.ч.

Изобретение может быть использовано в лакокрасочной промышленности, в производстве строительных материалов, полимеров, бумаги. Гематитовый пигмент характеризуется тем, что сумма значений а* при лаковом тестировании в чистом цветовом тоне и в разбеле составляет от 58,0 до 61,0 единиц CIELAB, размер частиц пигмента составляет от 0,1 до 0,3 мкм, а содержание воды в пигменте 1,0% масс.

Изобретение относится к области электротехнической промышленности и нанотехнологии, а именно к электропроводным тонкослойным плёнкам из восстановленного оксида графена и к способу их получения.

Изобретение относится к нанотехнологии. При получении пористых люминесцентных структур, содержащих люминофоры, внедренные в фотонный кристалл, сформированный в виде пористых слоев на подложке, сначала формируют одномерный фотонный кристалл с упорядоченным массивом пористых слоев, которые получают химическим или электрохимическим травлением подложки, в качестве которой используют пластину из кремния, SiO2, Si3N4, SiC.

Изобретение относится к нефтедобывающей промышленности, а именно к технологиям интенсификации добычи нефти. Технический результат - повышение термостабильности эмульсионной системы, увеличение темпа разработки нефтегазоносного объекта, увеличение продолжительности положительного эффекта и дополнительная добыча нефти.
Изобретение относится к нанотехнологии, электротехнике, электронике, энергетике и биомедицине и может быть использовано при изготовлении смазочных и абразивных материалов, модификаторов поверхности, а также изолирующих материалов для полупроводников и схемных плат.

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных гетероструктур и приборов для конверсии электромагнитного излучения, сенсоров и многоцветных светоизлучающих диодов (LEDs).

Изобретение относится к области исследования и анализа материалов и может быть использовано в инфракрасной спектроскопии. Образцы фуллерена C60 для съемки спектров пропускания инфракрасного излучения изготавливают механическим втиранием порошка C60 в полированную поверхность бромида калия.
Наверх