Способ изготовления свч-гибридной интегральной микросхемы космического назначения с многоуровневой коммутацией

Использование: для изготовления СВЧ–гибридных интегральных микросхем космического назначения с многоуровневой коммутацией на основе органического диэлектрика. Сущность изобретения заключается в том, что способ изготовления СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика включает изготовление многослойной платы с чередованием слоев с металлизированным рисунком и слоев органического диэлектрика с последующим монтажом кристаллов, перед которым проводят термическую обработку. Технический результат: обеспечение возможности получения стабильных характеристик и температурная независимость характеристик СВЧ–сигнала СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика в диапазоне частот от десятков мегагерц до десятков гигагерц. 4 з.п. ф-лы, 6 ил.

 

Изобретение относится к области технологии микроэлектроники, а именно к способам изготовления интегральных микросхем с многоуровневой коммутацией и может быть использовано для изготовления СВЧ–гибридных интегральных микросхем космического назначения с многоуровневой коммутацией на основе органического диэлектрика.

Из уровня техники известен способ изготовления тонкопленочных многоуровневых плат для многокристальных модулей, гибридных интегральных схем и микросборок (см. RU2459314, опубл. 20.08.2012) (1). В способе изготовления тонкопленочных многоуровневых плат для многокристальных модулей, микросборок и гибридных интегральных схем, включающем подготовку базовой платы, на которой формируются уровни коммутации последовательным нанесением слоев металлизации и формированием топологии первого и последующих уровней коммутации, согласно изобретению все контактные площадки схемы как для последующего соединения их с выводами активных компонентов, так и контактные площадки для электрического соединения к внешним выводам располагают в первом проводящем уровне, выполненном в виде многослойного покрытия V–Cu–Ni + химический Ni, где химический Ni используют в качестве стопслоя при формировании последующих уровней коммутации, разведение проводниковых слоев «сигнальный» и потенциальных – «питание» и «земля» осуществляют в индивидуальных уровнях.

К недостаткам известного технического решения относится невысокая стабильность тонкопленочных многоуровневых плат как во времени при эксплуатации так и при воздействии повышенной температуры из-за неконтролируемого и неуправляемого окисления слоев коммутации.

Наиболее близким по технической сущности и достигаемому эффекту техническим решением к заявляемому изобретению – прототипом является способ изготовления монолитной интегральной схемы на основе полупроводникового соединения (см. RU2601203, опубл. 27.10.2016)(2). Изобретение относится к микроэлектронике, а именно к технологии получения монолитных интегральных схем (МИС) на основе полупроводниковых соединений . Изобретение обеспечивает получение МИС на основе полупроводниковых соединений с более низкой себестоимостью изготовления за счет использования металлизации, в которой минимизировано содержание драгоценных металлов, по технологии, совместимой с технологией Si микроэлектроники, для формирования современных приборов гетероинтегрированной электроники. Устройство содержит полупроводниковую пластину с активным слоем, содержащим канальный и контактный слои, включающее активные и пассивные элементы, выполненные на основе омических контактов, затворов, нижней обкладки конденсаторов, резистивного слоя, металлизации первого, второго и третьего уровней, первого, второго, третьего и четвертого слоев защитного диэлектрика, сквозных отверстий и металлизации обратной стороны. Металлизации первого, второго уровней и обратной стороны выполнены на основе Cu, а омических контактов и затворов –на основе Al.

К недостаткам известного технического решения также относится невысокая стабильность получаемых интегральных схем из-за нестабильности структур «металлизация –защитный диэлектрик».

Целью изобретения является создание способа изготовления СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика, обеспечивающего стабильность ее характеристик СВЧ–сигнала как во времени, так и при повышенной и пониженной температуре эксплуатации.

Техническим результатом заявленного изобретения является получение стабильных характеристик СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика в диапазоне частот от десятков мегагерц до десятков гигагерц. Также, техническим результатом является температурная независимость характеристик СВЧ–сигнала СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика в диапазоне частот от десятков мегагерц до десятков гигагерц.

Технический результат изобретения достигается за счет создания способа изготовления СВЧ–гибридной интегральной микросхемы космического назначения с многоуровневой коммутацией, включающего последовательную подготовку поверхности подложки, формирование первого функционального металлического слоя с топологическим рисунком, последовательное выполнение чередующихся слоев диэлектрика с металлизированными микроотверстиями и функциональных металлических слоев с топологическим рисунком, на которые проводят монтаж кристаллов, перед монтажом кристаллов проводят термическую обработку, а в качестве межслойного диэлектрика используют органический полимерный диэлектрик толщиной 40-100 мкм.

В частном случае термическую обработку СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе негативного фотополимера толщиной 40-100 мкм перед монтажом кристаллов осуществляют в термошкафу со скоростью не более 1оС/мин, выдержку при данной температуре осуществляют в течение 12–15 часов, остывание производят до комнатной температуры в объеме термошкафа.

Частным случаем выполнения способа также является то, что термическую обработку СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе полипиромеллитимида толщиной 40-100 мкм перед монтажом кристаллов проводят ступенчатым нагревом со скоростью не более 1оС/мин в течение 9–11 часов, осуществляют выдержку в течение не менее 1,5 часов при температуре на 20 % ниже температуры имидизации.

Заявленное изобретение проиллюстрировано следующими изображениями:

Фиг. 1 – Изменение СВЧ–параметра (S21) потерь СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе негативного фотополимера перед монтажом кристаллов от продолжительности термической обработки;

Фиг. 2 – Изменение СВЧ–параметра (S21) потерь СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе полипиромеллитимида с системой металлизации функционального слоя Cr-Cu-Ni перед монтажом кристаллов от продолжительности термической обработки;

Фиг. 3 – Изменение СВЧ–параметра (S21) потерь СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе полипиромеллитимида с системой металлизации функционального слоя перед монтажом кристаллов от продолжительности термической обработки;

Фиг. 4 – Блок–схема последовательности технологических операций, отражающая сущность изобретения;

Фиг. 5 – Температурно–временная зависимость стабилизирующей термообработки полученной СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе негативного фотополимера;

Фиг. 6 – Температурно–временная зависимость стабилизирующей термообработки полученной СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе полипиромеллитимида.

Сущность заявленного способа изготовления СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика заключается в следующем. СВЧ–гибридная интегральная микросхема с многоуровневой коммутацией на основе органического диэлектрика состоит из N чередующихся слоев металлизации и органического диэлектрика. Проводящие слои выполнены из напыленного металла Cr-Cu-Cr, Сr-Сu-Ni или толщиной от 3 до 10 мкм, на которых сформирован функциональный топологический рисунок структуры дорожек, и которые соединены между собой металлизированными переходными отверстиями. Диэлектрические слои со сформированным топологическим рисунком, включают в себя металлизированные отверстия и состоят из органического диэлектрика толщиной от 40 до 100 мкм. Топология платы служит для подведения информационных и управляющих сигналов к СВЧ–кристаллам, установленным на нее и отведения обработанной информации от кристаллов дальше по функциональному тракту. В связи с тем, что свойства СВЧ–сигналов очень сильно зависят от структуры проводящей области - имеет место изменение характеристик сигнала, связанное с температурно-временным воздействием на структуру «металл-диэлектрик». Заявленный способ направлен на устранение вышеуказанного температурно-временного воздействия.

Примером использования предлагаемого способа может служить стабилизация параметров структуры многослойной СВЧ–платы на основе полимерных диэлектрических слоев на подложке из нитрида алюминия или кремния. Структура многослойной СВЧ–платы состоит из жесткого основания (подложки), изготовленного из AlN–керамики или высокоомного кремния, толщиной 0,4-0,6 мм диаметром 76 мм с классом шероховатости поверхности не ниже 13 и комплексом чередующихся функциональных проводящих слоев и толстых полимерных диэлектрических слоев, толщиной 40-100 мкм. Подготовка поверхности AlN–основания перед напылением функционального металлического слоя состоит из комплекса последовательных процессов жидкостной химической (гидромеханическая обработка, обработка в хромовой смеси на основе серной кислоты, обработка в аммиачно–перекисном растворе) и плазмохимической обработки в кислородной плазме. Подготовка поверхности кремниевой пластины перед напылением функционального металлического слоя состоит из комплекса жидкостной химической обработки (гидромеханическая обработка, обработка в растворе Каро, обработка в аммиачно–перекисном растворе). Интервалы внутрикомплексного межоперационного простоя не должны превышать 30 минут. Формирование функциональных проводящих структур осуществляется методом магнетронного распыления тонких пленок. Процесс нанесения тонкопленочной проводящей структуры Cr–Cu–Ni производится за один цикл. Слой Cr в данной системе имеет назначение адгезионного подслоя в проводящей системе Cr–Cu–Ni. Толщина слоя Cu для проводящих слоев платы составляет от 3 мкм до 5 мкм. Защитный слой Ni в данной проводящей системе имеет толщину 0,3 мкм. Слой Au осаждается гальваническим методом. Получаемая топология сформирована с помощью фотолитографических процессов, включающих в себя для первого слоя металлической структуры нанесение позитивного фоторезиста центрифугированием, в то время как для последующих слоев проводящей структуры используется спреевое нанесение фоторезиста. После термообработки на пластине, с помощью соответствующего слою проводящей структуры фотошаблона методом экспонирования с зазором сформирована фоторезистивная маска (ФРМ). Металл, не закрытый ФРМ, удаляется методом жидкостного химического травления (ЖХТ). По окончании процесса ЖХТ, защитная ФРМ удаляется в органических растворителях (например, в ацетоне). В данной структуре диэлектрические слои (толщина одного слоя составляет от 40 до 100 мкм) реализуются формированием толстого полимерного покрытия из раствора. В данном примере толстым полимерным покрытием для формирования диэлектрического слоя платы является негативный фотополимер или нефоточувстительный полимер - полипиромеллитимид. Фоточувствительность полимера позволяет формировать топологию диэлектрического слоя экспонированием с зазором через фотошаблон с последующим проявлением и термообработкой, в то время как топологический рисунок диэлектрического слоя на основе нефоточувствительного полипиромеллитимида формируется с использованием напыленной металлической маски с последующим жидкостным химическим травлением. Подготовка поверхности перед нанесением полимерного покрытия представляет собой последовательность из операций химической обработки в органическом растворителе, плазмохимической обработки в кислородной плазме и термической обработки. Слой негативного фотополимера, толщиной 50 мкм получен дозированием раствора на подложку с последующим центрифугированием при 1400 об/мин в течение 1 минуты. Равномерность толстого диэлектрического слоя и необходимое качество поверхности полимерного покрытия достигается ограничением ускорения при центрифугировании. Предварительная термообработка проводилась в термошкафу при 120оС в течение 40 минут. Экспонирование – в течение 23 секунд через фотошаблон под лампой широкого спектра. Постэкспозиционная обработка проводилась при температуре 100ОС в течение 50 минут с последующим плавным охлаждением до комнатной температуры. Удаление непроэкспонированных областей топологии осуществлялось 4–6 минут в проявителе типа «Mr–Dev 600» с последующей обработкой в изопропиловом спирте и сушке воздухом. Задубливание проводили при температуре 150оС в течение 3 часов. После получения многослойной структуры производили измерения СВЧ–параметров функциональных элементов. Стабилизация параметров полученной СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика на подложке из нитрида алюминия осуществлялась методом термической обработки в термошкафу при температуре ниже температуры деструкции органического диэлектрика на 10%. При этом нагрев был осуществлен при скорости не более 1 оС/мин и последующей выдержке в течение 12–15 часов. Остывание производили до комнатной температуры в объеме термошкафа. В случае с формированием слоя диэлектрика на основе полипиромеллитимида, толщина в 50 мкм получена дозированием раствора на подложку с последующим центрифугированием при 400 об/мин в течение 3 минуты. Равномерность толстого диэлектрического слоя и необходимое качество поверхности полимерного покрытия достигается ограничением ускорения при центрифугировании. Термообработка после нанесения проводится со ступенчатым нагревом и выдержкой при температуре на 20% ниже температуры имидизации в течение 1,5 часа, с последующим остыванием доя комнатной температуры в объеме шкафа. Затем производится формирование металлической маски Cr-Cu, где толщина Cu составляет 1 мкм, с помощью процессов вакуумного напыления и фотолитографических процессов. Методом жидкостного химического травления удаляется материал диэлектрика из незакрытых маской зон. Маска удаляется методом плазмохимического травления или жидкостного химического травления. Затем проводили измерения параметров уже после термической обработки. Для получения динамики изменения СВЧ–параметров функциональных элементов от времени термической обработки, изготовленную СВЧ–гибридную интегральную микросхему с многоуровневой коммутацией на основе негативного фотополимера подвергали термообработке циклами с выдержкой по 1 часу и аналогичными параметрами нагрева и охлаждения, а СВЧ–гибридную интегральную микросхему с многоуровневой коммутацией на основе полипиромеллитимида подвергали термообработке циклами с выдержкой по 1 часу при температуре 200оС, что демонстрируется на фиг.1 фиг.2 и фиг.3, где S(2,1) – величина прохождения сигнала в СВЧ–линии, а номер измерения – порядковый номер процесса термообработки. Измерения проводились с помощью векторного анализатора цепей ZVA40 фирмы Rohde&Schwarz. В процессе измерения с векторного анализатора подавали сигнал на тестовые СВЧ–линии разного вида (микрополосковые, симметричные, копланарные) и измеряли S–параметры. Далее набиралась статистика, которая представлена на графике. На фиг.1 видно, что при первых циклах обработки величина S(2,1) для СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе негативного фотополимера резко ухудшается, но после, в среднем, 8 циклов возвращается, минимум, в исходное состояние, либо слегка улучшается, относительно исходного. При этом график имеет примерно одинаковую форму в независимости от вида тестовых СВЧ–линий. На фиг.2 и фиг.3 видно, что после температурного воздействия величина S(2,1) стабильна. Для СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе полипиромеллитимида независимо от материала металлизации нет температурной зависимости СВЧ-характеристик от времени и количества циклов нагревания и/или охлаждения.

На фиг. 5 изображена температурно–временная зависимость стабилизирующей термообработки, полученной СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе негативного фотополимера. Участок «AB» характеризует нагрев СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика, скорость которого не превышает 1 оС/мин. Участок «BC» показывает выдержку СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика при температуре на 10% ниже температуры его деструкции. Участок «СD» характеризует остывание СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика до исходной температуры.

На фиг. 6 изображена температурно–временная зависимость стабилизирующей термообработки, полученной СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе полипиромеллитимида. Участок «AB» характеризует нагрев до температуры 90оС в течение 3 часов. Участок «BC» - выдержку при данной температуре 1 час. Участок «CD» показывает нагрев с температуры 90оС до температуры 150оС в течение 3 часов, с последующей выдержкой (участок «DE») при этой температуре в течение 1 часа. Следующий участок «EF» характеризует собой 3х-часовой нагрев с температуры 150оС до температуры 275оС. После выдержки в течение 1,5 часов при температуре 275оС (участок «FG») происходит остывание в объеме термошкафа до комнатной температуры (участок «GH»).

После проведения стабилизации параметров структуры многослойной СВЧ–платы на основе полимерных диэлектрических слоев с помощью термообработки производят поверхностный монтаж кристаллов и пассивных элементов на поверхность платы с осуществлением контакта посредством микросварки и пайки на контактные площадки СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией.

В процессе эксплуатации СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика из объема полимерных диэлектрических слоев выделяются низкомолекулярные летучие соединения, приводящие к ухудшению СВЧ-параметров функциональных элементов, из-за окислительно-восстановительных реакций с металлизацией, что и более интенсивно проявляется в изменении СВЧ характеристик при термообработке. Изменение СВЧ-характеристик функциональных элементов обусловлено протеканием процессов не только в металлизации СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика, но и на границе раздела металлизации с слоем органического диэлектрика, а также и в самом слое полимера.

Таким образом, в результате применения заявляемого способа изготовления СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика обеспечивается получение стабильных СВЧ–характеристик в многослойной плате на органическом диэлектрике в диапазоне частот от десятков мегагерц до десятков гигагерц и одновременно достигается температурная независимость СВЧ–характеристик многослойной СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на основе органического диэлектрика в указанном диапазоне частот.

1. Способ изготовления СВЧ–гибридной интегральной микросхемы космического назначения с многоуровневой коммутацией, включающий последовательную подготовку поверхности подложки, формирование первого функционального металлического слоя с топологическим рисунком, последовательное выполнение чередующихся слоев диэлектрика с металлизированными микроотверстиями и функциональных металлических слоев с топологическим рисунком, на которые проводят монтаж кристаллов, отличающийся тем, что перед монтажом кристаллов проводят термическую обработку, а в качестве межслойного диэлектрика используют органический полимерный диэлектрик толщиной 40-100 мкм.

2. Способ изготовления СВЧ–гибридной интегральной микросхемы по п.1, отличающийся тем, что в качестве органического полимерного диэлектрика применяется полипиромеллитимид.

3. Способ изготовления СВЧ–гибридной интегральной микросхемы по п.2, отличающийся тем, что термическую обработку перед монтажом кристаллов осуществляют ступенчатым нагревом со скоростью не более 1 °С/мин в течение 9–11 часов, осуществляют выдержку в течение не менее 1,5 часов при температуре на 20 % ниже температуры имидизации, а остывание производят до комнатной температуры.

4. Способ изготовления СВЧ–гибридной интегральной микросхемы по п.1, отличающийся тем, что в качестве органического полимерного диэлектрика применяется негативный фотополимер.

5. Способ изготовления СВЧ–гибридной интегральной микросхемы по п.4, отличающийся тем, что термическую обработку перед монтажом кристаллов осуществляют со скоростью не более 1 °С/мин, выдержку при температуре на 10% ниже температуры деструкции органического диэлектрика осуществляют в течение 12–15 часов, остывание производят до комнатной температуры.



 

Похожие патенты:

Изобретение относится к подложке матрицы и способу ее изготовления. Способ изготовления подложки матрицы включает: осаждение проводящего слоя на подложку и применение первой маски для травления проводящего слоя с формированием трех электродов тонкопленочного транзистора, первой сигнальной линии и второй сигнальной линии, причем первая сигнальная линия содержит первую часть и вторую часть, разделенные и расположенные с каждой стороны второй сигнальной линии, последовательное осаждение промежуточных слоев и применение второй маски при травлении промежуточных слове с формированием первой соединительной перемычки, соединяющей первую часть и вторую часть, осаждение проводящего электрода и применение третьей маски при травлении проводящего электрода с формированием электрода пикселя и соединительной линии, электрически соединенной с первой частью и второй частью.

Использование: для изготовления пиксельного блока с тонкопленочным транзистором из низкотемпературного поликристаллического кремния. Сущность изобретения заключается в том, что способ изготовления пиксельного блока с тонкопленочным транзистором из низкотемпературного поликристаллического кремния содержит: подготовку подложки и формирование буферного слоя на подложке; формирование слоя полупроводниковой структуры и первого изоляционного слоя, имеющих одинаковую толщину, и с расположением их в одном и том же слое; причем этап формирования буферного слоя на подложке включает этап: на подложке последовательно формируют слой нитрида кремния и слой оксида кремния; этап формирования на буферном слое слоя полупроводниковой структуры и первого изоляционного слоя, расположенных в одном и том же слое и имеющих одинаковую толщину, включает этапы, на которых: формируют аморфный кремниевый слой на буферном слое и осуществляют процесс кристаллизации аморфного слоя для формирования поликристаллического кремниевого слоя; структурируют аморфный кремниевый слой с помощью первого процесса фотолитографии для формирования слоя полупроводниковой структуры; формируют слой нитрида кремния, толщина которого совпадает с толщиной слоя полупроводниковой структуры, на слое полупроводниковой структуры и буферном слое там, где не сформирован слой полупроводниковой структуры; наносят негативный фоторезист на слой нитрида кремния в местах, не совпадающих с расположением слоя полупроводниковой структуры; структурируют слой нитрида кремния с помощью второго процесса фотолитографии; далее травят слой нитрида кремния на слое полупроводниковой структуры, чтобы травлением удалить слой нитрида кремния со слоя полупроводниковой структуры для формирования первого изоляционного слоя, толщина которого совпадает с толщиной слоя полупроводниковой структуры на обоих краях слоя полупроводниковой структуры.

Предлагаются способ изготовления и оборудование для изготовления подложки тонкопленочных транзисторов. В способе изготовления после формирования затвора и изолирующего слоя затвора тонкопленочного транзистора последовательно наносятся полупроводниковый слой и первый защитный слой.

Подложка матрицы тонкопленочных транзисторов включает область расположения электродов пикселей, область расположения электродов данных, прозрачный слой электродов пикселей, сформированный в области расположения электродов пикселей, первый металлический слой, первый диэлектрический слой, слой аморфного кремния, второй металлический слой, второй диэлектрический слой, сформированные в области расположения электродов пикселей и области расположения электродов данных.

Изобретение относится к производству радиоэлектронной аппаратуры. Технический результат - повышение надежности металлокерамических плат (МКП) в области межслойных переходов, уменьшение размеров последних и повышение плотности их размещения в МКП - достигается заполнением переходных отверстий путем покрытия стенок переходных отверстий слоем низковязкой металлизационной пасты с последующим заполнением отверстий с металлизированными стенками высоковязкой металлизационной пастой, благодаря чему предотвращается разрушение МКП в процессе температурной обработки.

Изобретение относится к технологии производства многокристальных модулей, микросборок с внутренним монтажом компонентов. Технический результат - уменьшение трудоемкости изготовления, расширение функциональных возможностей и повышение надежности микроэлектронных узлов.

Изобретение относится к электронной технике и может быть использовано при создании мощных гибридных интегральных схем СВЧ-диапазона многоцелевого назначения. Технический результат - улучшение электрических характеристик за счет улучшения теплоотвода, повышение технологичности при сохранении массогабаритных характеристик.

Изобретение относится к технологии микро- и наноэлектроники и может быть использовано в производстве гибридных микросистем анализа слабого магнитного поля. .
Наверх