Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала и анализа знаков передач

Изобретение относится к диагностике систем автоматического управления. В способе поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала и анализа знаков передач определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для контрольных точек от номинальных значений, вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы, определяют знаки отклонений интегральных оценок выходных сигналов модели. Также определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков и вычисляют диагностические признаки наличия неисправного структурного блока. Повышается помехоустойчивость при диагностике. 1 ил.

 

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.

Известен способ поиска неисправного блока в непрерывной динамической системе (Способ поиска неисправного блока в непрерывной динамической системе: пат. 2439647 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2011100409/08; заявл. 11.01.2011; опубл. 10.01.2012, Бюл. №1).

Недостатком этого способа является то, что он использует вычисление знаков передач сигналов от выходов блоков до контрольных точек.

Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала (Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала: пат. 2586859 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2015108550/08; заявл. 11.03.2015; опубл. 10.06.2016, Бюл. №16).

Недостатком этого способа является то, что он обеспечивает определение дефектов с невысокой различимостью, то есть обладает невысокой помехоустойчивостью.

Технической задачей, на решение которой направлено данное изобретение, является улучшение помехоустойчивости способа диагностирования непрерывных систем автоматического управления путем увеличения различимости дефектов.

Поставленная задача достигается тем, что предварительно регистрируют реакцию заведомо исправной системы fj ном(t), j=1,…,k на интервале t ∈[0,TK] в k контрольных точках, и определяют интегральные оценки выходных сигналов Fj ном(α), j=1,…,k системы, для чего в момент подачи входного сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из k контрольных точек с весами , где , путем подачи на первые входы k блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал , выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fj ном(α), j=1,…,k регистрируют, фиксируют число m блоков системы, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек и каждой из m позиций входного сигнала, полученные в результате смены позиции входного сигнала после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы для параметра α и входного сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждой из m моделей с зафиксированной на выходах разных блоков позицией входного сигнала Yji(α), j=1,…,k; i=1,…,m регистрируют, определяют знаки интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после каждого из соответствующих блоков Yji=sign(Yji(α)), j=1,…,k; i=1,…,m, определяют нормированные значения знаков интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после каждого из соответствующих блоков из соотношения

замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный входной сигнал x(t), определяют интегральные оценки сигналов контролируемой системы для k контрольных точек Fj(α), j=1,…,k для параметра интегрирования α, определяют отклонения интегральных оценок сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fj(α)-Fj ном (α), j=1,…, k, определяют знаки отклонении интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj=sign(ΔFj(α)), j=1,…, k, определяют нормированные

значения знаков отклонений интегральных оценок сигналов контролируемой системы из соотношения , определяют диагностические признаки из соотношения , по минимуму значения диагностического признака определяют порядковый номер дефектного блока.

Таким образом, предлагаемый способ поиска неисправного блока сводится к выполнению следующих операций:

1. В качестве динамической системы рассматривают систему, состоящую из произвольно соединенных динамических блоков, с количеством рассматриваемых блоков m.

2. Предварительно определяют время контроля ТК ≥ ТПП, где ТПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.

3. Определяют параметр интегрального преобразования сигналов из соотношения .

4. Фиксируют число контрольных точек k.

5. Предварительно определяют нормированные векторы знаков интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после i-го блока каждого из m блоков для номинальных значений параметров передаточных функций блоков и определенного выше параметра α, для чего выполняют пункты 6-9.

6. Подают входной сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками. Принципиальных ограничений на вид входного тестового воздействия предлагаемый способ не предусматривает.

7. Определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате перемещения позиции входного сигнала на позицию после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают позицию входного сигнала на выход блока, подают через сумматор входной сигнал и выполняют пункт 6 для одного и того же входного сигнала x(t). Полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждой из m моделей с перемещенной позицией входного сигнала Yji(α), j=1,…,k; i=1,…, m регистрируют.

8. Определяют знаки интегральных оценок выходных сигналов модели, полученные в результате смены позиции входного сигнала на позицию после каждого из соответствующих блоков Yji=sign(Yji(α)), j=1,…,k; i=1,…,m.

9. Определяют нормированные значения знаков интегральных оценок выходных сигналов модели, полученные в результате перемещения позиции входного сигнала на позицию после

соответствующих блоков по формуле:

10. Замещают систему с номинальными характеристиками контролируемой. На вход системы подают аналогичный входной сигнал x(t).

11. Регистрируют реакцию системы ƒj ном(t), j=1,…, k на интервале t∈[0, TK] в k контрольных точках и определяют интегральные оценки выходных сигналов Fj ном(α), j=1,…, k системы. Для этого в момент подачи входного сигнала на вход системы управления с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из k контрольных точек с весами , где , для чего сигналы системы управления подают на первые входы k блоков перемножения, на вторые входы блоков перемножения подают экспоненциальный сигнал , выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Tк, полученные в результате интегрирования оценки выходных сигналов Fj ном(α), j=1,…, k регистрируют.

12. Определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1,…, k, осуществляя операции, описанные в пункте 6 применительно к контролируемой системе.

13. Определяют отклонения интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fj(α)-Fj ном(α), j=1,…,k.

14. Определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj=sign(ΔFj(α)), j=1,…,k.

15. Вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы по формуле:

16. Вычисляют диагностические признаки наличия неисправного блока по формуле:

17. По минимуму значения диагностического признака определяют дефектный блок.

Рассмотрим реализацию предлагаемого способа поиска дефектного блока для системы, структурная схема которой представлена на рисунке (Структурная схема объекта диагностирования).

Передаточные функции блоков:

номинальные значения параметров: T1=5 с; k1=1; k2=1; Т2=1 с; k3=1; Т3=5 с. При поиске одиночного дефекта в виде отклонения постоянной времени T1=4 с в первом звене путем подачи ступенчатого тестового входного сигнала единичной амплитуды и интегрального преобразования сигналов для параметра α=0.5 и Тк=10 с получены значения диагностических признаков на основе смены позиции входного сигнала и анализа знаков передач при использовании трех контрольных точек, расположенных на выходах блоков: J1=0; J2=0.8889; J3=0.8889. Минимальное значение признака J1 однозначно указывает на наличие дефекта в первом блоке, а разность между третьим и первым, а также вторым и первым признаками может количественно характеризовать практическую (апостериорную) различимость этого дефекта. Тот же дефект, найденный путем смены позиции входного сигнала в прототипе (Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала: пат. 2586859 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2015108550/08; заявл. 11.03.2015; опубл. 10.06.2016, Бюл. №16), дает следующие значения диагностических признаков: J1=0; J2=0.7853; J3=0.07409. Анализ значений диагностических признаков показывает, что разность между третьим и первым признаками может количественно характеризовать практическую (апостериорную) различимость этого дефекта. Это позволяет сделать вывод, что практическая различимость дефекта первого блока (прототипа) ниже, чем различимость дефекта при использовании заявляемого способа. Различимости дефектов второго и третьего блоков при поиске их заявляемым способом тоже выше, чем в прототипе.

Моделирование процессов поиска дефектов во втором и третьем блоках для данного объекта диагностирования, при том же параметре интегрирования α и при единичном ступенчатом входном сигнале для способа из прототипа (Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала: пат. 2586859 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2015108550/08; заявл. 11.03.2015; опубл. 10.06.2016, Бюл. №16):

При наличии дефекта в блоке №2 (в виде уменьшения параметра Т2 на 20%, дефект №2): J1=0.7826; J2=0; J3=0.7459.

При наличии дефекта в блоке №3 (в виде уменьшения параметра Т3 на 20%, дефект №3) J1=0.0739; J2=0.7488; J3=0.

Моделирование процессов поиска дефектов заявляемым способом во втором и третьем блоках для данного объекта диагностирования, при том же параметре интегрирования α и при единичном ступенчатом входном сигнале дает следующие значения диагностических признаков:

При наличии дефекта в блоке №2 (в виде уменьшения параметра Т2 на 20%, дефект №2): J1=0.8889; J2=0; J3=0.8889.

При наличии дефекта в блоке №3 (в виде уменьшения параметра Т3 на 20%, дефект №3) J1=0.8889; J2=0.8889; J3=0.

Минимальное значение диагностического признака во всех случаях правильно указывает на дефектный блок.

Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала и анализа знаков передач, основанный на том, что фиксируют число m динамических элементов, входящих в состав системы, определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы, определяют параметр интегрального преобразования сигналов из соотношения используют тестовый сигнал на интервале t∈[0,TK], в качестве динамических характеристик системы используют интегральные оценки сигналов, полученные для вещественных значений параметра α, фиксируют число k контрольных точек системы, регистрируют реакцию объекта диагностирования и реакцию заведомо исправной системы ƒj ном(t), j=1,…,k на интервале t ∈ [0, ТК] в k контрольных точках, определяют интегральные оценки выходных сигналов Fj ном(α), j=1,…,k исправной системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек с весами e-αt, где путем подачи на первые входы k блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fj ном(α), j=1,…,k регистрируют, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1,…,k для параметра α, определяют отклонения интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fj(α)-Fj ном(α), j=1,…,k, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате смены позиции входного сигнала после каждого из m блоков, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы для параметра α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждой из m моделей с зафиксированной на выходах разных блоков позицией входного сигнала Yji(α), j=1,…,k; i=1,…,m регистрируют, определяют диагностические признаки, по минимуму диагностического признака определяют неисправный блок, отличающийся тем, что определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj=sign(ΔFj(α)), j=1,…,k, вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов

контролируемой системы определяют знаки отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков Yji=sign(Yji(α)), j=1,…,k; i=1,…,m, определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков вычисляют диагностические признаки наличия неисправного структурного блока



 

Похожие патенты:

Описывается создание базы знаний экспертной системы и использование такой системы для установления диагноза и/или выдачи прогноза аномалии в состоянии вибрационной машины или других вибрационных машин, рекомендации по мероприятиям технического обслуживания или информацию о времени выхода из строя вибрационной машины или других вибрационных машин.

Описывается создание базы знаний экспертной системы и использование такой системы для установления диагноза и/или выдачи прогноза аномалии в состоянии вибрационной машины или других вибрационных машин, рекомендации по мероприятиям технического обслуживания или информацию о времени выхода из строя вибрационной машины или других вибрационных машин.

Изобретение относится к фильтровентиляционным системам. В способе определения оптимального срока службы фильтра между заменами фильтра в фильтровентиляционной системе, получают параметр затрат, связанных с предметной частью фильтра и параметр затрат, связанных с эксплуатацией фильтра.

Изобретение относится к фильтровентиляционным системам. В способе определения оптимального срока службы фильтра между заменами фильтра в фильтровентиляционной системе, получают параметр затрат, связанных с предметной частью фильтра и параметр затрат, связанных с эксплуатацией фильтра.

Изобретение относится к диагностике систем автоматического управления. В способе поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности определяют знаки интегральных оценок выходных сигналов модели, полученные в результате структурной функции чувствительности каждого из соответствующих блоков.

Изобретение относится к области эксплуатации технических средств. Технический результат - повышение отказоустойчивости технических средств, предупреждение выходов из строя их элементов, исключение потери информации из-за неисправности источника вторичного электропитания, сокращение простоев в работе.

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении операторской системы распознавания и отображения доступов оператора к объектам процесса.

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении операторской системы распознавания и отображения доступов оператора к объектам процесса.

Изобретение относится к вычислительной технике, в частности к автоматизированной экспертной системе количественной оценки рисков безопасности полетов воздушных судов авиакомпании.

Изобретение относится к вычислительной технике. Технический результат заключается в расширении арсенала средств.

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение обучения модели прогнозирования значений признаков кибер-физической системы (КФС) и вычисления порога ошибки для определения аномалии в КФС. Раскрыт реализуемый компьютером способ обучения модели прогнозирования значений признаков кибер-физической системы (КФС) и вычисления порога ошибки для определения аномалии в КФС, в котором: а) с использованием средства обучения получают исходную выборку, содержащую значения признаков КФС за исторический период наблюдения за КФС, в которой доля аномалий не превышает заданное значение, при этом признаки КФС являются численными характеристиками субъектов управления; б) с использованием средства обучения на основании исходной выборки и с учетом характеристик КФС формируют обучающую выборку, включающую значения по меньшей мере одного из упомянутых признаков КФС, за период наблюдения, который содержится в историческом периоде наблюдения; в) с использованием средства обучения выполняют построение модели прогнозирования значений признаков КФС в каждый момент времени окна прогноза по данным значений упомянутых признаков КФС в каждый момент времени входного окна, при этом входное окно и окно прогноза являются интервалами времени, содержащимися внутри периода наблюдения, и, кроме того, упомянутые входное окно и окно прогноза выбирают в зависимости от характеристик КФС, а расстояние между входным окном и окном прогноза равно горизонту прогноза, который выбирают в зависимости от характеристик КФС; г) с использованием средства обучения выполняют обучение модели прогнозирования на данных обучающей выборки; д) с использованием обученной модели прогнозирования с использованием средства вычисления выполняют прогнозирование значений признаков КФС в каждый момент времени периода наблюдения; е) с использованием средства вычисления определяют общую ошибку прогноза, полученного с использованием построенной модели прогнозирования в каждый момент времени периода наблюдения; ж) с использованием средства обучения вычисляют порог общей ошибки в зависимости от характеристик КФС таким образом, что превышение вычисленного порога общей ошибкой прогноза означает аномалию в КФС. 2 н. и 22 з.п. ф-лы, 21 ил.
Наверх