Способ получения сварных соединений термоупрочняемых алюминиевых сплавов с высоким пределом выносливости



Способ получения сварных соединений термоупрочняемых алюминиевых сплавов с высоким пределом выносливости
Способ получения сварных соединений термоупрочняемых алюминиевых сплавов с высоким пределом выносливости
B23K103/10 - Пайка или распаивание; сварка; плакирование или нанесение покрытий пайкой или сваркой; резка путем местного нагрева, например газопламенная резка; обработка металла лазерным лучом (изготовление изделий с металлическими покрытиями экструдированием металла B21C 23/22; нанесение облицовки или покрытий литьем B22D 19/08; литье погружением B22D 23/04; изготовление составных слоистых материалов путем спекания металлического порошка B22F 7/00; устройства для копирования и регулирования на металлообрабатывающих станках B23Q; покрытие металлов или материалов металлами, не отнесенными к другим классам C23C; горелки F23D)

Владельцы патента RU 2709908:

федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") (RU)

Изобретение может быть использовано при сварке трением с перемешиванием термоупрочнямых алюминиевых сплавов, в частности 2ххх, 6ххх, 7ххх. После досварочной термической обработки Т6 осуществляют сварку трением с перемешиванием при частоте вращения инструмента от 1000 до 2500 об/мин и скорости сварки от 600 до 1500 мм/мин. Затем проводят послесварочную термическую обработку в виде искусственного старения при той же температуре, что и искусственное старение в обработке Т6. Способ обеспечивает получение сварного соединения с высоким пределом усталостной выносливости без значительной потери его прочностных свойств. 4 ил.

 

Изобретение относится к области сварки трением с перемешиванием, в частности к области сварки трением с перемешиванием термоупрочнямых алюминиевых сплавов.

Из уровня техники известен способ оценки усталостной прочности сварных соединений (US № 7448280, публ. 07.02.2008), в котором описан способ увеличения сопротивления усталости сварных соединений получаемых сваркой плавлением (аргонодуговая, лазерная) посредством наплавления дополнительного материала в области сварного соединения.

Недостатком такого способа является его принципиальная неприменимость для сварки алюминиевых термоупрочняемых сплавов, так как плавление приводит к деградации структуры и неприемлемому падению механических свойств сварных соединений.

Из уровня техники также известен способ увеличения сопротивления усталости посредством ультразвуковой ударной обработки сварного соединения, описанный в разных модификациях в целом ряде технических решений: Способ повышения устойчивости прочности сварного шаблона сварного соединения (JP 3899007, публ. 30.04.2004), Структура и метод повышения усталости эффективности сварного соединения (JP № 4580220, публ. 08.06.2006), Способ повышения устойчивости прочности сварного соединения (JP № 3899008, публ. 30.04.2004), Способ повышения устойчивости прочности зоны сварки и сварной структуры (JP 2006175512, публ. 06.07.2006), целью которого является формирование остаточных сжимающих напряжений в шве, позволяющих существенно увеличить сопротивление усталости сварного соединения.

Недостатком такого способа является, с одной стороны, его применение для сварных соединений, получаемых плавлением, что уже недопустимо для термоупрочняемых алюминиевых сплавов, а с другой стороны, использованием дополнительного оборудования (ультразвукового генератора и волновода) и энергозатрат на выполнение операции.

Задачей предлагаемого изобретения является разработка способа получения сварных соединений термоупрочняемых алюминиевых сплавов с высоким пределом усталостной выносливости, относительно уровня материала основы, без значительной потери прочностных свойств шва (коэффициент прочности сварного соединения не ниже 80% относительно уровня основного материала).

Задача решается посредством использования сварки трением с перемешиванием (СТП) и послесварочной термической обработки по режимам, позволяющим избежать деградации структуры и сформировать высокий уровень остаточных напряжений в сварном соединении, с помощью способа включающего досварочную термическую обработку Т6, сварку трением с перемешиванием при частоте вращения инструмента от 1000 до 2500 об/мин и скорости сварки от 600 до 1500 мм/мин, и послесварочную термическую обработку в виде искусственного старения при той же температуре что и искусственное старение в обработке Т6.

Изобретение поясняется чертежами.

На фиг.1 представлены ПЭМ изображения упрочняющих частиц вторых фаз в зонах термического воздействия сварных соединений, полученных при скорости сварки а) 120 мм/мин; б)760 мм/мин.

На фиг. 2 представлена фотография с характерной для зон термического воздействия сварных соединений, полученных при скорости сварки 760 мм/мин, зёренной структуры с развитой сеткой деформационных полос внутри.

На фиг.3 приведён график приложенной нагрузки относительно количества циклов до разрушения для основного материала АА6061-Т6 и сварного соединения, полученного при скорости сварки 760 мм/мин.

На фиг.4 представлены РЭМ изображения разрушенных образцов, а) основного материала, б) сварного соединения.

Осуществление изобретения

Для определённости и демонстрации принципиальной осуществимости и эффективности заявляемого способа был выбран распространённый термоупрочняемый алюминиевый сплав АА6061-Т6 (6ххх серия по международной классификации, представляющая собой алюминиевые сплавы системы Al-Mg-Si), где Т6 одно из состояний поставки данного сплава, означающие что материал был термически обработан посредством закалки (с температурой 540 °С) и последующего искусственного старения на максимальную прочность (160 С в течение 8 часов).

Для сварки использовали пластины толщиной 3 мм. Сварка осуществлялась инструментом с вогнутыми заплечиками диаметром 12,5 мм и штырём диаметром 5 мм с конической метрической резьбой М5. Высота штыря составляла 1,7 мм, поэтому, с целью обеспечения полного провара заготовки сварку проводили за 2 прохода с двух сторон. Сварка осуществлялась на столе, представляющем собой массивную стальную плиту. Какое либо дополнительно охлаждение не применялось.

Пластины сваривали на частоте вращения 1100 об/мин (максимально возможная для машины AccuStir 1004 GTC) и скоростях подачи 120 и 760 мм/мин. Выбор таких параметров сварки оптимален для сплавов 6ххх серии относительно возможной дефектности сварного соединения [Sato Y.S., Kokawa H. Friction stir welding (FSW) process // Weld. Int. 2003. Vol. 17, №11. P. 852-855]. После сварки полученные соединения подвергались послесварочной термической обработке - искусственному старению при 160°С в течение 8 часов, для восстановления фазового состава в центре зоны перемешивания. Последующие испытания на растяжения показали, что коэффициент прочности сварного соединения (отношение временного сопротивления шва к временному сопротивлению основного материала в состоянии Т6 умноженное на 100%) составил 66% и 90% для 120 и 760 мм/мин соответственно (временное сопротивление основного материала АА6061-Т6 составляет 350 МПа), а локализация деформации с последующим разрушением образцов всегда происходила в зоне термического воздействия сварного соединения. Изучение микроструктуры показало (фиг.1), что в зоне термического воздействия сварного соединения, полученного при скорости сварки 120 мм/мин (фиг. 1а) происходит существенная деградация структуры посредством коагуляции частиц упрочняющей фазы, относительно шва, полученного при 760 мм/мин (фиг. 1б), где частицы вторых фаз представлены в виде мелкодисперсных выделений. Столь значительная разница в микроструктуре легко объясняет разницу в коэффициентах прочности полученных сварных соединений, так как дисперсионное упрочнение вносит решающий вклад в прочность для термоупрочняемых алюминиевых сплавов.

Также в зонах термического воздействия шва полученного при 760 мм/мин были обнаружены деформационные полосы (фиг. 2), которые не наблюдались для шва, полученного при скорости сварки 120 мм/мин. Это объясняется большим тепловыделением (что прямо подтверждается коагуляцией частиц вторых фаз), а следовательно и меньшими остаточными напряжениями, действующими при перемешивании материала на скорости сварки 120 мм/мин.

Деформационные полосы свидетельствует о значительном уровне остаточных напряжений в сварном соединении, что является ключевым фактором, сдерживающим зарождение трещины усталости в шве.

Проведение испытаний на усталость для шва, полученного при скорости сварки 760 мм/мин, показало, что предел усталостной выносливости сварного соединения не ниже предела усталостной выносливости основного материла (фиг. 3), а характер разрушения для шва (фиг. 4б) и материала основы (фиг. 4а) одинаков. Это, в свою очередь свидетельствует о том, что зарождение усталостной трещины и ее распространение в обоих случаях происходит одинаково.

Таким образом, последовательность обработки, позволяющая получить высокий уровень сопротивления усталости сварного соединения, с сохранением высокого коэффициента прочности, заключается в следующем:

1) Досварочная термическая обработка Т6 для материала основы. Так как такой тип обработки является состоянием поставки для многих термоупрочняемых алюминиевых сплавов;

2) Сварка по оптимизированному режиму, который с одной стороны, не приводит к существенной коагуляции частиц вторых фаз в зонах термического воздействия, а с другой стороны позволяет сформировать значительный уровень остаточных напряжений в шве;

3) Послесварочная термическая обработка, представляющая собой искусственное старение по режиму, позволяющему восстановить частицы вторых фаз в центре зоны перемешивания, и при этом не допускающая как релаксации остаточных напряжений в шве, так и существенной коагуляции частиц вторых фаз в зонах термического воздействия.

Таким образом, предложенный способ применим для любого сплава, поставляемого в состоянии Т6, из любой серии термоупрочняемых алюминиевых сплавов 2ххх, 6ххх и 7ххх. Конкретные режимы сварки и послесварочной термической обработки зависят от химического состава сплава, а также таких факторов, как геометрия инструмента, толщина свариваемых листов, использование (или не использование) охлаждающих подложек или охлаждающих сред (например, подводная сварка трением с перемешиванием), влияющих на процессы тепловыделения, поглощения и рассеивания тепла, а следовательно, напрямую влияющие на фазовые превращения, происходящие в сварном соединении.

Способ получения сварных соединений термоупрочняемых алюминиевых сплавов с высоким пределом выносливости, включающий досварочную термическую обработку сплавов Т6, сварку трением с перемешиванием при частоте вращения инструмента от 1000 до 2500 об/мин и скорости сварки от 600 до 1500 мм/мин и послесварочную термическую обработку сварного соединения в виде искусственного старения при той же температуре, что и искусственное старение в обработке Т6.



 

Похожие патенты:

Изобретение относится к способу и устройству термической обработки сварных соединений рельсов, например длинномерных рельсов и бесстыковых плетей. Способ термической обработки сварных соединений рельсов включает сварку встык рельсов с образованием сварного соединения и зоны термического влияния сварки, индукционный нагрев всего сечения рельса в области сварного соединения до температуры закалки на длину, превышающую длину зоны термического влияния сварки, выдержку во времени при температуре закалки, и затем охлаждение.

Изобретение относится к области термической обработки сварных соединений, например, длинномерных рельсов и бесстыковых плетей. Установка для термической обработки сварных стыков рельсов содержит блок управления процессом термической обработки на базе промышленного компьютера с записанной программой нагрева, индукционный модуль нагрева, датчик контроля температуры нагрева в виде инфракрасного пирометра, установленный в зоне нагрева, и закалочное устройство в виде спрейера, соединенного с устройством подачи закалочной среды с датчиком давления, и приводы перемещения индуктора и закалочного устройства.

Изобретение относится к сварке толстостенных металлоконструкций, в частности к сварке продольных швов сформованной цилиндрической заготовки, и может быть использовано при производстве сварных труб большого диаметра.

Изобретение относится к области металлургии. Для улучшения сцепления покрытия со стальным листом осуществляют непрерывный отжиг в печи с атмосферой инертного газа и Н2, включающий предварительный нагрев до 200-350°С в атмосфере А1 с точкой росы ниже -20°С при давлении Р1, имеющей Н2 менее 3,0% об., последующий нагрев до 600-1000°С в атмосфере А2 с точкой росы ниже -40°С при давлении Р2 выше Р1, имеющей Н2 менее 0,5% об., выдержку в атмосфере А3, имеющей Н2 менее 3,0% об., охлаждение до 400-800°С в атмосфере А4 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., выравнивание температуры краев и центра листа в атмосфере А5 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., и перемещение листа с помощью устройства с горячими натяжными роликами в ванну металлического расплава для нанесения покрытия в атмосфере А5 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., при этом атмосферу А2 непрерывно удаляют в направлении секции печи предварительного нагрева и выдержки, а атмосферы А1, А3, А5 и А6 выпускают периодически или непрерывно через отверстия печи.

Изобретение относится к способу получения сварного соединения металлов в процессе дуговой сварки. Сварку осуществляют со сквозным проплавлением и в вертикальном направлении в плоскости, перпендикулярной оси сварного шва, на кристаллизующийся металл сварочной ванны осуществляют наложение циклических вибрационных колебаний с частотой от 10 до 35 Гц и амплитудой от 0,1 до 0,5 мм.

Изобретение относится к оптимизации остаточного напряженного состояния и может быть использовано при производстве сварных конструкций. Для повышения долговечности сварных изделий, стабильности их геометрических форм у сварного шва по разные от него стороны определяют положение концентратора растягивающих остаточных сварочных напряжений с двумя изотропными точками замкнутого типа, расположенными симметрично.

Изобретение относится к области металлургии, в частности к созданию высокопрочной стальной трубы электросваркой сопротивлением. Для повышения сопротивления разрыву и равномерного относительного удлинения, обеспечивающих подходящую сгибаемость стальной трубы, её получают электросваркой сопротивлением из стали, содержащей, в мас.%: C 0,04-0,15, Si 0,10-0,50, Mn 1,0-2,2, P 0,050 или менее, S 0,005 или менее, Cr 0,2-1,0, Ti 0,005-0,030 и Al 0,010-0,050, остальное - Fe и неизбежные примеси, и микроструктуру, включающую полигональный феррит с объёмной долей 70% или более и остаточный аустенит с объёмной долей 3-20%, и остаток, имеющий по меньшей мере одну фазу, выбранную из мартенсита, бейнита и перлита, при этом полигональный феррит имеет средний размер зерна 5 мкм или более и отношение сторон 1,40 или менее.

Изобретение относится к области металлургии, в частности термической обработке сварных соединений рельсов. Для уменьшения износа рельсов в области сварного соединения и восстановления структуры и свойств в области сварных соединений способ включает первоначальный нагрев всего сечения рельса в области сварного соединения до температуры нагрева под закалку на длину, превышающую длину зоны термического влияния сварки и первоначальную закалку; затем производят повторный нагрев поверхностного слоя по меньшей мере головки рельса в зонах термического влияния первоначального нагрева до температуры нагрева под закалку, при этом длину участков повторного нагрева задают таким образом, чтобы исключить наложение зон термического влияния повторного нагрева на сварной шов, и далее производят повторную закалку.

Изобретение относится к области металлургии. Для предотвращения появления хрупких изломов, возникающих в подошве сварного шва рельса, устройство для термической обработки рельса содержит источник питания, электрически соединенный c катушкой для нагрева для индукционного нагрева зоны термического влияния сварного шва «HAZ» части подошвы рельса, и средство для охлаждения, при этом катушка для нагрева обращена к нижней поверхности части подошвы рельса и имеет длину внешней области в направлении длины рельса 1,2Lh или более, а в направлении ширины рельса – равную 1,1W или более, где Lh - длина зоны термического влияния сварного шва «HAZ» части подошвы рельса в направлении длины рельса, мм, W - ширина подошвы рельса, мм.

Изобретение относится к области металлургии. Для предотвращения изменения температуры в области тепловой обработки труб способ обработки трубы включает: первый этап размещения во внутренней полости трубы через по меньшей мере одно отверстие, выполненное в ней, по меньшей мере одного расширительного элемента с подающей трубкой, выполненных из гибкого материала, и его расположения по меньшей мере с одной стороны нагреваемого участка трубы посредством воздушного потока, создаваемого во внутренней полости трубы; второй этап подачи текучей среды через гибкую подающую трубку в по меньшей мере один расширительный элемент с обеспечением надувания расширительного элемента и перекрытия внутренней полости трубы по меньшей мере с одной стороны нагреваемого участка трубы; третий этап нагрева участка трубы путем подачи электрического тока к индукционной катушке, расположенной на внешней поверхности нагреваемого участка трубы при одновременном перекрытии по меньшей мере с одной стороны нагреваемого участка внутренней полости трубы с помощью расширительного элемента.

Изобретение может быть использовано для получения сваркой трением соединения трубчатых деталей бурильного замка – ниппеля и муфты с трубой. Устанавливают деталь замка и трубу в упор торцами.

Изобретение относится к автомобильной промышленности. Способ включает следующие отдельные рабочие этапы: изготовление фланца (2) с внутренним профилем (2а) с возможностью образования места посадки борта шины; изготовление обода, с одной стороны, с внешним профилем (1а) с возможностью образования места посадки борта шины и, с другой стороны, с кольцевой торцевой поверхностью (1b) для сборки с частью (2b) фланца (2); сборка фланца (2) с ободом (1) в месте (2а) посадки указанного фланца (2) и кольцевой торцевой поверхности (1b) обода (1); обод (1) выполнен согласно следующим последовательным операциям: операция (P1) производства кольцевой торцевой поверхности (1b) без сварки; затем операция (P2) расширения указанной кольцевой торцевой поверхности (1b) до размеров конечного обода в один этап; затем операция (P3) холодного или горячего флоспининга кольцевой торцевой поверхности (1b) так, чтобы получить обод (1) в его конечной форме и профиле, содержащем заплечик, только на стороне, которая не будет приварена к фланцу (2).

Изобретение может быть использовано для соединения сваркой трением стыков большой протяженности, преимущественно, листовых элементов и узлов конструкций из алюминиевых или магниевых сплавов.

Изобретение может быть использовано при изготовлении сварных конструкций и полуфабрикатов, в том числе, из алюминиевых сплавов, сваркой трением с перемешиванием. Предварительно проводят одностороннее утолщение свариваемых кромок деталей путем их одновременной холодной осадки.

Изобретение может быть использовано при стыковом соединении деталей из алюминиевых сплавов, имеющих низкую свариваемость. Вращающийся инструмент, состоящий из наконечника в виде тела вращения и заплечика, погружают в стык свариваемых деталей до контакта заплечика с их поверхностью и выдерживают.

Изобретение относится к области машиностроения и может быть использовано при изготовлении электрической машины, содержащей литую деталь с расположенным в ней статором.

Изобретение может быть использовано для получения стыковых соединений алюминиевых сплавов, имеющих низкую свариваемость - высокопрочных алюминий-литиевых сплавов системы Al-Cu-Li.

Изобретение может быть использовано при изготовлении сварных конструкций из алюминиевых полуфабрикатов переменной толщины методом сварки трением с перемешиванием.

Изобретение может быть использовано при получении сваркой трением изделий с пересекающимися соединениями. Вставка (106) предназначена для заполнения отверстия (404), образованного в пересекающихся сварных соединениях при сварке трением с перемешиванием объекта (400).

Группа изобретений относится к узлу подрамника для обеспечения опоры для пары колес транспортного средства. Способ изготовления подрамника из легкого металла для транспортного средства, согласно которому осуществляют экструдирование основания, кронштейна рычага подвески, крепежной опоры.

Изобретение относится к способу электронно-лучевой сварки кольцевого соединения тонкостенных конструкций из высокопрочных алюминиевых сплавов и может быть использовано для изготовления легких конструкций с высокими требованиями по прочности и герметичности.
Наверх