Способ вибрационных испытаний авиационных управляемых ракет в сборе на прочность при воздействии широкополосной случайной вибрации

Изобретение относится к авиационно-ракетной испытательной технике, а именно к способу испытаний на прочность при воздействии вибрации авиационных управляемых ракет в сборе в лабораторно-стендовых условиях. Испытания проводятся по трем взаимно-перпендикулярным осям. При испытаниях аппаратура жестко крепиться к столу вибровозбудителей с помощью приспособления, которое обеспечивает отсутствие резонансов в заданном диапазоне частот возбуждения. Уровни побочных боковых вибраций при испытаниях минимальны по отношению к заданной. Технический результат заключается в максимальном приближении автономных испытаний аппаратуры по вибрационным нагрузкам на стенде к штатным условиям подвески под самолетом-носителем. 6 з.п. ф-лы, 2 ил.

 

Изобретение относится к авиационно-ракетной испытательной технике, а именно к способу испытаний на прочность при воздействии вибрации авиационных управляемых ракет в сборе в лабораторно-стендовых условиях.

Требования к автономным испытаниям бортовой аппаратуры авиационных управляемых ракет установлены в ГОСТ РВ.20.39.304-98 (группа аппаратуры 4,1-4,3), а методы и нормы испытаний на воздействие механических факторов для этой группы в ГОСТ РВ.20.57.305-98.

Целью предполагаемого изобретения является максимально приблизить испытания аппаратуры на прочность по вибрационным нагрузкам при воздействии широкополосной случайной вибрации (ШСВ) авиационных управляемых ракет (далее изделий) в сборе, с соблюдением штатных условий подвески под самолетом-носителем.

При эксплуатации изделий пространственные и случайные вибрации передаются через передние и задние узлы подвески изделия от узлов захвата самолета-носителя.

В предлагаемом способе вибрационное нагружение передается также.

Сущность изобретения заключается в следующем.

Сначала определяют значения вибронагружения в контрольных управляющих и измерительных точках (по ГОСТ 31419-2010) для аппаратуры в составе изделия в сборе по трем ортогональным направлениям на основании заданных режимов автономных испытаний аппаратуры.

Если автономные испытания аппаратуры проводятся с использованием данных измерений, проведенных в реальных условиях применения изделия, то принимают эти нагрузки для формирования режима испытаний аппаратуры в составе изделий в сборе на пространственную вибрацию.

Если испытания проводятся по ГОСТ РВ.20.57.305-98 для группы аппаратуры 4,1-4,3 то согласно ГОСТ РВ.20.57.305-98:

- среднеквадратическое значение суммарного ускорения при испытании в продольном направлении (ось X) устанавливают равным 0,7 от вертикального (ось Y) и поперечного (ось Z).

- общее заданное время испытания в вертикальном, поперечном и продольном направлениях распределяется в следующих пропорциях 0,5; 0,3 и 0,2.

Из приведенных данных следует, что при испытаниях на прочность по трем осям максимальные вибрационные нагрузки приходятся на ось Y, затем на ось Z и незначительные на ось X.

Для сравнения параметров вибрационных нагрузок, возникающих в ортогональных направлениях спектральной плотности ускорения (СПУ) в поддиапазонах частот, и среднего квадратическое значение суммарного ускорения W, взятые из ГОСТ РВ.20.57.305-98 пересчитываются в эквивалентные под время t полета изделия с самолетом-носителем для осей X, Y и Z исходя из формулы ускоренных испытаний приведенных в ГОСТ РВ.20.57.305-98:

tуск=(Wпрог/Wуск*tпрог;

tудл(Wпрог/Wудл)4*tпрог;

причем Wудл<Wпрог, Wуск>Wпрог,

где:

tуск - ускоренное время испытаний;

Wпрог - первоначальная СПУ, установленная в программе испытаний или в Т;

Wуск -СПУ, соответствующая ускоренному времени испытаний;

tпрог - время испытаний, установленная в программе испытаний или ТУ;

tудл - удлиненное время испытаний;

Wудл - СПУ, соответствующая удлиненному времени испытаний.

Для сравнения параметров вибрационных нагрузок, возникающих в ортогональных направлениях, значения СПУ в поддиапазонах частот и среднее квадратическое значение суммарного ускорения, взятые из ГОСТ РВ.20.57.305-98, пересчитываются в эквивалентные под время полета изделия с самолетом-носителем для осей X, Y и Z по вышеуказанным формулам.

Испытания проводят с помощью испытательного стенда, который максимально соответствует штатным условиям подвески изделий под носителем, при этом реализуется на изделии пространственная ШСВ.

На фиг. 1 изображен общий вид стенда для испытаний изделия по оси Y. B состав стенда входят:

- поворотный электродинамический возбудитель 1;

- безлюфтовый опорный шарнир 2;

- нижняя рама 3;

- верхняя рама 4;

- испытуемого изделия 5 с узлами подвески 6;

- узлы захвата 7 самолета-носителя;

- порталов 8 с резиновыми шнуровыми амортизаторами 9 для вывески изделия 5.

На фиг. 2 изображен общий вид стенда для изделия по оси Z (см. фиг. 2) Вибровозбудители 1 поворачиваются на 90 градусов в горизонтальное положение, в этом случае изделие удерживается в горизонтальном положении с помощью тросов 10, а вибрационные нагрузки от вибровозбудителей к изделию передаются через штанги 11.

Стенд является универсальным, на котором можно проводить все типы изделий за счет увеличенных внутренних размеров рам 3 и 4 крепежного приспособления и возможностью перемещения вибровозбудитей 1 с порталами 8 в направлении продольной оси X испытуемого изделия 5 под узлы захвата 7 самолета - носителя. Узлы захвата 7 съемные и меняются под размеры узлов подвески изделия 6.

При проведении испытаний по оси Y, для снятия статической нагрузки с вибровозбудителей 1, удержания изделия 5 в горизонтальном положении и исключения влияния амортизаторов 9 на испытательный режим, длина резиновых авиационных амортизаторах 9 для вывески изделия 5 по передним и задним узлам подвески 6 рассчитывается следующим образом.

Определяют статический прогиб подвеса (δ). В линейных системах с одной степенью свободы прогиб подвеса связан с частотой собственных колебаний (ƒо) следующей формулой:

δ=g/4π2ƒ02,

где: ускорение свободного падения g=9.81 м/с2;

отношение длины окружности к ее диаметру π=3.14.

Чтобы при вывеске изделия исключить влияние амортизаторов на заданный режим испытаний и передачу вибрации на портал применяются шнуровые резиновые авиационные амортизаторы, при этом растяжение должно составлять 30% от первоначальной длины (середина линейной зоны упругой деформации).

Собственная частота колебательной системы подвеса ƒо, образованная массой изделия с приспособлением и упругим элементом амортизаторами, должна быть меньше ƒн:

ƒоƒн,

где ƒн - наименьшая частота испытательного режима.

Допустим низшая частота режима испытаний ƒн=5 Гц, тогда собственная частота подвеса ƒо быть ниже ƒн.

Примем ƒо=1 Гц, тогда статический прогиб δ=9.8/4*3.142*12=0,25 м, принимаем за 30% от первоначальной длины.

Следовательно, длину амортизаторов необходимо взять 0.25 м*3,33=0.83 м и подобрать диаметр и количество амортизаторов, таким образом, чтобы они растянулись под весом изделия с приспособлением на 25 см.

Определяем диаметр и количество амортизаторов для вывески системы исходя из составляющих веса по переднему Gп и заднему Gз узлам подвески.

Gп=G(L-A)/ L; Gз=GA/L,

где G - вес изделия с приспособлением;

Gп - составляющая веса приходящая на передний узел подвески;

Gз - составляющая веса приходящая на задний узел подвески;

L - расстояние между передним и задним узлами подвески;

А - расстояние от передней подвеской до центра тяжести изделия с приспособлением.

По графику статических характеристик шнуровых резиновых авиационных амортизаторов, исходя из значений Gп и Gз при относительном удлинении на 30% подбираем их диаметр и количество.

После определения вибрационных нагрузок для испытаний изделия и расчета резиновых амортизаторов, изделие устанавливается на стенд по оси У, как показано на фиг. 1, препарируется трехкомпонентными акселерометрами в контрольных (управляющих) и измерительных точках по рамам изделия.

Проводится отработка режима испытаний на макете изделия или на штатном изделии на 50% уровня нагружения. Отработка с подбором режимов испытаний ведется с помощью двухканальной автоматизированной системы управления случайной вибрации.

При отработки режимов перед началом испытаний проводится сравнительная оценка параметров пространственной вибрации по значениям вибрационных нагрузок, возникающих в ортогональных направлениях, с параметрами вибрации, установленными для автономных испытаний аппаратуры, и окончательно формируется режим испытаний. Как показали испытания, при такой схеме возбуждения с помощью 2-х вибровозбудителей с соблюдением штатных условий подвески изделия с самолетом-носителем, однонаправленное вибронагружение преобразуется в пространственное приближающее к условиям натурного вибрационного нагружения изделия. При отработке режима испытаний по оси Y, оценивается вибронагружение по оси X и оси Z, определяется необходимость дополнительного вибронагружения по оси Z. Как позывает опыт испытаний, дополнительное вибронагружение по оси X не требуется.

1. Способ вибрационных испытаний авиационных управляемых ракет в сборе на прочность при воздействии широкополосной случайной вибрации, заключающийся в формировании и передаче широкополосной случайной вибрации и передаче ее к испытуемому изделию по вертикальной оси Y и в поперечной оси Z, с помощью двух однонаправленных поворотных вибровозбудителей, которые соединены через безлюфтовые шарнирные соединения с приспособлением, имеющим штатные узлы подвески изделия к самолету-носителю, характеризующийся тем, что при передаче вибрационной нагрузки по оси Y через узлы подвески изделия, реализуется пространственная широкополосная случайная вибрация с уровнями вибрационных нагрузок в ортогональных направлениях одного порядка с основным направлением.

2. Способ по п. 1, характеризующийся тем, что для предварительного формирования режима испытаний аппаратуры в составе изделия на пространственную широкополосную случайную вибрацию определяют значения вибронагружения в контрольных и измерительных точках на рамах изделия, по трем ортогональным направлениям исходя из режимов автономных испытаний аппаратуры.

3. Способ по п. 2, характеризующийся тем, что при отсутствии измерений, проведенных в реальных условиях применения изделия, определяют вибронагрузки в контрольных и измерительных точках изделия по ГОСТ РВ.20.57.305-98:

- среднеквадратическое значение суммарного ускорения при испытании в продольном направлении (ось X) устанавливают равным 0,7 от вертикального (ось Y) и поперечного (ось Z);

- общее заданное время испытания в вертикальном, поперечном и продольном направлениях, которое распределяется в следующих пропорциях 0,5; 0,3 и 0,2.

4. Способ по пп. 2, 3, характеризующийся тем, что вибронагрузки в контрольных и измерительных точках, заданные среднеквадратическим значением суммарного ускорения и общим за время испытания в вертикальном, поперечном и продольном направлениях, приводят к времени совместного полета изделия с самолетом-носителем по формуле ускоренных испытаний для широкополосной случайной вибрации по ГОСТ РВ.20.57.305-98:

tycк=(Wпpoг/Wycк)4tпрог;

tудл=(Wпрог/Wудл)4tпрог,

где:

tуск - ускоренное время испытаний;

Wпрог - первоначальная спектральная плотность ускорения, установленная в программе испытаний или в ТУ;

Wуск - спектральная плотность ускорения, соответствующая ускоренному времени испытаний;

tпрог - время испытаний, установленное в программе испытаний или ТУ;

tудл - удлиненное время испытаний;

Wудл - спектральная плотность ускорения, соответствующая удлиненному времени испытаний.

5. Способ по пп. 2-4, характеризующийся тем, что контрольными точками для управления режимами испытаний являются точки, расположенные непосредственно на силовых рамах возле переднего и заднего ползунов подвески изделия, точки измерения располагаются по остальным рамам изделия при этом в контрольных и измерительных точках устанавливаются трехкомпонентные акселерометры.

6. Способ по любому из пп. 2-5, характеризующийся тем, что после определения вибронагрузок в контрольных и измерительных точках, приведенных к времени совместного полета по рамам изделия, по трем ортогональным направлениям эти вибронагрузки сравниваются с вибронагрузками, полученными в процессе отработки режима испытаний по оси Y на макете изделия или на штатном изделии с помощью автоматизированной системы управления на 50%-ном уровне нагружения с определением окончательного режима испытаний на пространственную вибрацию изделия в сборе с учетом нагрузок в ортогональных направлениях.

7. Способ по п. 1, характеризующийся тем, что при проведении испытаний по оси Y для снятия статической нагрузки с вибровозбудителей удержания изделия в горизонтальном положении и исключения влияния амортизаторов на испытательный режим изделие с крепежным приспособлением вывешивается на авиационных резиновых амортизаторах таким образом, чтобы собственная частота колебательной системы подвеса ƒо, образованная массой изделия с приспособлением и упругим элементом амортизаторами, была значительно меньше нижней частоты испытательного режима ƒн:

ƒо<<ƒн.



 

Похожие патенты:

Группа изобретений относится к области механических испытаний изделий, а именно к испытаниям изделий на вибрации, действующим по ортогональным направлениям. Способ включает последовательное вибронагружение объекта испытаний (ОИ) по трем ортогональным направлениям.

Группа изобретений относится к измерительной технике и может быть использована при вибродиагностике оборудования. Устройство содержит блоки (26', 26", 26"') датчиков, данные измерений с которых можно посредством беспроводной связи передать на вычислительный блок (29).

Изобретение относится к конструированию приспособлений для закрепления деталей турбомашины на вибростенде при усталостных испытаниях. Устройство содержит основание, выполненное с возможностью фиксации на вибростенде, корпус, соединенный с основанием посредством соединения «цилиндрические выступ-паз», с возможностью проворота корпуса в окружном направлении в цилиндрическом пазу, с возможностью фиксации корпуса на основании в требуемом положении, зажимное устройство для фиксации лопаток турбомашин, содержащее подвижный и неподвижный разъемные элементы с образованием зазора между ними, соединенные между собой механизмом, регулирующим величину зазора и усилие прижатия между ними.

Изобретение относится к области способов виброиспытаний и испытательной техники и может быть использовано для повышения достоверности испытаний технических изделий на воздействие широкополосной случайной вибрации (ШСВ) при многоточечном управлении на однокомпонентных электродинамических вибростендах.

Изобретение относится к области обслуживания железнодорожных путей. Согласно способу обнаружения повреждения в опорном блоке железнодорожного пути возбуждают опорный блок (40, 42), затем измеряют вибрационный отклик опорного блока, определяют, по меньшей мере, первую собственную частоту (F1) первой собственной моды опорного блока по измеренному вибрационному отклику, и определяют, по меньшей мере, уровень повреждения опорного блока, по меньшей мере, исходя из упомянутой первой собственной частоты.

Изобретение относится к виброметрии. Способ виброиспытаний изделий заключается в том, что воспроизводимую на однокомпонентном электродинамическом вибростенде гармоническую вибрацию измеряют одновременно в четном количестве контрольных точек, лежащих попарно в каждой из взаимно ортогональных пересекающихся плоскостей по разные стороны от линии пересечения плоскостей, совпадающей с рабочей осью вибростенда.

Изобретение относится к области классического экспериментального модального анализа конструкций. При реализации способа строят расчетную динамическую модель свободной конструкции, которую корректируют по результатам наземных модальных испытаний.

Изобретение относится к измерительной технике и может быть использовано для мониторинга безопасной эксплуатации зданий и инженерно-строительных сооружений. Технический результат заключается в повышении оперативности реагирования и надежности датчиков.

Изобретение относится к испытательной технике и может быть использовано для испытания аппаратуры, работающей на подвижном основании и испытывающей инерционные возмущения.

Изобретение относится к области измерительной техники и может быть использовано для измерения ударных нагрузок на летательных аппаратах (ЛА). В способе, включающем измерение вибрационных нагрузок в местах размещения бортового оборудования летательного аппарата с помощью вибрационных преобразователей, запись измерительной информации на регистратор, зарегистрированную информацию воспроизводят в виде центрированных относительно математического ожидания ординат виброускорения с получением записи по времени этой измерительной информации в течение проведения измерений вибрационных нагрузок.
Наверх