Устройство для увеличения дальности проецирования структурированной подсветки для 3d сканирования

Изобретение относится к области оптико-электронного приборостроения, в частности к способам увеличения радиуса действия оптико-электронных проекционных систем для создания структурированной подсветки. Заявленное устройство для увеличения дальности проецирования структурированной подсветки для 3D сканирования содержит проецируемый шаблон структурированной подсветки, оптические элементы, формирующие изображение в процессе формирования проецируемого шаблона. При этом источник оптического излучения укреплен перед последовательно установленными формирующей изображение оптической системой, транспарантом с виртуальным изображением шаблона, блоком автофокусировки, приемной оптической системой, фотоприемным устройством регистрации изображения шаблона на контролируемом объекте и сравнения допустимого рабочего интервала с эталонным интервалом и передачи сигнала на вход вычислительного блока. Один из выходов вычислительного блока подключен к входу выходного устройства, а другой выход, параллельно, подключен к входам транспаранта и блоку автофокусировки для синхронизации параметров передающей оптической системой, масштаба изображения шаблона в зависимости от изменяющегося расстояния до объекта. Технический результат – увеличение радиуса действия оптико-электронных проекционных систем для создания структурированной подсветки. 2 ил.

 

Изобретение относится к области оптико-электронного приборостроения, в частности к способам увеличения радиуса действия оптико-электронных проекционных систем для создания структурированной подсветки. Изобретение может быть использовано в системах захвата движения, дальномерах, профилометрах, системах технического зрения, распознавания и в других устройствах с применением структурированной подсветки на основе пространственных шаблонов.

Известен лазерный прибор для проецирования структурированной картины освещения на сцену обеспечивающий возможность повышения яркости и проецируемого шаблона структурированной подсветки, полученного с помощью матриц лазеров VCSEL, что является улучшением одного из устройств для получения структурированной подсветки. Результат достигается применением одного или нескольких оптических элементов, формирующих изображение упомянутых матриц в пространстве формирования изображения и накладывающих изображения матриц в пространстве формирования изображения для формирования проецируемого шаблона. При этом оптический элемент формирования изображения выполнен так, что большинство пятен лучей в проецируемом шаблоне содержит, по меньшей мере, одно соседнее пятно луча, которое исходит от полупроводникового лазера другой матрицы. Это приводит к наложению изображений матриц [Патент РФ №2655475 С2 М. Кл. H01S 5/42, G01B 11/25, от 22.11.2013 г. (прототип)].

Недостатком данного устройства является то, что прибор не решает проблему малой дальности действия структурированной подсветки. Кроме того дальность действия оптико-электронных проекционных систем для структурированной подсветки ограничена мощностью источника излучения и изменением геометрических параметров изображения светового шаблона на объекте с увеличением расстояния.

Технической задачей изобретения является увеличение радиуса действия оптико-электронных проекционных систем для создания структурированной подсветки.

Указанная цель достигается формированием на поверхности контролируемого объекта структурированной подсветки путем освещения поверхности контролируемого объекта пучком оптического излучения, пространственно-модулированного по интенсивности при прохождении через транспарант с изображением виртуального шаблона с изменяемой рабочей площадью, что позволяет регулировать геометрические параметры структуры подсветки, и что в свою очередь, позволяет увеличить дальность действия до пределов, ограниченных только мощностью источника излучения. Геометрические параметры регулируются по изображению шаблона на фотоприемном устройстве.

Сущность изобретения поясняется чертежами, где на Фиг. 1 приведена блок-схема устройства проецирования структурированной подсветки для 3D сканирования, на Фиг. 2 показан алгоритм работы вычислительного блока.

Устройство проецирования структурированной подсветки для 3D сканирования содержит источник оптического излучения - 1, формирующую оптическую систему - 2, транспарант - 3 с изображением виртуального шаблона, блок автофокусировки - 4, поверхность контролируемого объекта - 5 (динамический объект), приемную оптическую систему - 6, фотоприемное устройство - 7, вычислительный блок - 8, выходное устройство - 9, на Фиг. 2 показан алгоритм работы вычислительного блока, где показаны: допустимый интервал - 10, эталонный интервал - 11 (команда - произвести сравнение с эталонным шаблоном), несовпадение сигнала с рабочим допустимым интервалом - 12 (команда - произвести сравнение непопадания сигнала в допустимый рабочий интервал), команда-сигнал - 13 (команда - произвести уменьшение рабочей зоны изображения виртуального шаблона), команда-сигнал - 14 (команда - произвести увеличение рабочей зоны изображения виртуального шаблона).

Устройство работает следующим образом.

Оптическое излучение, выходящее из источника - 1, проходит через формирующую оптическую систему - 2, затем через транспарант - 3 с изображением виртуального шаблона. Созданная таким образом структурируемая подсветка проецируется через блок автофокусировки - 4 на поверхность контролируемого объекта - 5 (динамический объект). Рельеф поверхности контролируемого объекта - 5 искажает изображение структурируемой подсветки. Далее изображение шаблона через приемную оптическую систему - 6 попадает в фотоприемное устройство - 7, где регистрируется изображение шаблона и передается сигнал на вход вычислительного блока - 8, который определяет размеры структуры изображения шаблона на фотоприемном устройстве - 7 и сравнивает его с допустимым интервалом.

Если размеры сигнала находятся в допустимом интервале - 10 то сигнал, полученный на фотоприемное устройство - 7 сравнивается с эталонным интервалом - 11 (команда - произвести сравнение с эталонным шаблоном), результаты подаются на выходное устройство - 9, предназначенное для визуализации результатов работы всего устройства проецирования структурированной подсветки для 3D сканирования

При несовпадении сигнала с допустимым рабочим интервалом - 12 на транспарант - 3 с изображением виртуального шаблона и блок автофокусировки - 4 подается команда-сигнал уменьшить - 13 (команда - произвести уменьшение рабочей зоны изображения виртуального шаблона), или команда-сигнал увеличить - 14 (команда - произвести увеличение рабочей зоны изображения виртуального шаблона) рабочую зону.

Цикл повторяется в зависимости от размеров структуры изображения шаблона на фотоприемном устройстве - 7, которые могут быть меньше или больше допустимого рабочего интервала - 12.

Таким образом достигается увеличение радиуса действия оптико-электронных проекционных систем и создается структурированная подсветка, то есть достигается формирование на поверхности контролируемого объекта - 5 структурированной подсветки путем освещения поверхности пучком оптического излучения, пространственно-модулированного по интенсивности при прохождении через транспарант - 3 с изображением виртуального шаблона с изменяемой рабочей площадью, что позволяет регулировать геометрические параметры структуры изображения шаблона подсветки на объекте, и в свою очередь позволяет увеличить дальность действия до пределов, ограниченных только мощностью источника излучения, а геометрические параметры регулируются по изображению шаблона на фотоприемном устройстве - 7.

Устройство для увеличения дальности проецирования структурированной подсветки для 3D сканирования, включающее проецируемый шаблон структурированной подсветки, оптические элементы, формирующие изображение в процессе формирования проецируемого шаблона, отличающееся тем, что источник оптического излучения укреплен перед последовательно установленными формирующей изображение оптической системой, транспарантом с виртуальным изображением шаблона, блоком автофокусировки, приемной оптической системой, фотоприемным устройством регистрации изображения шаблона на контролируемом объекте и сравнения допустимого рабочего интервала с эталонным интервалом и передачи сигнала на вход вычислительного блока, один из выходов вычислительного блока подключен к входу выходного устройства, а другой выход, параллельно, подключен к входам транспаранта и блоку автофокусировки для синхронизации параметров передающей оптической системой, масштаба изображения шаблона в зависимости от изменяющегося расстояния до объекта.



 

Похожие патенты:

Изобретение относится к транспортным средствам с электротягой и предназначено для диагностики состояния контактной сети. Устройство измерения параметров контактного провода содержит линейку лазеров и две линейки и видеокамер, установленных с возможностью регистрации отраженного от контактного провода лазерного излучения.

Изобретение относится к транспортным средствам с электротягой и предназначено для диагностики состояния контактной сети. Устройство измерения параметров контактного провода содержит линейку лазеров и две линейки и видеокамер, установленных с возможностью регистрации отраженного от контактного провода лазерного излучения.

Изобретение может быть использовано для контроля формы поверхности сегментированных рефлекторов телескопов космического и наземного базирования. Юстировка сегментированного зеркала включает подачу излучения от излучателя в виде блока жестко скрепленных между собой излучателей, число которых совпадает с числом сегментов зеркала, а диаграмма направленности каждого излучателя жестко фиксирована в пространстве и обеспечивает подачу излучения от каждого i элемента на i сегмент зеркала, расположенный на расстоянии двойного фокуса от зеркала.

Изобретение может быть использовано для контроля формы поверхности сегментированных рефлекторов телескопов космического и наземного базирования. Юстировка сегментированного зеркала включает подачу излучения от излучателя в виде блока жестко скрепленных между собой излучателей, число которых совпадает с числом сегментов зеркала, а диаграмма направленности каждого излучателя жестко фиксирована в пространстве и обеспечивает подачу излучения от каждого i элемента на i сегмент зеркала, расположенный на расстоянии двойного фокуса от зеркала.

Изобретение относится к области заострения и придания формы лезвиям для катания по льду, используемым в коньках, в спортивных санях, санях для бобслея и др. Аппарат для заточки лезвия на коньке содержит процессор, средства ввода данных, держатель коньков, измерительное устройство и устройство для заточки.

Изобретение относится к области сварки и может быть использовано при проведении измерительного контроля качества сварных швов, а также при оценке квалификации сварщиков, качества сварочных материалов и сварочного оборудования.

Изобретение относится к бесконтактным методам получения больших объемов информации для создания детальных трехмерных цифровых и графических моделей как отдельных сложнопрофильных изделий, так и трехмерных моделей объемных конструкций на разных этапах их изготовления.

Изобретение раскрывает систему изготовления для изготовления конструктивных элементов конструкции самолета, включающую в себя сверлильный блок (2) для создания отверстий (3) в пакете (4) материалов по меньшей мере из двух слоев (4a, 4b) материала для введения крепежных элементов, в частности заклепочных элементов, и измерительный блок (5) для определения по меньшей мере одного параметра геометрии для произведенного ранее отверстия (3), при этом измерительный блок (5) имеет электронную измерительную систему (6) с оптическим сенсорным элементом (7), оптическую измерительную систему (8) и измерительную пику (9), причем для определения расстояния (10) между измерительной пикой (9) и точкой (11) измерения на соответствующей внутренней поверхности (12) отверстия измерительный блок (5) производит оптический измерительный луч (13), который выходит через оптическую измерительную систему (8) из измерительной пики (9) и попадает в точку (11) измерения на соответствующей внутренней поверхности (12) отверстия, и причем в измерительном цикле предусмотрено измерительное движение между измерительной пикой (9) и пакетом (4) материалов и измерительный блок (5) во время измерительного движения циклично с частотой сканирования определяет значения расстояния для различных точек (11) измерения и из значений расстояния определяет по меньшей мере один параметр геометрии для соответствующего отверстия (3), где указанное измерительное движение (19) представляет собой по существу спиралеобразное движение, так что точки измерения находятся на по существу спиралеобразной кривой измерения.

Изобретение раскрывает систему изготовления для изготовления конструктивных элементов конструкции самолета, включающую в себя сверлильный блок (2) для создания отверстий (3) в пакете (4) материалов по меньшей мере из двух слоев (4a, 4b) материала для введения крепежных элементов, в частности заклепочных элементов, и измерительный блок (5) для определения по меньшей мере одного параметра геометрии для произведенного ранее отверстия (3), при этом измерительный блок (5) имеет электронную измерительную систему (6) с оптическим сенсорным элементом (7), оптическую измерительную систему (8) и измерительную пику (9), причем для определения расстояния (10) между измерительной пикой (9) и точкой (11) измерения на соответствующей внутренней поверхности (12) отверстия измерительный блок (5) производит оптический измерительный луч (13), который выходит через оптическую измерительную систему (8) из измерительной пики (9) и попадает в точку (11) измерения на соответствующей внутренней поверхности (12) отверстия, и причем в измерительном цикле предусмотрено измерительное движение между измерительной пикой (9) и пакетом (4) материалов и измерительный блок (5) во время измерительного движения циклично с частотой сканирования определяет значения расстояния для различных точек (11) измерения и из значений расстояния определяет по меньшей мере один параметр геометрии для соответствующего отверстия (3), где указанное измерительное движение (19) представляет собой по существу спиралеобразное движение, так что точки измерения находятся на по существу спиралеобразной кривой измерения.

Изобретение относится к устройству для измерения резьбы (1), содержащему держатель для удерживания с возможностью отсоединения трубы (2), причем на конце трубы (2) образована резьба (1), а также первый оптический измерительный участок (5) с оптическим датчиком (5a).
Наверх