Способ внутритрубной послестроительной диагностики трубопровода и устройство для его осуществления

Изобретение относится к области трубопроводного транспорта и может быть использовано после завершения строительно-монтажных работ при строительстве трубопровода до ввода его в эксплуатацию. Способ внутритрубной послестроительной диагностики трубопровода, включающий применение внутритрубного инспекционного прибора и обеспечение его движения в полости трубопровода под действием сжатого воздуха, обеспечивают движение внутритрубного инспекционного прибора в среде инертного газа образованием полостей, ограниченных поршнями, устанавливаемыми с обеих сторон внутритрубного инспекционного прибора и фиксируемыми с помощью соединительных элементов на расчетном расстоянии l, причем значения давлений в этих полостях p1.1 и р2.1 превышают значения давлений прилегающих участков p1 и р2. Расстояние между внутритрубным инспекционным прибором и поршнями принимают из условия обеспечения зазора между соединительным элементом и внутренней поверхностью трубопровода на криволинейных его участках. В устройстве для внутритрубной послестроительной диагностики трубопровода, содержащем внутритрубный инспекционный прибор, внутритрубный инспекционный прибор оснащен встроенным баллоном со сжатым инертным газом и соединен с поршнями с помощью соединительных элементов. Поршни, образующие полости со сжатым инертным газом, выполнены секционными и соединены между собой короткими соединительными элементами длиной в пределах 0,5-1,0 м. Причем внутритрубный инспекционный прибор с поршнями и секции в поршнях соединены между собой через шаровой шарнир. Изобретение обеспечивает исключение возгорания в процессе послестроительной диагностирования трубопровода. 2 н. и 3 з.п. ф-лы, 4 ил.

 

Изобретение относится к области трубопроводного транспорта и может быть использовано после завершения строительно-монтажных работ при строительстве трубопровода до ввода его в эксплуатацию.

Внутритрубная послестроительная диагностика обеспечивает обнаружение дефектов на участке трубопровода, уложенного в траншею и засыпанного грунтом.

Известно, что движение внутритрубных инспекционных приборов (ВИЛ) в полости трубопровода достигается сжатым воздухом (Основы технической диагностики трубопроводных систем нефти и газа: учебник для вузов / A.M. Шаммазов, Б.Н. Мастобаев, А.Е. Сощенко, Г.Е. Коробков, В.М. Писаревский. - СПб.: Недра, 2009. - С. 388-398).

Наиболее близким к заявленному устройству по совокупности существенных признаков и достигаемому техническому результату является устройство, представляющее собой внутритрубный инспекционный прибор (ВИЛ) (Основы технической диагностики трубопроводных систем нефти и газа: учебник для вузов / A.M. Шаммазов, Б.Н. Мастобаев, А.Е. Сощенко, Г.Е. Коробков, В.М. Писаревский. - СПб.: Недра, 2009. - С. 389-390).

Недостатком данного устройства является возгорание его элементов в среде сжатого воздуха в процессе проведения внутритрубной диагностики. В процессе движения ВИП в полости трубопровода вследствие трения его о внутреннюю поверхность трубы происходит повышенный нагрев ВИП, а иногда возгорание элементов ВИП в среде сжатого воздуха. В результате чего ВИП теряет работоспособность.

Задачей изобретения является разработка нового способа послестроительной диагностики трубопровода и устройства для его осуществления с достижением следующего технического результата - исключение возгорания ВИП в процессе послестроительной диагностики трубопровода.

Поставленная задача решается тем, что в способе внутритрубной послестроительной диагностики трубопровода, включающем применение внутритрубного инспекционного прибора и обеспечение его движения в полости трубопровода под действием сжатого воздуха, согласно изобретению обеспечивают движение внутритрубного инспекционного прибора в среде инертного газа образованием полостей, ограниченных поршнями, устанавливаемыми с обеих сторон внутритрубного инспекционного прибора и фиксируемыми с помощью соединительных элементов на расчетном расстоянии причем значения давлений в этих полостях р1.1 и p2.1 превышают значения давлений прилегающих участков р1 и р2. Расстояние между внутритрубным инспекционным прибором и поршнями принимают из условия обеспечения зазора между соединительным элементом и внутренней поверхностью трубопровода на криволинейных его участках. В устройстве для внутритрубной послестроительной диагностики трубопровода, содержащем внутритрубный инспекционный прибор, согласно изобретению, внутритрубный инспекционный прибор оснащен встроенным баллоном со сжатым инертным газом и соединен с поршнями с помощью соединительных элементов. Поршни, образующие полости со сжатым инертным газом, выполнены секционными и соединены между собой короткими соединительными элементами длиной в пределах 0,5-1,0 м. Причем внутритрубный инспекционный прибор с поршнями и секции в поршнях соединены между собой через шаровой шарнир.

Предлагаемое изобретение иллюстрируется чертежами.

На фиг. 1 представлено устройство внутритрубной послестроительной диагностики трубопровода; на фиг. 2 - осуществление способа внутритрубной послестроительной диагностики на прямолинейном участке трубопровода; на фиг. 3 - осуществление способа внутритрубной послестроительной диагностики на углах поворота трубопровода; на фиг. 4 - устройство внутритрубной послестроительной диагностики трубопровода с секционным выполнением поршней.

Устройство внутритрубной послестроительной диагностики трубопровода содержит внутритрубный инспекционный прибор 1 (ВИП), встроенный баллон 2 со сжатым инертными газом, поршни 3, соединительные элементы 4, шаровой шарнир 5, а также короткие соединительные элементы 6 (в пределах 0,5-1,0 м из технических соображений) для варианта секционного выполнения поршней 3.

Полость трубопровода 7 спереди и сзади движущегося ВИП 1 на определенном участке полости заполняется инертным газом. Этот участок полости ограничен поршнями 3, которые механически соединены с ВИП 1 без возможности изменения расстояния между ними. С целью обеспечения относительных угловых перемещений поршней 3 и ВИП 1 на участках изгиба трубопровода их соединения выполнены через шаровой шарнир 5. Таким образом, ВИП 1 в процессе движения находится в среде инертного газа, что исключает возгорание.

Длина соединительного элемента 4 определяется так, чтобы на углах поворота трубопровода 7 оставался зазор между жестким соединительным элементом 4 и внутренней поверхностью трубопровода 7, что позволит беспрепятственное движение устройства в полости трубопровода на участках изгиба трубопровода. Следовательно, расстояние между внутритрубным инспекционным прибором 1 и поршнями 3 также принимают из условия обеспечения зазора между соединительным элементом 4 и внутренней поверхностью трубопровода 7 на криволинейных его участках (из технических соображений):

где D - внутренний диаметр трубопровода (м), R - радиус кривизны продольной оси трубопровода (м).

Условие обеспечения движения системы с точки зрения соотношения давлений имеет вид:

где р1 - значение давления сжатого воздуха в прилегающем участке трубопровода до устройства, р2 - значение атмосферного давления в прилегающем участке трубопровода после устройства.

Условия исключения попадания воздуха из прилегающих участков в полости с ВИП имеют вид:

где p1.1 и р2.1 - значения давлений в полостях с ВИП, ограниченных поршнями.

Условие (2) можно записать в виде:

где N1=0,25πD2p1 - усилие, действующие на поршень 3, от давления сжатого воздуха;

N2=0,25πD2p2 - усилие, действующее на поршень 3, от атмосферного давления в противоположном направлении движения устройства;

T=Т1п1п2 - усилие сопротивления движению устройства.

Здесь Т1, Тп1, Тп2 - усилия сопротивления движению, соответственно, ВИП 1 и поршней 3 по ходу движения.

До пропуска ВИП 1 производится предпусковая подготовка полости трубопровода 7 с целью обеспечения целостности ВИП 1 и других приборов, пропускаемых по трубопроводу 7. Несмотря на это возможен износ поршней 3 и повышенная утечка инертного газа в соседние полости. С целью обеспечения условий (3) в течение всего процесса диагностирования ВИП 1 оснащено баллоном 2, наполненным сжатым инертным газом. По ходу движения ВИП 1 инертный газ выпускается из баллона 2 в полость трубопровода, ограниченную поршнями 3. Кроме того, с целью достижения поставленной задачи поршни 3 могут быть изготовлены из нескольких секций.

Устройство работает следующим образом. При внутритрубной послестроительной диагностике ВИП 1 с поршнями 3 приводится в движение в полости трубопровода 7 под действием сжатого до давления р1 воздуха. Полости трубопровода между ВИП 1 и поршнями 3 заполняются под давлением инертным газом с соблюдением условий (2) и (3). С целью обеспечения условий (2) и (3) в процессе диагностики всего участка трубопровода 7 поршни 3 могут быть выполнены секционными, а также ВИП 1 может быть оснащен баллоном 2 со сжатым инертным газом. Секции в поршнях соединяются между собой короткими соединительными элементами 6 через шаровой шарнир 5. Секционное выполнение поршней 3 существенно снижает утечку инертного газа из полостей между ВИП 1 и поршнями 3. Сжатый инертный газ из баллона 2 по ходу движения приборов при необходимости поступает в полости трубопровода 7 между ВИП 1 и поршнями 3, тем самым обеспечивает соблюдение условий (2) и (3).

По ходу движения ВИП нагревается. Так как ВИП находится в среде инертного газа, возгорание его из-за повышенного нагрева не происходит.

1. Способ внутритрубной послестроительной диагностики трубопровода, включающий применение внутритрубного инспекционного прибора и обеспечение его движения в полости трубопровода под действием сжатого воздуха, отличающийся тем, что обеспечивают движение внутритрубного инспекционного прибора в среде инертного газа образованием полостей, ограниченных поршнями, устанавливаемыми с обеих сторон внутритрубного инспекционного прибора и фиксируемыми с помощью соединительных элементов на расчетном расстоянии причем значения давлений в этих полостях p1.1 и p2.1 превышают значения давлений прилегающих участков р1 и p2.

2. Способ по п. 1, отличающийся тем, что расстояние между внутритрубным инспекционным прибором и поршнями принимают из условия обеспечения зазора между соединительным элементом и внутренней поверхностью трубопровода на криволинейных его участках:

где D - внутренний диаметр трубопровода, м,

R - радиус кривизны продольной оси трубопровода, м.

3. Устройство для внутритрубной послестроительной диагностики трубопровода, содержащее внутритрубный инспекционный прибор, отличающееся тем, что внутритрубный инспекционный прибор оснащен встроенным баллоном со сжатым инертным газом и соединен с поршнями с помощью соединительных элементов.

4. Устройство по п. 3, отличающееся тем, что поршни, образующие полости со сжатым инертным газом, выполнены секционными и соединены между собой короткими соединительными элементами длиной в пределах 0,5-1,0 м.

5. Устройство по п. 3, отличающееся тем, что внутритрубный инспекционный прибор с поршнями и секции в поршнях соединены между собой через шаровой шарнир.



 

Похожие патенты:

Изобретение относится к мониторингу состояния магистральных трубопроводов и может быть использовано для отслеживания изменений их геометрии, а также уровней напряженно-деформированного состояния.

Изобретение относится к трубопроводному транспорту, а именно к эксплуатации магистральных трубопроводов, и предназначено для отслеживания местоположения очистных и диагностических устройств в трубопроводе в режиме реального времени.

Изобретение относится к области автоматизированных систем управления технологическими процессами и используется для мониторинга и диагностики линейных участков между крановыми площадками магистрального газопровода при аварийных ситуациях, связанных с его разрывом.

Техническое решение относится к области арматуростроения, в частности к предохранительным, противопожарным, запорным и аварийным устройствам, служащим для перекрытия потока перекачиваемой среды в зону аварийной ситуации, сложившейся на защищаемом объекте, используется для предотвращения аварийных ситуаций и исключения возможных катастроф, может найти применение в первую очередь в системах обеспечения безопасности эксплуатации магистральных газопроводов для перекачки газа.

Изобретение относится к транспорту углеводородов в нефтяной и газовой промышленности и может быть использовано при эксплуатации трубопроводов, расположенных в местах с возможными оползневыми явлениями.

Изобретение относится к устройствам автоматической и автоматизированной диагностики объектов, например газо- и нефтепроводов. Техническим результатом является расширение функциональных возможностей.

Изобретение относится к линейным сооружениям подземных трубопроводов, а именно к способам получения водонепроницаемой изоляции смотровых технологических колодцев.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ предусматривает очистку поступающей газоконденсатной смеси, поступающей из добывающих скважин, от механических примесей в сепараторе первой ступени сепарации.

Модуль отсекателя потока газа с регулятором давления газа служит для редуцирования высокого давления газа, подаваемого в сеть (потребителю) от источника газа высокого давления 25…30 МПа, например передвижного автозаправщика газа с автоматической отсечкой потока газа при превышении давления за модулем свыше заданного.

Система очистки и электромагнитной диагностики техсостояния стальных трубопроводов относится к области диагностики техсостояния. Система очистки и электромагнитной диагностики техсостояния стальных трубопроводов содержит в своем составе внутритрубный прибор для очистки и диагностики трубопровода, который содержит электромагнитную систему комплексной диагностики техсостояния трубопровода, обеспечивающую измерение толщины исследуемой трубы по секторам; измерение внутреннего профиля исследуемой трубы; обнаружение дефектов трубы типа отверстия, врезки, продольные и поперечные трещины; измерительную компьютизированную систему на станции управления прокачкой, включающую в себя компьютер, датчик давления и датчик расходомера; локатор с антенной для контроля истинного положения внутритрубного прибора; беспроводной канал связи между локатором и измерительной компьютизированной системой на станции управления прокачкой, для оперативного управления режимами прокачки.
Наверх