Мишень для наработки радиоактивных изотопов и способ ее изготовления

Группа изобретений относится к области радиохимии. Мишень для наработки радиоактивных изотопов содержит цилиндрическую ампулу. Внутри ампулы размещены один или несколько фильтр-патронов для стартового материала. Фильтр-патрон содержит цилиндрический стакан с дном из пористого материала, пробку для закрывания стакана со сквозным отверстием, пробку. Имеется также способ изготовления мишени. Группа изобретений позволяет повысить безопасность при изготовлении мишеней для наработки радиоактивных изотопов. 2 н. и 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к области радиохимии и может быть использовано для наработки радиоизотопов в облучательных устройствах ядерных реакторов, в том числе в случаях радиоактивного стартового материала.

Существующие способы получения радиоактивных изотопов в подавляющем большинстве случаев предполагают облучение стартового материала, помещенного в герметичную оболочку из слабопоглощающего нейтроны материала (например, нержавеющая сталь, титан, цирконий, алюминий). Стартовый материал может находиться в виде таблеток, порошка или металлических стержней. В случае нерадиоактивных стартовых материалов его подготовка к облучению может проводиться любым из существующих способов, например, прессованием (таблетки), литьем (металлические изделия), засыпкой (порошок).

Известна мишень для получения радиоактивных изотопов, содержащая оболочку из алюминиевого сплава трубчатого сечения с размещенным внутри нее сердечником и герметизированной с помощью сварки. Сердечник представляет собой порошок, помещаемый внутрь оболочки путем засыпки через ее свободный торец ["Converting Targets and Processes for Fission-Produckt 99Mo From High - to Low - Enriched Uranium". G.F. Vandegrift, J.L. Snelgrove, S. Aase. RERTR Buenos Axis, Argentina, September 28-October 2, 1987, 470-486 (1994)]. При использовании радиоактивного стартового материала с высокой удельной активностью (например, 226Ra, 244Cm, 240Pu и т.п.) использование данной конструкции мишени приводит к необходимости использования опасной технологической операции -пересыпание высокоактивных порошков. При проведении данной операции с использованием дистанционных условий радиационно-защитного оборудования, как правило, происходит распыление (потеря) части порошка с образованием большого количества радиоактивных аэрозолей, которые загрязняют поверхность радиационно-защитного и технологического оборудования, а также внешнюю поверхность самой реакторной мишени.

Чтобы снизить пыление при загрузке радиоактивного стартового материала в мишень можно смешивать его с инертным нерадиоактивным носителем, например кварцевым порошком [Патент РФ 2192678, G21G 4/02]. Но данный способ все равно не устраняет образование аэрозолей при пересыпании порошков.

Способ подготовки стартового материала к облучению [Патент РФ 2170968, G21G 4/02] предполагает предварительное изготовление таблеток путем прессования. Обращение с таблетированными препаратами считается более безопасным, чем с радиоактивными порошками. Но данный способ все равно предполагает пересыпание радиоактивных порошков на этапе прессования (засыпка порошка в пресс-форму). Кроме того он требует оборудования для прессования, сложного в эксплуатации в дистанционных условиях.

Задачей данного технического решения является повышение безопасности при изготовлении мишеней для наработки радиоактивных изотопов.

Для решения данной задачи мишень для наработки радиоактивных изотопов, содержит цилиндрическую ампулу, внутри которой размещены один или несколько фильтр-патронов для стартового материала, причем фильтр-патрон содержит цилиндрический стакан с дном из пористого материала, пробку для закрывания стакана со сквозным отверстием, пробку.

Отверстие в пробке фильтр-патрона содержит вставку из пористого фильтрующего материала.

Фильтрующий элемент фильтр-патрон выполнен из пористого фильтрующего материала, в качестве которого используют нержавеющую сталь, титан, цирконий, кварцевое стекло или сплавы на основе алюминия.

Пробка фильтр-патрона имеет кольцевую проточку.

Ампула и пробка ампулы изготовлены из нержавеющей стали, титана, циркония или алюминия.

Способ изготовления реакторной мишени для получения радиоактивных изотопов заключающийся в том, что жестко скрепляют дно из пористого материала с цилиндрическим стаканом, фильтруют суспензию стартового материала в через фильтр-патрон, сушат, подвергают термической обработке, закупоривают фильтр - патрон пробкой, помещают в ампулу и герметизируют.

Наличие фильтр-патрона с пористым фильтрующим материалом повышает безопасность при изготовлении мишеней для наработки радиоактивных изотопов, что особенно важно при работе в радиационно-защитных камерах с использованием манипуляторов. Работа по изготовлению данной мишени не приводит к образованию радиоактивных аэрозолей и требует более простого аппаратного оформления.

Указанная конструкция реакторной мишени обеспечивает отсутствие загрязненности радиоактивными веществами наружных поверхностей внешней оболочки, что в свою очередь исключает возможность загрязнения дорогостоящего оборудования, используемого для герметизации реакторных мишеней.

Наличие в пробке фильтр-патрона отверстия позволяет выход газообразных продуктов, образующихся в стартовом материале, в свободный внутренний объем ампулы. Таким образом, если облучение в реакторе приводит к повышению избыточного давления внутри реакторной мишени, выход газообразных продуктов происходит при вскрытии внешней, а не внутренней оболочки. Наличие в пробке фильтрующего элемента отверстия предотвращает выход радиоактивных аэрозолей вместе с газообразными продуктами при вскрытии.

Заполнение внутренней оболочки стартовым радиоактивным материалом производится путем фильтрации суспензии под разряжением.

В предлагаемой конструкции герметизация внутренней оболочки не проводится, что позволяет механически извлечь пробку фильтр-патрона после облучения мишени.

После фильтрации высокоактивный стартовый материал внутри фильтр-патрона высушивают и прокаливают при необходимости. Фильтр-патрон закрывают пробкой и помещают внутрь внешней оболочки (ампулы). Ампулу закрывают пробкой и герметизируют сваркой.

Технический результат предлагаемого решения:

- уменьшение механических потерь стартового материала при изготовлении реакторной мишени путем использования фильтр-патрона в качестве фильтра при выделении стартового материала из суспензии, в качестве тигля при прокаливании стартового материала и в качестве внутренней оболочки мишени при облучении.

- повышение безопасности при изготовлении мишеней с использованием радиоактивных стартовых материалов за счет отсутствия операций, связанных с пересыпанием радиоактивных порошков, и приводящих к образованию большого количества радиоактивных аэрозолей.

- повышение безопасности при вскрытии облученных мишеней в случаях, когда облучение мишени связано с образованием газообразных веществ и повышением давления во внутреннем объеме мишени. При вскрытии таких мишеней давление падает на стадии вскрытия внешней оболочки, а безопасность обеспечивается путем надежного удержания радиоактивных порошков и аэрозолей фильтрующими элементами внутренней оболочки.

На прилагаемом рисунке мишень в разрезе

где: 1 - стартовый материал (радиоактивный порошок);

2 - корпус фильтр-патрона;

3 - дно фильтр-патрона из пористого фильтрующего материала;

4 - пробка фильтр-патрона;

5 - вставка в пробку из пористого фильтрующего материала;

6 - корпус ампулы;

7 - пробка ампулы.

Были изготовлены фильтр-патроны диаметром 7,4 мм, длиной 69 мм из нержавеющей стали. Через каждый фильтр патрон было пропущено по 200 мл суспензии содержащей 1,4 г кристаллов [Pb, Ra](NO3)2 в азотной кислоте с концентрацией 14 моль/л. После этого фильтр-патроны были высушены на воздухе и прокалены в трубчатой печи 4 ч при 700°С для образования метаплюмбата радия (используется патент РФ №2436179). Фильтр-патроны был закупорены пробками и размещены в изготовленных ампулах диаметром 8,8 мм и длиной 95 мм из нержавеющей стали. Ампулы были закрыты пробками и герметизированы аргонно-дуговой сваркой. По результатам испытаний данные реакторные мишени были признаны пригодными к облучению в экспериментальных каналах реактора СМ. Всего в рамках испытаний было успешно изготовлено и облучено 9 мишеней данной конструкции.

1. Мишень для наработки радиоактивных изотопов, содержащая цилиндрическую ампулу, внутри которой размещены один или несколько фильтр-патронов для стартового материала, причем фильтр-патрон содержит цилиндрический стакан с дном из пористого материала, пробку для закрывания стакана со сквозным отверстием, пробку.

2. Мишень по п. 1, отличающаяся тем, отверстие в пробке фильтр-патрона содержит вставку из пористого фильтрующего материала.

3. Мишень по п. 1, отличающаяся тем, что фильтр фильтр-патрона выполнен из пористого фильтрующего материала, в качестве которого используют нержавеющую сталь, титан, цирконий, кварцевое стекло или сплавы на основе алюминия.

4. Мишень по п. 1, отличающаяся тем, что пробка фильтр-патрона имеет кольцевую проточку.

5. Мишень по п. 1, отличающаяся тем, что ампула и пробка ампулы изготовлены из нержавеющей стали, титана, циркония или алюминия.

6. Способ изготовления реакторной мишени для получения радиоактивных изотопов, заключающийся в том, что жестко скрепляют дно из пористого материала с цилиндрическим стаканом, фильтруют суспензию стартового материала через фильтр-патрон, сушат, подвергают термической обработке, закупоривают фильтр-патрон пробкой, помещают в ампулу и герметизируют.

7. Способ по п. 6, заключающийся в том, что фильтруют суспензию под разрежением.



 

Похожие патенты:

Изобретение относится к получению изотопов медицинского назначения, в частности Мо-99. Способ включает подачу в сорбционную колонку облученного раствора, содержащего йод, молибден и другие продукты деления урана, пропускание раствора облученного топлива снизу вверх через сорбционную колонку, подачу десорбирующего раствора на сорбционную колонку, удаление йода из полученного элюата и очистку элюата.

Изобретение относится к системе обработки облучаемых мишеней. Предусмотрено введение облучаемых мишеней (16) в трубу (14) контрольно-измерительной аппаратуры в активной зоне (10) ядерного реактора и для извлечение их оттуда, причем система содержит: систему (38) извлечения мишеней, которая содержит выходной канал (40) мишеней, выполненный для соединения с контейнером (42) для хранения мишеней и с выпускной системой (44), систему (46) введения мишеней, которая содержит устройство (84) закладки мишеней, трубу (86) удержания мишеней и устройство (88) отклонения мишеней, соединенное с устройством (84) закладки мишеней, трубой (86) удержания мишеней и системой (38) извлечения мишеней.

Изобретение относится к способу изготовления мишеней для облучения, предназначенных для получения радиоактивного изотопа в трубчатых измерительных каналах энергетического ядерного реактора.

Изобретение относится к способу изготовления мишеней для облучения, предназначенных для получения радиоактивного изотопа в трубчатых измерительных каналах энергетического ядерного реактора.

Изобретение относится к системе получения радионуклидов. Предусмотрено наличие трубной системы, выполненной для обеспечения введения облучаемых мишеней в палец контрольно-измерительного оборудования ядерного реактора и удаления их оттуда, и системы привода облучаемых мишеней, выполненной для введения облучаемых мишеней в палец контрольно-измерительного оборудования и для удаления облучаемых мишеней из пальца контрольно-измерительного оборудования.

Изобретение относится к ядерной энергетике и лазерной измерительной технике и предназначено для использования в ядерных энергетических реакторах типа РБМК и ВВЭР для оперативного измерения физических характеристик теплоносителя, в частности измерения паросодержания в теплоносителе в активной зоне ядерных реакторов с водным теплоносителем.

Изобретение относится к способу изготовления мишеней для наработки изотопа 99Мо. Способ изготовления мишени для наработки изотопа 99Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его сплавов.

Изобретение относится к комплексу ядерных растворных реакторов. В данном комплексе предусмотрено одновременное применение трех технологических петель: для ускорения сорбции и десорбции топливного раствора в трех сорбционных колонках.

Изобретение относится к ядерной технологии и предназначено для получения радиоактивных изотопов, применяемых в медицине. Мишень (7) для получения радиоизотопа состоит из оболочки (9), оснащенной входным (2) и выходным (3) патрубками для подвода и отвода промывной жидкости, и помещенного в полость оболочки облучаемого нейтронами материала (8) с открытой пористостью, нерастворимого в промывной жидкости.

Изобретение относится к атомной энергетике и касается конструкции канала технологического совмещенного (КТС), содержащего тепловыделяющие и поглощающие элементы.

Изобретение относится к области ядерной технологии и радиохимии и предназначено для получения и выделения радиоактивных изотопов для медицинских целей. Способ получения актиния-225 заключается в облучении на ускорителе мишени из металлического тория в металлической оболочке потоком заряженных частиц, селективном растворении оболочки мишени, растворении тория, удалении тория из раствора жидкость-жидкостной экстракцией и многостадийном экстракционно-хроматографическом выделении Ас-255 с высокой радиохимической чистотой. После облучения мишени части оболочки мишени из металлического ниобия селективно растворяют в смеси от 1,4 моль/л фтористоводородной и 16 моль/л азотной до 29 моль/л фтористоводородной и 0,05 моль/л азотной при температуре от 20 до 120°С, а затем растворяют металлический торий в смеси, содержащей азотную кислоту с концентрацией 5-10 моль/л и фтористоводородную кислоту с концентрацией 5⋅10-3-10-2 моль/л при температуре 50-100°С. Для выделения актиния из полученного раствора сначала проводят экстракцию тория ди-2-этилгексилфосфорной кислотой. Затем водную фазу, содержащую актиний в 3-5 моль/л азотной кислоты, пропускают последовательно через три экстракционно-хроматографических колонки. Изобретение позволяет достигать высокий выход и высокую радионуклидную чистоту актиния-225. 3 з.п. ф-лы, 3 ил.
Наверх