Способ измерения параметров магнитного поля

Изобретение относится к измерению направления или напряженности магнитных полей. Способ измерения постоянного магнитного поля путем измерения параметра, возникающего на обкладках конденсатора из диэлектрического материала, снабженного двумя токопроводящими пластинами с выводами, установленными параллельно друг к другу, где диэлектриком является композит, при помещении его в магнитное поле, при этом применяют композит магнитожидкостной с 10% содержанием частиц из нанокристаллического магнитномягкого материала с высокой магнитной проницаемостью (μ≥50000) продолговатой формы и размеров, лежащих в пределах 1-100 мкм, измерение емкости производят на частоте 1 МГц, и величину магнитного поля определяют по градуировочной кривой или по известной величине, характеризующей чувствительность конденсатора. Технический результат – повышение чувствительности и упрощение способа измерения постоянного магнитного поля. 6 ил.

 

Изобретение относится к измерению направления или напряженности магнитных полей, может найти применение в создании миниатюрных датчиков магнитного поля в контрольно-измерительной аппаратуре для индикации и измерения параметров магнитного поля.

Для измерения напряженности магнитного поля в настоящее время используются много способов [1] основными из которых являются следующие:

1 - магнитометрический способ, основанный на действии магнитного поля на магнитную стрелку, он прост в исполнении, однако имеет большую погрешность.

2 - способ, основанный на измерении эдс, возникающей в результате явления электромагнитной индукции. К этому способу относится баллистический способ, основанный на измерении заряда, индуктируемого в магнитной катушке при изменении пронизывающего ее магнитного потока, связан с необходимостью вращать либо передвигать контур и также имеет небольшую чувствительность.

3 - способ, основанный на измерении эдс Холла, возникающей в результате эффекта Холла имеет максимальную чувствительность до 1 мВ/Э [2] и основан на измерении постоянного сигнала, что значительно понижает его помехоустойчивость.

Известен также способ [3], основанный на измерении разности фаз, возникающей при прохождении электронов через сверхпроводящее кольцо с двумя переходами Джозефсона в магнитном поле. Этот способ имеет максимальную чувствительность, однако его применение связано с использованием веществ, находящихся в сверхпроводящем

Известен способ магнитопорошкового контроля, заключающийся в намагничивании изделия, нанесении непосредственно на его поверхность магнитного порошка или ферромагнитной суспензии и последующий визуальный осмотр индикаторного изображения на поверхности этого изделия [4].

Недостатком такого способа является невозможность количественной оценки результатов неразрушающего контроля, так как контроль дефектов осуществляется визуально.

Известен способ, который показывает изменение величины магнитного поля. Данный способ основан на чувствительном элементе в виде магнитной жидкости, которая под воздействием магнитного поля имеет возможность перемещаться и изменять свою форму (от слабо вытянутой до нитевидной) [5, 6].

Недостатком способа является низкая чувствительность и необходимость использования специальной аппаратуры анализа визуальной информации.

Наиболее близко к заявляемому изобретению по использованию, технической сущности и достигаемому техническому результату и принятому за прототип, является способ позволяющий определить изменение вектора магнитного поля в листовом металле [7], способ основан на чувствительном элементе в виде магниточувствительной жидкости, которая под воздействием магнитного поля меняет свою световую проницаемость, которая фиксируется фотоэлементом.

Недостатком данного способа является низкая чувствительность и механизм регистрации показаний.

Задача заявленного изобретения - упростить способ, повысить чувствительность.

Для решения этой задачи предложен способ измерения магнитного поля путем измерения емкости пластинчатого конденсатора, диэлектриком которого является магниточувствительная жидкость со следующими параметрами: частицами из нанокристаллического магнитномягкого материала с высокой магнитной проницаемостью (μ≥50000), продолговатой формы и размеров, лежащих в пределах 1-100 мкм.

Сущность изобретения поясняется фиг. 1, состоящей из: 1. корпуса из немагнитного материала; 2. магниточувствительная жидкость; 3. токопроводящие контакты; 4. выводы для подключения измерительного прибора.

При помещении конденсатора в магнитное поле силовые линии этого поля пронизывают магниточувствительную жидкость, в результате чего, домены магниточувствительной жидкости ориентируются коллиниарно к вектору магнитного поля и происходит объединение частиц в цепочечные агрегаты вследствие взаимодействия магнитных моментов и выстраивание их определенным образом вдоль вектора магнитного поля. В результате емкость конденсатора с магниточувствительной жидкостью изменяется. Измерение емкости конденсатора проводилось на измерителе Е7-12 на частоте 1 МГц. Это изменение связано с изменением диэлектрической проницаемости магниточувствительной жидкости при воздействии магнитного поля. Изменение емкости зависит от процентного содержания, размера и формы частиц, а также их магнитной проницаемости. В качестве диэлектрика конденсатора использовалась магниточувствительную жидкость с частицами анизотропной формы (в виде «иголок» или «дисков») из нанокристаллического магнитномягкого материала с высокой магнитной проницаемостью (μ≥50000).

Выбор измерителя емкости Е7-12 с частотой 1 МГц обусловлен наибольшей простотой и чувствительностью данного прибора. Использование приборов с большей частотой усложняет процедуру измерения и снижает чувствительность и точность измерений.

Выбор материала и продолговатой формы частиц с высокой магнитной проницаемостью (μ≥50000) обусловлен общеизвестным свойством чувствительности магнитных частиц к внешнему магнитному полю.

Выбор 10% процентного содержания частиц обусловлен экспериментально установленной величиной, обеспечивающей простоту и воспроизводимость приготовления магнитной жидкости.

Выбор диапазона размеров частиц 1-100 мкм обусловлен ограничением снизу чувствительностью способа измерения емкости, а сверху сложностью приготовления магнитной жидкости и вязкостью ее основы.

Пример конкретного осуществления изобретения приведен ниже:

В экспериментальных исследованиях применялась магнитная жидкость на основе полиметилфенилсилоксана (ПФМС-4), содержащая наночастицы железа размером 100 нм, частицы карбонильного железа размером 2–5 мкм и частицы нанокристаллического сплава марки 5 БДСР дисперсностью 1-140 мкм

Концентрация частиц в ПФМС-4 не превышает 15 объемных процента.

Приготовление магнитной жидкости осуществлялось механическим и ультразвуковым интенсивным перемешиванием. Далее суспензия помещалась в измерительную ячейку (фиг. 2) объемом 0,5 см3. Внутри корпуса располагались медные обкладки площадью S = 10 мм2 на расстоянии d = 3 мм, которые соединялись с гибкими выводами.

При помещении конденсатора в магнитное поле силовые линии этого поля пронизывают магниточувствительную жидкость, в результате чего, домены магниточувствительной жидкости ориентируются коллиниарно к вектору магнитного поля и происходит объединение частиц в цепочечные агрегаты вследствие взаимодействия магнитных моментов и выстраивание их определенным образом вдоль вектора магнитного поля. В результате емкость конденсатора с магниточувствительной жидкостью изменяется. Это изменение связано с изменением диэлектрической проницаемости магниточувствительной жидкости при воздействии магнитного поля Измерение емкости ячейки проводили на приборе типа E7-12 на частоте 1 МГц. Для изучения влияния магнитной жидкости на электрические параметры ячейки она подвергалась воздействию внешнего магнитного поля. Измерения емкости ячейки проводились при воздействии магнитного поля параллельно и перпендикулярно измерительному электрическому полю. На фиг. 3 приведена экспериментальная установка для исследования влияния магнитного поля на магнитную жидкость в конденсаторе, где 5 – измеритель L, C, R типа Е7-12; 6 – измерительная ячейка, заполняемая исследуемой жидкостью с площадью пластин S=10 мм 2 и расстоянием между пластинами d=3 мм; 7 – магнит.

Магнитное поле создавалось постоянным магнитом. Для определения силы магнитного поля (магнитной индукции) магнита, действующего на измерительную ячейку, использовали микротесламетр МТ-10. Для этого показания микротесламетра МТ-10 устанавливали на ноль и подносили магнит, по измерительной линейке определяли расстояние от магнита до микротесламетра МТ-10 и фиксировали силу магнитного поля магнита действующего на микротесламетр МТ-10 (фиг. 4), где 8 – микротесламетр МТ-10; 9 – измерительная линейка; 7 – магнит. Для измерения чувствительности данного способа конденсатор с магниточувствительной жидкостью помещали в экранированную трубу, которая была изготовлена из лент аморфных магнитомягких сплавов (фиг. 5).

Магнитная индукция внутри данной трубы измерялась при помощи микротесламетра МТ-10. Изменение магнитной индукции, равное ΔВ = 5,9 мкТл, приводило к изменению емкости (ΔС) на 1,35 пФ, то есть чувствительность данного способа составила 0,228 пФ/мкТл в соответствии с градуировочной кривой (фиг. 6).

Измерения показали возможность повышения чувствительности, изменяя конфигурацию и размер частиц.

Использование предлагаемого способа позволяет упростить способ и повысить чувствительность измерений.

Источники:

1. Электрические измерения. Средства и методы измерений. Под ред. Е.Г. Шрамкова. -М., Высшая школа, 1972, 520 с.

2. Бараночников М.Л. Микромагнетоэлектроника. -М.: ДМК Пресс, 2001, 554 с.

3. Бароне А., Патерно Дж. Эффект Джозефсона. Физика и применение. -М.: Мир, 1984, 639 с.

4. Г.С. Шелихов. Магнитопорошковая дефектоскопия деталей и узлов. Москва, 1995 г., с.34-45.

5. Неразрушающий контроль металлов и изделий: справочник / под редакцией Г.С. Самойловича. – М. : Машиностроение, 1976 . – 456 с.

6. Б.М. Берковский и др. Магнитные жидкости. М.: Химия, 1989. - 240 с.

7. Патент РФ № 55996 U1, МПК G01R33/02, опубл. 27.08.2006.

Способ измерения постоянного магнитного поля путем измерения параметра, возникающего на обкладках конденсатора из диэлектрического материала, снабженного двумя токопроводящими пластинами с выводами, установленными параллельно друг к другу, где диэлектриком является композит, при помещении его в магнитное поле, отличающийся тем, что композит магнитожидкостной с 10% содержанием частиц из нанокристаллического магнитномягкого материала с высокой магнитной проницаемостью (μ≥50000) продолговатой формы и размеров, лежащих в пределах 1-100 мкм, измерение емкости производят на частоте 1 МГц, и величину магнитного поля определяют по градуировочной кривой или по известной величине, характеризующей чувствительность конденсатора.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к магнитно-резонансной системе исследования пациента с подвижным держателем пациента. Система содержит зону исследования, магнит для приложения статического магнитного поля в зоне исследования, держатель пациента с опорной поверхностью, RF-антенну, имеющую фиксированное геометрическое отношение с опорной поверхностью, причем держатель пациента установлен подвижно в направлении, поперечном к опорной поверхности, причем магнит имеет опорную раму и снабжен мостовым элементом, установленным на опорной раме и подвижно в направлении, поперечном к опорной поверхности, и мостовой элемент поддерживает держатель пациента, магнит является магнитом цилиндрической формы с зазором, в котором расположена зона исследования, причем элементы кожуха обеспечены между мостовым элементом и внутренней стенкой зазора или между держателем пациента и внутренней стенкой зазора.

Изобретение относится к области измерений индукции магнитного поля с помощью магнитометра, например, феррозондового типа. Сущность изобретения заключается в преобразовании индукции магнитного поля ВМП в цифровой или аналоговый сигнал S1(ВМП) с последующей компенсацией температурной погрешности первичного датчика.

Изобретение относится к области разработки биомедицинских сенсоров новых поколений, а именно к созданию секторов на поверхности приборов спинтроники. В биомедицине разделение здоровых и больных клеток основано на разной вероятности захвата магнитных наночастиц или микрочастиц клетками в зависимости от их состояния.

Группа изобретений относится к обеспечению безопасности пациента при работе с магнитно-резонансным томографом (МРТ). Система магнитно-резонансной томографии (МРТ) содержит сборку кабелей, содержащую электропроводящий кабель и многожильное оптическое волокно, собранное вместе с электропроводящим кабелем для образования сборки кабелей; электрический компонент, соединенный с электропроводящим кабелем кабельной сборки; устройство считывания формы волокна, оптически связанное с многожильным оптическим волокном кабельной сборки и выполненное с возможностью измерения коэффициента отражения света, введенного в многожильное оптическое волокно, и вычисления формы кабельной сборки на основании измеренных значений коэффициента отражения; процессор, выполненный с возможностью обнаружения части электропроводящего кабеля, подверженной явлению резонанса на частоте магнитного резонанса, на основании формы, вычисленной для многожильного оптического волокна в сборке с электропроводящим кабелем.

Группа изобретений относится к области техники магнитно-резонансной (MR) визуализации. Способ MR-визуализации объекта, позиционированного в объеме исследования MR-устройства (1), при этом способ содержит этапы, на которых: a) постепенно варьируют градиентный вектор магнитного поля от начальной позиции к конечной позиции по множеству промежуточных позиций, пока определенное число RF-импульсов излучается в присутствии градиента магнитного поля; b) постепенно варьируют градиентный вектор магнитного поля снова от начальной позиции к конечной позиции по множеству промежуточных позиций, пока определенное число MR-эхо-сигналов получается в присутствии градиента магнитного поля; c) дискретизируют сферический объем в k-пространстве посредством повторения этапов a) и b) определенное число раз для различных начальных, промежуточных и/или конечных позиций; восстанавливают MR-изображение из полученных MR-эхо-сигналов.

Группа изобретений относится к области магнитно-резонансной (МР) визуализации. МР-визуализация содержит этапы: подвергания объекта воздействию визуализирующей последовательности РЧ-импульсов и переключаемых градиентов магнитного поля, при этом визуализирующая последовательность представляет собой стационарную последовательность, содержащую множество многократно применяемых блоков сбора данных, при этом каждый блок сбора данных содержит два сегмента, непосредственно следующие друг за другом, а именно: i) первый сегмент, начинающийся с излучаемого к объекту РЧ-импульса возбуждения, при этом продолжительность первого сегмента целократна заданному временному интервалу T, и ii) второй сегмент, начинающийся с излучаемого к объекту РЧ-импульса перефокусировки и содержащий считывающий градиент магнитного поля и градиент магнитного поля фазового кодирования, при этом продолжительность второго сегмента целократна временному интервалу T сбора одного или более фазокодированных сигналов спинового эха в последовательности блоков сбора данных и реконструкции одного или более МР-изображений из собранных сигналов спинового эха.

Группа изобретений относится к радиочастотной (РЧ) катушке для использования в пространстве для исследований системы формирования магниторезонансных (МР) изображений.

Группа изобретений относится к медицинской технике, а именно к средствам визуализации внутренних органов тела. Способ обнаружения фазового шума при формировании изображения магнитно-резонансной томографии содержит этапы, на которых принимают устройством магнитно-резонансной томографии (МРТ) исходный опорный сигнал от устройства визуализации, причем устройство МРТ использует катушки беспроводной связи, распространяющие сигналы изображения на основании тактового генератора цифрователя, чтобы получить данные изображения, используемые устройством визуализации для формирования изображения МРТ, сформированный на основании системного тактового генератора, которым желательно распространять сигналы изображения, разделяют устройством МРТ исходный опорный сигнал на первый и второй опорные сигналы, регулируют устройством МРТ фазовый сдвиг второго опорного сигнала, чтобы сформировать ортогональный опорный сигнал, определяют устройством МРТ произведение первого опорного сигнала с ортогональным опорным сигналом, и определяют устройством МРТ индикацию, указывающую достоверность данных изображения, на основании произведения.

Группа изобретений относится к медицинской технике, а именно к средствам для магнитно-резонансной томографии. Cпособ функционирования системы магнитно-резонансной томографии с учетом регулировки радиочастотного возбуждающего поля В1, прикладываемого к исследуемому субъекту, подлежащему томографированию, содержит этапы определения по меньшей мере одного параметра (d) положения, который указывает положение по меньшей мере части исследуемого субъекта по отношению к по меньшей мере одной радиочастотной передающей антенне системы магнитно-резонансной томографии и осуществляется путем использования блока обнаружения близости, который включает в себя по меньшей мере два датчика (D1, D9) близости, определения посредством двух датчиков (D1, D9) близости по меньшей мере одного поперечного размера (wi) исследуемого субъекта для множества местоположений (zi) по меньшей мере части исследуемого субъекта, получения данных для генерирования геометрического очертания исследуемого субъекта по отношению к упомянутой по меньшей мере одной радиочастотной передающей антенне системы магнитно-резонансной томографии из параметров (di) положения и поперечных размеров (wi), определенных на упомянутом множестве местоположений (zi), регулировки по меньшей мере одного радиочастотного энергетического параметра мощности радиочастотного сигнала, подлежащей подаче на упомянутую по меньшей мере одну радиочастотную передающую антенну, в зависимости от по меньшей мере одного из определенного по меньшей мере одного параметра (d) положения и определенного геометрического размера (w) исследуемого субъекта.

Изобретение относится к области физики плазмы, газового разряда, радиоэлектроники и т.д. и может быть использовано для измерения параметров слабых магнитных полей и МГД волн в низкотемпературной магнитоактивной плазме.

Изобретение относится к медицинской технике и используется для проведения нейрофизиологических исследований микроволновой электромагнитной активности разных участков головного мозга (ГМ) человека путем транскраниальной регистрации амплитудно-частотных характеристик (АЧХ) слабых электромагнитных волн (сЭМВ) в диапазоне ультравысоких (УВЧ) и сверхвысоких (СВЧ) частот от 1,5 до 5,0 ГГц.

Изобретение относится к области измерений индукции магнитного поля с помощью магнитометра, например, феррозондового типа. Сущность изобретения заключается в преобразовании индукции магнитного поля ВМП в цифровой или аналоговый сигнал S1(ВМП) с последующей компенсацией температурной погрешности первичного датчика.

Изобретение относится к способам измерения характеристик магнитного поля и может быть использовано при создании и эксплуатации магнитных датчиков и магнитометров.

Изобретение относится к области электроизмерительной техники и может быть использовано в устройствах для измерения параметров слабого постоянного магнитного поля.

Изобретение относится к области измерительной техники, более конкретно – к устройствам для измерения градиентов слабых магнитных полей. Раскрыт тонкопленочный градиентометр, для измерения градиентов слабых магнитных полей, включающий два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности.

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля.

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля.

Изобретение относится к области информационно-измерительной техники. Способ определения напряженности магнитного поля, при котором помещают в магнитное поле микроволновый резонатор и возбуждают в резонаторе электромагнитные колебания, резонатор выполняют из ферримагнитного материала, измеряют собственную резонансную частоту резонатора и по измеренной частоте резонатора определяют напряженность магнитного поля.

Использование: в области электротехники для защиты преобразовательной установки с трансформатором с 2n вторичными обмотками и 2n выпрямителями от коротких замыканий.

Изобретение относится к области средств измерений величин магнитных полей. Сущность изобретения заключается в том, что в средство измерений устройства определения вертикальной составляющей вектора магнитной индукции морского технического объекта в координатах морского технического объекта введены определители положений первичного измерительного преобразователя и морского технического объекта в системе координат Земли и два подключаемых к выходу устройства преобразования последовательно соединенных вычислительных устройства, второй вход первого из которых подключен к выходу устройства определения положения первичного измерительного преобразователя в системе координат Земли, а выход - к входу второго, второй вход которого подключен к выходу устройства определения положения морского технического объекта в системе координат Земли, а выход - к входу устройства представления информации.
Наверх