Способ оптимального адаптивного управления бурением и промывкой нефтегазовых скважин



Способ оптимального адаптивного управления бурением и промывкой нефтегазовых скважин
Способ оптимального адаптивного управления бурением и промывкой нефтегазовых скважин
Способ оптимального адаптивного управления бурением и промывкой нефтегазовых скважин
Способ оптимального адаптивного управления бурением и промывкой нефтегазовых скважин
Способ оптимального адаптивного управления бурением и промывкой нефтегазовых скважин
Способ оптимального адаптивного управления бурением и промывкой нефтегазовых скважин
E21B44/00 - Системы автоматического управления или регулирования процессом бурения, т.е. самоуправляемые системы, осуществляющие или изменяющие процесс бурения без участия оператора, например буровые системы, управляемые ЭВМ (неавтоматическое регулирование процесса бурения см. по виду процесса; автоматическая подача труб со стеллажа и соединение бурильных труб E21B 19/20; регулирование давления или потока бурового раствора E21B 21/08); системы, специально предназначенные для регулирования различных параметров или условий бурового процесса (средства передачи сигналов измерения из буровой скважины на поверхность E21B 47/12)

Владельцы патента RU 2709851:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") (RU)

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано для оптимального управления процессом. Техническим результатом является увеличение точности оптимального управления режимами бурения и промывки и увеличение механической скорости проводки скважины за счет оптимизации управления по математической модели с тремя регулируемыми параметрами. Технический результат достигается способом оперативного оптимального управления процессами бурения и промывки скважин, при котором осуществляют адаптацию детерминированной модели дробно-степенного вида с тремя параметрами управления к условиям на забое подстройкой ее коэффициентов, вычисляют оптимальные расход бурового раствора по объему выбуренной породы, осевую нагрузку на долото, скорость вращения долота и производят бурение скважины на оптимальных режимах. Способ предусматривает многократное обновление коэффициентов модели бурения по результатам скважинных измерений скорости бурения, расчет оптимальных расхода раствора, осевой нагрузки на долото и скорости его вращения по критерию "максимум механической скорости", выполнение бурения на рассчитанных оптимальных параметрах.

 

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано для оптимального управления процессом.

Известен способ очистки наклонных и горизонтальных стволов скважин RU 2524228 C1, Е21В 21/08 (2006/01) от 23.04.2013, выбранный нами за прототип, включающий создание циркуляции бурового раствора прокачиванием его через бурильную колонну с переводником, установленным в начале горизонтального участка и содержащим полый корпус с радиальными каналами, выполненными в корпусе по углом 30-60° к его оси. При проходе через переводник поток бурового раствора разделяется на две части, одну часть выбрасывают через радиальные каналы в виде турбулентного потока, обеспечивающего вынос частиц шлама в вертикальный участок скважины, а другую часть бурового раствора направляют в виде ламинарного потока в горизонтальный участок скважины, при этом повышается качество очистки.

Недостаток: способ не учитывает объем выбуренной породы, который требуется вынести из скважины для качественной очистки ее забоя и ствола и не применим для промывки вертикальных скважин.

Известен способ оптимального адаптивного управления процессом бурения скважин (патент 2595027 RU С1, 20.08.2016), взятый за прототип.

Способ включает построение модели процесса бурения представляющей взаимодействие условий в забое скважины с долотом бурильной колонны и буровым раствором получение множества результатов скважинных измерений условий бурения в ходе работы обновление модели процесса бурения на основе результатов скважинных измерений условий бурения и рабочих данных наземного оборудования, принятых от системы управления наземным оборудованием определение множества оптимальных параметров бурения на основе обновленной модели процесса бурения передачу в систему управления наземным оборудованием данных об оптимальных параметрах бурения и многократное повторение операций получения, обновления определения и передачи в ходе работы в скважине при котором управление осуществляют по детерминированной модели процесса бурения где υм - механическая скорость проходки, м/ч; kб - коэффициент буримости породы; G - осевая нагрузка на долото, Н; n - скорость вращения долота, об/м; Q - расход бурового раствора на входе, м3/с; bG - коэффициент, определяющий форму кривой υм=f(G), при этом контроль достижения оптимума осуществляют по минимуму частоты вибрации бурильной колонны Обновление модели производится подстройкой двух величин - значений kб и bG.

Недостаток: способ предусматривает применение адаптивной модели бурения, по которой рассчитывают оптимальное значение режима бурения только одного параметра управления - осевой нагрузки на долото, при этом скорость его вращения и расход бурового раствора для удаления выбуренной породы принимаются за константы.

Задачей изобретения является усовершенствование способа адаптивного оптимального управления процессами бурения и промывки нефтегазовых скважин.

Техническим результатом является увеличение точности оптимального управления режимами бурения и промывки и увеличение механической скорости проводки скважины. Технический результат достигается предложенным способом адаптивного управления процессом бурения и промывки скважин, при котором осуществляют подстройку детерминированной модели процесса бурения и промывки, представляющей взаимодействие породы на забое скважины с долотом бурильной колонны и буровым раствором, постоянно обновляют через каждые 0,3 метра проходки на основе результатов скважинных измерений условий бурения и рабочих данных наземного оборудования, принятых от системы управления наземным оборудованием, осуществляют определение оптимальных параметров бурения и промывки на основе обновленной модели процесса бурения и промывки, передачу в систему управления наземным оборудованием данных об оптимальных параметрах бурения и промывки и многократное повторение операций получения, обновления, определения и передачи в ходе работы скважины, отличающийся тем, что управление осуществляют по детерминированной модели процесса бурения и промывки

где υм - механическая скорость проходки, м/ч; kб - размерный коэффициент буримости породы, представляющий модель пластов; G - осевая нагрузка на долото, Н; n - скорость вращения долота, об/мин; Q - расход бурового раствора, м3/с; bn, bG - коэффициенты формы функции υм=f(G,n) по параметрам G,n; dc - диаметр скважины, м; ρп - плотность породы, Н/м3; s - коэффициент, который составляет 0,01-0,03 - допустимое содержание породы в буровом растворе; ρ - плотность бурового раствора, Н/м3. Модель бурения (1) имеет математический экстремум по параметрам G и n, что позволяет рассчитывать оптимальные осевую нагрузку на долото и скорость вращения долота, а модель промывки (2) по механической скорости бурения υм определяет объем выбуренной породы и необходимый для его удаления из скважины оптимальный расход бурового раствора.

Управление производится по целевой функции

где υм - механическая скорость проходки, м/ч;

kб - размерный коэффициент буримости породы;

G - осевая нагрузка на долото, Н;

n - скорость вращения долота, об/мин;

- расход бурового раствора, м3

bn, bG - коэффициенты формы функции υм=f(G,n) по параметрам G,n;

Способ оптимального адаптивного управления бурением реализуется следующим образом:

1 В начале бурения по заданным проектом данным на буровой устанавливают параметры режима бурения - нагрузка на долото G, скорость его вращения n, расход бурового раствора Q и производят разбуривание забоя на глубину 0,3 м;

2 Полученное в ходе бурения значение механической скорости υм измеряют и по ее величине согласно уравнению модели промывки (2) рассчитывают выбуренный объем породы и оптимальное для его удаления из скважины значение Qопт;

3 По имеющимся величинам G, n, Qопт и υм методом наименьших квадратов (или другим методом регрессионного анализа) рассчитывают значения коэффициентов k6, bn, bG уравнения модели бурения (1), тем самым модель адаптируется к реальным условиям на забое, т.е. к проходимой долотом породе;

4 Для модели бурения с полученными коэффициентами методом наискорейшего спуска (или другим методом математического программирования) определяют максимум функции (1) и оптимальные значения Gопт и nопт для его достижения.

5 Оптимальные значения Gопт, nопт и Qопт устанавливают на буровой, с ними производят новое бурение 0,3 метра проходки, измеряют полученную скорость бурения, перерассчитывают расход раствора по уравнению промывки (2), коэффициенты модели бурения (1) и и т.д.

Способ оптимального адаптивного управления процессом бурения и промывки нефтегазовых скважин, при котором осуществляют корректировку под забой модели процесса бурения, представляющей взаимодействие породы на забое скважины с работой долота и бурового раствора, получение через каждые 0,3 метра значения скважинного измерения результата бурения в ходе работы долота на забое - механической скорости проходки, обновление модели бурения на основе скважинных измерений условий бурения и рабочих данных наземного оборудования, принятых от системы управления наземным оборудованием, определение оптимальных параметров бурения на основе обновленной модели процесса бурения, передачу в систему управления наземным оборудованием данных об оптимальных параметрах бурения и многократное повторение операций получения, обновления, определения и передачи в ходе работы скважины, отличающийся тем, что управление осуществляют по детерминированной модели процесса бурения

для которой оптимальный расход определяется по объему выбуренной породы в предыдущем 0,3-метровом интервале бурения

где υм - механическая скорость проходки, м/ч; kб - размерный коэффициент буримости породы, представляющий модель пластов; G - осевая нагрузка на долото, Н; n - скорость вращения долота, об/мин; Q - расход бурового раствора, м3/с; bn, bG - коэффициенты формы функции υм=f(G,n) по параметрам G,n; dc - диаметр скважины, м; ρп - плотность породы, Н/м3; s - коэффициент, который составляет 0,01-0,03 - допустимое содержание породы в буровом растворе; ρ - плотность бурового раствора, Н/м3, при этом модель имеет математический максимум по параметрам G и n, что позволяет рассчитывать оптимальные осевую нагрузку на долото и скорость его вращения по критерию управления "максимум механической скорости", а оптимальный расход бурового раствора обеспечивает очистку скважины от выбуренного объема породы, при ступенчатом регулировании величины расхода выбирается мощность насосной группы, обеспечивающая расход Q, превышающий рассчитанный по уравнению (2).



 

Похожие патенты:

Изобретение относится к способу и устройству для прогнозирования изменения скорости нарастания обводненности нефтяного пласта с водонапорным режимом. Способ включает в себя: определение фактических скоростей нарастания обводненности и обводненностей нефтяного пласта, построение графика рассеяния фактических скоростей нарастания обводненности и обводненностей нефтяного пласта; аппроксимацию графика рассеяния фактических скоростей нарастания обводненности и обводненностей нефтяного пласта зависимостью между скоростью нарастания обводненности и обводненностью для получения начальной обводненности нефтяного пласта, степени извлечения сырой нефти, когда обводненность нефтяного пласта является начальной обводненностью, предельной добычи сырой нефти, когда обводненность нефтяного пласта является пределом обводненности; и определение закона изменения скорости нарастания обводненности по отношению к степени извлечения и изменения скорости нарастания обводненности в нефтяном пласте с водонапорным режимом.

Изобретение относится к автоматизированным информационным системам в области нефтедобычи и может использоваться для подбора оптимального технологического режима процесса добычи и транспортировки нефти и газа в системе «скважина - промысловая система сбора и транспорта продукции скважин», а также для проведения технической оценки состояния нефтепромысловых объектов.

Изобретение относится к вычислительной технике. Технический результат - повышение эффективности и достоверности геодезического мониторинга.

Изобретение относится к цифровой вычислительной технике. Техническим результатом является повышение уровня точности обработки информации за счет учета разнородности характеристик БСр группировок и выбора стратегии оптимального целераспределения по групповым объектам, что ведет к повышению боевой эффективности (результативности) в групповом бою: уничтожения противника с минимальными потерями собственных БСр.
Заявленное изобретение относится к системам испытания оборудования. Технический результат заключается в обеспечении достаточного тестового покрытия, гарантирующего максимально возможную полноту проведения испытаний.

Раскрыт способ для оценивания внутрискважинных скоростных и силовых параметров в произвольном месте движущейся бурильной колонны на основании данных измерения тех же параметров на поверхности, причем способ содержит этапы, на которых: а) используют геометрию и упругие свойства бурильной колонны для расчета передаточных функций, описывающих зависящие от частоты амплитудные и фазовые соотношения между взаимными комбинациями скоростных и силовых параметров на поверхности и в забое; b) выбирают базовый период времени; с) измеряют, напрямую или косвенно, скоростные и силовые параметры на поверхности, предварительно обрабатывают указанные измеренные данные путем применения сглаживающих и/или прореживающих фильтров и сохраняют предварительно обработанные данные в средствах хранения данных, которые выполнены с возможностью хранения предварительно обработанных данных измерений на поверхности по меньшей мере на протяжении последнего завершившегося базового периода времени; d) при обновлении содержимого средств хранения данных вычисляют внутрискважинные параметры в частотной области путем применения интегрального преобразования, такого как преобразование Фурье, к параметрам, полученным на поверхности, перемножают результаты с указанными передаточными функциями, применяют обратное интегральное преобразование к суммам связанных членов и выявляют точки в указанных базовых периодах времени, чтобы получить задержанные по времени оценки динамических параметров скорости и силы, также раскрыта система для реализации указанного способа.

Изобретение относится к способу верификации модели скважины, который содержит этапы: получение сохраненных скважинных данных существующей скважины, формирование модели на основе полученных скважинных данных, погружение инструмента для выполнения рабочей задачи в существующую скважину, причем инструмент выполнен с возможностью измерять текущие характеристики скважины при погружении, получение от инструмента данных инструмента, соответствующих измеренным в текущее время характеристикам скважины, при этом указанные данные инструмента представляют свойства скважины, имеющие отношение к эксплуатации скважины и производительности инструмента, и выполнение проверки подтверждения путем сравнения скважинных данных модели с данными инструмента.

Группа изобретений относится к системе и способу управления режимами эксплуатации подземного хранилища газа (ПХГ) в составе интегрированной автоматизированной системы управления технологическими процессами ПХГ и предназначена для поддержки персонала диспетчерской и геологической служб управления ПХГ при принятии оперативных решений по режимам эксплуатации ПХГ и его отдельных скважин.

Группа изобретений относится к разработке зрелых нефтяных месторождений, находящихся на третьей и четвертой стадиях разработки и, в частности, к выбору параметров эксплуатации скважин при добыче углеводородов на таких месторождениях.

Изобретение относится к области радиотехники. Технический результат - повышение точности компьютерного моделирования целостности сигнала и электромагнитной совместимости проектируемых СВЧ устройств в расширенном диапазоне рабочих частот до 100 ГГц и более.

Изобретение относится к газодобыче и может быть применено при разработке газовых и газоконденсатных месторождений. Система содержит газовую скважину, емкость с жидким раствором пенообразующего поверхностно-активного вещества (далее ПАВ), оборудование для автоматического регулирования дебита газа и для автоматической подачи ПАВ в скважину, датчики и приборы для измерения давления в затрубном пространстве скважины, температуры и давления на устье, температуры и давления или перепада давления после регулятора дебита газа, давления на забое в случае пакерной эксплуатации.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к проведению измерений при бурении добывающих скважин. Устройство содержит основание, имеющее ось вращения и выполненное с возможностью присоединения в осевом направлении между буровой трубой и бурильной коронкой.

Изобретение относится к нефтегазовой промышленности, а именно к системам для мониторинга строительства нефтегазовых скважин и управления буровыми операциями. Техническим результатом является сокращение времени бурения и снижение рисков аварий и осложнений, оптимизация технологических процессов, автоматизация анализа потока данных и управления отдельными процессами при бурении скважин.

Группа изобретений относится к области управления разработкой объектов нефтегазовых месторождений, в том числе со сложным геологическим строением, способов управления бурением скважин при освоении месторождений.

Группа изобретений относится к области бурения нефтяных и газовых скважин, а именно к способу и системе для автоматизированного управления работы буровыми установками.

Изобретение относится к области нефтяной промышленности, в частности к способам разработки нефтяной залежи, и может быть использовано для увеличения нефтеотдачи разрабатываемых залежей нефти за счет вовлечения в разработку неразбуренных участков.

Изобретение относится к области газовой и нефтегазовой промышленности и, в частности, к области управления технологическими режимами газового промысла. Технический результат - повышение энергоэффективности газового промысла за счет обеспечения возможности комплексного использования динамики показателей энергоэффективности и параметров режимов работы.

Раскрыт способ для оценивания внутрискважинных скоростных и силовых параметров в произвольном месте движущейся бурильной колонны на основании данных измерения тех же параметров на поверхности, причем способ содержит этапы, на которых: а) используют геометрию и упругие свойства бурильной колонны для расчета передаточных функций, описывающих зависящие от частоты амплитудные и фазовые соотношения между взаимными комбинациями скоростных и силовых параметров на поверхности и в забое; b) выбирают базовый период времени; с) измеряют, напрямую или косвенно, скоростные и силовые параметры на поверхности, предварительно обрабатывают указанные измеренные данные путем применения сглаживающих и/или прореживающих фильтров и сохраняют предварительно обработанные данные в средствах хранения данных, которые выполнены с возможностью хранения предварительно обработанных данных измерений на поверхности по меньшей мере на протяжении последнего завершившегося базового периода времени; d) при обновлении содержимого средств хранения данных вычисляют внутрискважинные параметры в частотной области путем применения интегрального преобразования, такого как преобразование Фурье, к параметрам, полученным на поверхности, перемножают результаты с указанными передаточными функциями, применяют обратное интегральное преобразование к суммам связанных членов и выявляют точки в указанных базовых периодах времени, чтобы получить задержанные по времени оценки динамических параметров скорости и силы, также раскрыта система для реализации указанного способа.

Изобретение относится к способу верификации модели скважины, который содержит этапы: получение сохраненных скважинных данных существующей скважины, формирование модели на основе полученных скважинных данных, погружение инструмента для выполнения рабочей задачи в существующую скважину, причем инструмент выполнен с возможностью измерять текущие характеристики скважины при погружении, получение от инструмента данных инструмента, соответствующих измеренным в текущее время характеристикам скважины, при этом указанные данные инструмента представляют свойства скважины, имеющие отношение к эксплуатации скважины и производительности инструмента, и выполнение проверки подтверждения путем сравнения скважинных данных модели с данными инструмента.

Изобретение относится к бурению нефтяных и газовых скважин гидравлическими забойными двигателями, а именно к способам контроля осевой нагрузки на долото и режима работы гидравлических забойных двигателей.
Наверх