Способ получения деталей из алюминиевых сплавов методом селективного лазерного сплавления

Изобретение относится к способу изготовления деталей из алюминиевых сплавов и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем. Изготовление деталей технологией селективного лазерного сплавления выполняют при следующих технологических параметрах: мощность лазерного излучения от 330 до 350 Вт, скорость сканирования от 900 до 930 мм/с, толщина слоя 50 мкм и шаг сканирования 0,19 мм. Технический результат - получение деталей с низкой пористостью, с высокими механическими свойствами и низким уровнем остаточных напряжений. 3 ил., 1 табл.

 

Изобретение относится к аддитивным технологиям (технология Selective laser melting, SLM, селективное лазерное сплавление, СЛС), а именно к изготовлению деталей из алюминиевых сплавов, и может использоваться для производства деталей и узлов авиационных и ракетно-космических систем.

Известен алюминиевый материал для аддитивных технологий (патент РФ №2688039, МПК С22С 21/02, опубл. 17.05.2019), относящееся к области металлургии, прежде всего к составу и технологии получения заготовок и деталей из материалов на основе алюминия, в т.ч. с использованием технологий селективного лазерного сплавления. Сплав на основе алюминия содержит, мас. %: Si 10,0-14,0; Mg 0,3-1,0; Cu 0,3-1,0; Мn 0,3-1,0; Ti 0,12-0,30; Fe 0,1-0,50; Al - остальное. Порошок, полученный из указанного алюминиевого сплава распылением расплава, имеет средний размер частиц от 20 до 150 мкм и предназначен для изготовления изделий аддитивной технологией.

Недостатком данного изобретения является большой диапазон распределения гранулометрического состава порошкового материала. Толщина слоя в технологии SLM составляет от 20 до 100 мкм (Tomasz Kurzynowski, Edward Chlebus, Bogumila Kuznicka, and Jacek Reiner "Parameters in selective laser melting for processing metallic powders", Proc. SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications, 823914 (6 February 2012) и патент WO2013179017A1), и наличие более крупной фракции может привести к образованию дефектного слоя. Металлический порошок используемый в технологии СЛС также должен быть сферичным.

Известно изобретение (международная заявка WO 2013179017А1, МПК B22F 3/105, В29С 67/00, С22С 1/04, С22С 21/00), в котором предлагается изготавливать металлические изделия с использованием технологий аддитивного производства. Патент включает в себя способ изготовления изделия, включающий селективное плавление и/или спекание порошка на основе алюминия с содержанием висмута. В патенте представлены значения основных технологических параметров применяемых при изготовлении изделий.

Недостатком данного изобретения является использование низкой скорости сканирования и мощности лазерного излучения, что приводит к росту материальных и временных затрат при изготовлении изделий из алюминиевых сплавов.

Технический результат - получение функциональных деталей технологией селективного лазерного сплавления, высокие механические характеристики деталей достигаемые за счет применения оптимальных технологических параметров обработки, высокая плотность деталей за счет применения оптимальных технологических параметров обработки, высокая производительность процесса за счет применения высокой скорости сканирования, низкий уровень остаточных напряжений, и как следствие, высокая точность размеров и расположения поверхностей, существенное повышение коэффициента использования материала (КИМ).

Технический результат достигается за счет того, что изготовление деталей технологией селективного лазерного сплавления проводят при оптимальных технологических параметрах, а именно мощность лазерного излучения от 330 до 350 Вт, скорость сканирования от 900 до 930 мм/с, толщина слоя 50 мкм и шаг сканирования 0,19 мм.

Технический результат достигается за счет того, что при применении оптимальных технологических параметров изготовления деталей технологией селективного лазерного сплавления достигается высокая плотность материала за счет подвода оптимального количества энергии. Так, например, при использовании не оптимальных технологических параметров (низкой мощности лазерного излучения совместно с высокой скоростью сканирования) не будет подводиться достаточной энергии для полного расплавления порошка что не позволяют получить хорошей зоны перекрытия между слоями и соседними векторами сканирования. При использовании режимов с высокой мощностью лазерного излучения и низкой скоростью сканирования, на материал будет подаваться избыточное количество теплоты, и плавление материала будет происходить в режиме, который называется «замочной скважиной». При этом режиме лазерный луч локально создает температуру достаточную для испарения материала, что приводит к возникновению высокой пористости материала и, как следствие, к его низким механическим свойствам.

Изобретение поясняется следующими чертежами.

На фиг. 1 изображен график распределения гранулометрического состава порошкового материала.

На фиг. 2 изображено образование зоны перекрытия между векторами сканирования.

На фиг. 3 изображены углы расположения образцов относительно платформы построения и дозатора.

Предлагаемый способ отличается от известных тем, что изготовление деталей производят послойно из металлического порошка гранулометрического состава. Используемый сплав на основе алюминия содержит, мас. %: Si 11,8; Mg 0,43; Al - остальное. Изготовление деталей технологией селективного лазерного сплавления происходит при следующих технологических параметрах: мощность лазерного излучения от 330 до 350 Вт, скорость сканирования от 900 до 930 мм/с, толщина слоя 50 мкм и шаг сканирования 0,19 мм.

Использование в технологии селективного лазерного сплавления указанных технологических режимов позволяют полностью сплавлять металлический порошок алюминиевого сплава, создавая зону перекрытия между векторами сканирования на уровне 40...50%, что положительно сказывается на механических свойствах материала.

Предлагаемым способом были изготовлены полномасштабные цилиндрические образцы для испытания на одноосное растяжение.

Для осуществления изобретения образцы изготавливались из порошка алюминиевого сплава AlSi10Mg производства ОК РУСАЛ фракцией до 50 мкм. Изготовление деталей технологией селективного лазерного сплавления осуществлялось при мощности лазерного излучения 350 Вт, скорости сканирования 930 мм/с, толщине слоя 50 мкм и шаге сканирования 0,19 мм. Процесс изготовления деталей технологией селективного лазерного сплавления происходил внутри герметичной камеры в среде защитного газа. Также осуществляется предварительный нагрев платформы построения до температуры 180°С.

Часть образцов была расположена горизонтально под углом α=90° относительно дозатора (фигура 3). Часть образцов при изготовлении была расположена вертикально под углом β=90° к платформе построения.

Результаты испытаний механических свойств образцов, изготовленных предлагаемым способом, представлены в таблице 1.

Таблица 1 - Механические свойства образцов, изготовленных технологией селективного лазерного сплавления из порошка алюминиевого сплава AlSi10Mg

Контроль плотности изготовленных образцов осуществлялся путем проведения томографического контроля. По результатам исследований, объем пустот составил менее 0,000451% от объема образцов.

Таким образом, предлагаемый способ позволяет изготавливать функциональные детали с достаточным уровнем механических свойств, высокой плотностью и низким КИМ.

В результате этого, применение предлагаемого способа изготовления для элементов гидросистем, теплообменников и корпусных деталей авиационной радиотехнической аппаратуры позволит повысить КИМ, снизить затраты на изготовление технологической оснастки, сократить время изготовления подобных деталей в несколько раз.

Способ получения деталей из алюминиевых сплавов, включающий селективное лазерное сплавление с использованием металлического порошка, отличающийся тем, что селективное лазерное сплавление выполняют слоями с толщиной слоя 50 мкм , мощностью лазерного излучения от 330 до 350 Вт, скоростью сканирования от 900 до 930 мм/с и шагом сканирования 0,19 мм.



 

Похожие патенты:

Изобретение относится к способу аддитивного производства изделий из высокопрочных алюминиевых сплавов с функционально-градиентной структурой. По меньшей мере часть изделия изготавливают путем подачи по меньшей мере двух проволок в ванну расплава, их плавления высокоэнергетическим воздействием электронного пучка с изменением скорости подачи по меньшей мере одной из проволок.

Изобретение относится к способу формирования сверхтвердых износостойких покрытий. Покрытие наносят на поверхность стальной подложки путем короткоимпульсного лазерного оплавления порошковой обмазки за одну обработку.

Изобретение относится к способам защиты легированных сплавов на основе титаналюминидов с преобладающей фазой γ-TiAl. Сплавы этого типа отличаются малой плотностью, высокой удельной прочностью и стойкостью к окислению и предназначены для изготовления конструкций, работающих при высоких температурах и нагрузках.
Изобретение относится к способу электродугового напыления покрытий и может быть использовано в машиностроении для повышения удобства в эксплуатации при нанесении покрытий на труднодоступные поверхности изделий.

Изобретение относится к области машиностроения, в частности к оборудованию для нанесения покрытий методом холодного газодинамического напыления, и может быть использовано для напыления внутренних поверхностей цилиндрических деталей и их восстановления.

Изобретение относится к поглощающим СВЧ-энергию покрытиям и может быть использовано в электронной технике. Способ получения поглощающего СВЧ-энергию покрытия на металлических поверхностях деталей включает газотермическое напыление порошка, содержащего диоксид титана, при этом в качестве порошка, содержащего диоксид титана, используют порошок, состоящий из 100 % полиморфной модификации диоксида титана – рутила, а напыление осуществляют детонационным способом с получением покрытия, содержащего в качестве поглощающей СВЧ-энергию фазы - рутил.

Изобретение относится к технике и технологии нанесения защитных ионно-плазменных покрытий и может быть применено в машиностроении, например, для защиты рабочих и направляющих лопаток турбомашин.

Изобретение относится к способу электродуговой металлизации и может найти применение в различных отраслях машиностроения и ремонтном производстве. Техническим результатом изобретения является повышение адгезионной прочности и износостойкости покрытий, полученных методом электродуговой металлизации, за счет применения водного раствора неорганических веществ.

Изобретение относится к способу получения композиционного материала для изготовления функциональных покрытий из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности.

Изобретение относится к области газотермических технологий и может быть использовано для нанесения порошковых покрытий методом низкоскоростного газопламенного напыления.  Способ газопламенного напыления порошкового материала с получением покрытия на никелевой основе посредством термораспылителя включает активирование пламени, образованного при сгорании ацетилена и кислорода, и подачу порошкового материала под срез сопла термораспылителя, при этом в качестве активирующей добавки используют водный раствор аммиака, а активирование пламени осуществляют путем подачи активирующей добавки до термического контакта с ядром основного пламени через термический диссоциатор, установленный соосно внутри центрального канала термораспылителя, при этом глубина его проникновения в высокотемпературное ядро основного пламени регулируется.

Группа изобретений относится к получению истираемого покрытия с переменной плотностью. Способ включает следующие этапы.
Наверх