Способ очистки промывных сточных вод от ионов цинка

Изобретение может быть использовано в электрохимической промышленности для очистки промывных сточных вод гальванических цехов от ионов цинка. В промывную сточную воду, содержащую ионы цинка, добавляют адсорбент, интенсивно перемешивают в течение 25 минут и отстаивают в тонкослойном отстойнике из немагнитного материала, наружная сторона дна которого оборудована постоянными магнитами, и разделяют жидкую и твердую фазы. В качестве адсорбента используют ферромагнитные наноразмерные частицы пыли аспирации электросталеплавильного производства состава в массовых долях: железо общее 56%; влага 0,63%, медь 0,123%; нефтепродукты 0,08%; хром 0,11%; цинк 18,8%; остальное до 100% - ферриты, нерастворимые в HCl, при массовом соотношении ионы цинка : пыль аспирации электросталеплавильного производства 1:3…5. Предложенное изобретение обеспечивает очистку промывной сточной воды от ионов цинка с использованием вторичного сырья в качестве адсорбента. 2 табл.

 

Изобретение относится к области очистки промывных сточных вод гальванических цехов от тяжелых металлов, к которым относится цинк. Сточные воды, содержащие ионы цинка, относятся к наиболее распространенным, а цинк к одним из тяжелых металлов, вызывающих у человека нарушение белкового, углеводного, минерального обмена, снижение ферментативной активности, дистрофию внутренних органов, мутагенный и канцерогенный эффекты [1, 2].

Наиболее широкое распространение гальванические покрытия цинком получили в машиностроении, где с ростом производства увеличивается потребление воды и образование сточных вод, загрязненных тяжелыми металлами. Предприятия машиностроения расходуют около 10% свежей воды, потребляемой всеми отраслями промышленности, при этом значительная часть ее, причем воды питьевого качества, использующаяся в гальваническом производстве [3].

Наиболее распространенные в настоящее время способы очистки промывных сточных вод - реагентный и электрокоагуляционный весьма энергоемки, а самое главное, не позволяют вернуть воду после очистки в оборотную систему [4].

Применение в качестве адсорбентов оксидов железа при очистке сточных вод от тяжелых металлов позволяет расширить диапазон величин рН при удалении их ионов, снижает степень минерализации очищенной воды, уменьшает расход реагентов и создает предпосылки повторного ее использования. В этом качестве фигурирует магнетит - Fe3O4 [5].

Известен способ удаления из сточных вод загрязнений, находящихся в ионном состоянии с использованием магнетита (А.С. 437720 СССР, МКИ CO2F 1/52. Способ переработки травильных железосодержащих растворов / В.Ф. Шипинский и др. - Опубл. 12.05.1963. Бюл. №10). Достоинство предложенного способа в том, что магнетит получают непосредственно из очищаемых растворов, недостатком - необходимость нагрева больших масс воды до температур, близких к температуре кипения, длительность процесса по времени и использование весьма коррозионностойкого оборудования.

Известен способ очистки сточной воды от ионов тяжелых металлов с использованием в качестве адсорбента природного магнетита, на котором формируется как на затравке магнитные агрегаты (Okamoto S. Magnetic structure and super magnetic properties of g-FeOOH. Flocculation in colloidal Dispersions. JEEE. 1974. T. 10. № 4. P. 923-926), и соль железа (II) при рН среды 14 окисляется кислородом воздуха и образует ферромагнитную гидрозакись железа (II) g-FeOOH, которая одновременно выполняет роль коагулянта и сорбента для ионов тяжелых металлов. Однако предложенная технология требует значительного расхода щелочи и солей железа (II), при этом образуются большие массы сильно обводненного осадка с низкими тиксотропными свойствами, а очищенные воды надо направлять на нейтрализацию.

Наиболее близким к заявленному является способ [6], в котором магнетит (феррит) на поверхности частиц гидроксидов гальваношлама получали добавлением к нему сульфата двухвалентного железа, едкого натра с нагреванием паром до 70-80°С и подачей воздуха с обезвоживанием и последующей сушкой суспензии при 105°С до постоянной массы. Полученный порошок использовали в качестве адсорбента для удаления из воды ионов тяжелых металлов, в том числе - цинка. При этом время перемешивания ферритизированного гальваношлама со сточной водой составляло 60-90 минут, а его дозировка к массе ионов тяжелых металлов в воде при их концентрации 50 мг/дм3 была 3-5 г/дм3.

Но этот способ имеет недостатки:

1. Для получения ферритизированного гальваношлама, используемого в качестве адсорбента тяжелых металлов требуется использование реактивов NaOH, FeSO4 марок «ХЧ» - химически чистый и «ЧДА» - чистый для анализа, которые имеют наиболее высокую стоимость среди веществ этого класса. Реализация технологии связана с использованием сжатого воздуха, греющего пара и достижения температуры не менее 60-70°С;

2. После добавления в сточную воду ферритизированного гальваношлама требуется длительное встряхивание в течение 60-90 минут. При этом неясно, как осуществить встряхивание при практической реализации предлагаемой технологии, и обеспечит ли оно равномерное распределение адсорбента по объему сточной воды.

3. Дозировка ферритизированного гальваношлама в 100 раз выше суммарной концентрации тяжелых металлов в сточной воде;

4. Частицы ферритизированного гальваношлама размером 0,1-0,25 мм, использованного в качестве адсорбента, не имеют высокой удельной геометрической адсорбционной поверхности, что приводит к необходимости применения очень высоких его дозировок по отношению к суммарной концентрации тяжелых металлов в сточной воде.

Техническим решением настоящего изобретения является расширение ассортимента железооксидных адсорбентов для очистки промывных сточных вод от ионов цинка, ориентируясь на вторичное доступное сырье, и упрощение его применения, что может привести к снижению стоимости 1 м3 сточных вод без снижения эффективности очистки.

Техническое решение достигается тем, что в заявленном способе очистки промывных сточных вод от ионов цинка магнетит, полученный способом ферритизации гальваношлама из ХЧ и ЧДА реактивов, заменен на ферромагнитную пыль аспирации электросталеплавильного производства, уловленную электрофильтрами и имеющую частицы наноразмерного диапазона.

Способ включает:

1. Помещение ферромагнитных наноразмерных частиц пыли аспирации электросталеплавильного производства в реактор-смеситель с промывной сточной водой, содержащей ионы цинка. В соотношении металлургическая пыль : Zn2+ = 3…5 : 1;

2. Перемешивание в реакторе-смесителе ферромагнитных наноразмерных частиц пыли аспирации электросталеплавильного производства с промывной сточной водой при числе оборотов мешалки, обеспечивающих распределение металлургической пыли по всему объему воды, в течение 25 минут, для адсорбции ионов цинка на поверхности ферромагнитных наноразмерных частиц пыли аспирации электросталеплавильного производства;

3. Отстаивание ферромагнитных наноразмерных частиц пыли аспирации электросталеплавильного производства с адсорбированными ионами цинка в тонкослойном отстойнике из немагнитного материала с укрепленными на внешней стороне дна постоянными магнитами и удаление очищенной воды;

4. Удаление из отстойника накопившегося осадка на утилизацию.

Состав пыли аспирации электросталеплавильного производства приведен в таблице 1.

При этом источником пыли аспирации электросталеплавильного производства является из Федерального классификационного каталога отходов (ФККО) [7]:

1. Пыль газоочистки выбросов электросталеплавильной печи;

2. Пыль аспирации электросталеплавильного производства.

В таблице 2 приведены данные по эффективности очистки воды от цинка с использованием в качестве адсорбента ферромагнитных наноразмерных частиц пыли аспирации электросталеплавильного производства, полученной в процессе выплавки черного металла и уловленной электрофильтрами по сравнению с эффективностью действия адсорбента, полученного химической конденсацией солей двух- и трехвалентного железа, содержащего магнетит.

Из таблицы 2 видно, что в случае очистки воды от ионов цинка с помощью адсорбента 1 вода может быть направлена в оборотные системы, а при использовании в качестве адсорбента ферромагнитных наноразмерных частиц пыли аспирации электросталеплавильного производства, кроме того, спущена в водоем хозяйственно-питьевого и культурно-бытового назначения.

Таким образом, предлагаемое техническое решение содержит признаки, не присущие прототипу и известным в патентной и технической литературе способам очистки промывных сточных вод от ионов цинка, то есть заявляемое изобретение обладает новизной и соответствует критерию «изобретательский уровень».

Изобретение, может быть многократно использована в первую очередь в отраслях, где образуются промывные сточные воды, содержащие ионы цинка, а также в черной металлургии, где образуется наибольшее количество пыли аспирации электросталеплавильного производства, и в машиностроительной промышленности, где находятся гальванические цехи, связанные с операцией цинкования деталей и их последующей промывкой.

Полученный технологический результат заключается в появлении новой возможности расширения ассортимента дешевого сырья из отходов для применения в качестве адсорбента для очистки сточных вод, а также направлений утилизации пыли аспирации электросталеплавильного производства. Он технически реализуется в условиях действующего производства у владельца пыли аспирации электросталеплавильного производства или у машиностроительных предприятий, оцинковывающих изготавливаемые детали и, следовательно, обусловливает обеспечение достижения технического решения - расширение ассортимента материалов для использования в качестве адсорбента, его удешевления за счет использования вторичного сырья, а также упрощение технологии его применения для очистки промывных сточных вод гальваники от ионов цинка и стоимости очистки 1 м3 сточной воды без ухудшения эффективности процесса. Все это позволяет сделать вывод о соответствии изобретения критерию «промышленная применяемость».

Таблица 1 - Состав пыли аспирации электросталеплавильного производства

Наименование компонента Результат измерения, %* Относительная погрешность при Р=0,95 Методика измерения
Железо общее 56,000 ±22,000 ПНДФ 16.3.24-2000
Массовая доля влаги 0,630 ±0,120 ПНДФ 16.1:2.2:2.3:3:52-08
Медь 0,123 ±0,040 ПНДФ 16.3.24-2000
нефтепродукты 0,080 ±0,170 ПНДФ 16.1:2.2:2.3:3:64-10
рН, ед. рН 11,30 ±0,100 ПНДФ 16.2:2.2:2.3:3:33-02
Хром 0,110 ±0,020 ПНДФ 16.3.24-2000
Цинк 18,800 ±4,100 ПНДФ 16.3.24-2000
Отсев на сите с ячейкой 63 мкм 1,500 ±0,200 -
Итого 75,743**

* - в растворимой в HCl части;

** - до 100% ферриты нерастворимые в HCl.

Таблица 2 - Эффективность очистки воды от ионов цинка

Вид железооксидного адсорбента Соотношение адсорбента и иона Zn2+ в промывной сточной воде, массовые Размер частиц адсорбента, нм Намагниченность насыщения адсорбента, кА/м Начальная концентрация Zn2+ в сточной воде, мг/дм3 Время перемешивания адсорбента с промывной сточной водой, мин Скорость течения воды в тонкослойном отстойнике, мм/с Концентрация Zn2+ в воде после очистки адсорбцией, мг/дм3 ПДК Zn2+ в водоемах хозяйственно-питьевого и культурно-бытового назначения Требование к воде III категории,транспортирующая, поглощающая, экстрагирующая
1 Наноразмерные частицы магнетита (Fe3O4), полученного способом химической конденсации из солей Fe3+ и Fe2+ 3:1 ‹ 100 407 46 25 2 1,30 1,0 Не нормируется
4:1 ‹ 100 407 46 25 2 1,25
5:1 ‹ 100 407 46 25 2 1,20
2 Наноразмерные ферромагнитные частицы пыли аспирации электросталеплавильного производства 3:1 ‹ 100 395 46 25 2 1,00 1,0 Не нормируется
4:1 ‹ 100 395 46 25 2 0,80
5:1 ‹ 100 395 46 25 2 0,70

Способ очистки промывных сточных вод от ионов цинка, заключающийся в добавлении в сточную воду адсорбента, интенсивном перемешивании с водой в реакторе с мешалкой для равномерного распределения по всему объему в течение 25 минут, последующем отстаивании для разделения твердой и жидкой фаз, отличающийся тем, что в качестве адсорбента используются ферромагнитные наноразмерные частицы пыли аспирации электросталеплавильного производства состава в массовых долях: железо общее 56%; влага 0,63%; медь 0,123%; нефтепродукты 0,08%; хром 0,11%; цинк 18,8%; остальное до 100% - ферриты, при массовом соотношении ионы цинка : пыль аспирации электросталеплавильного производства 1: 3…5, а отстаивание частиц металлургической пыли с адсорбированными ионами цинка осуществляется в отстойнике из немагнитного материала, внешняя сторона дна которого оборудована постоянными магнитами.



 

Похожие патенты:

Группа изобретений относится к способу удаления хлорида из сточных вод от предприятия по производству удобрений, предприятию по производству удобрений и применению электролиза для удаления хлорида.

Группа изобретений относится к области химии, а именно к технологии легирования диоксида титана анатазной аллотропной модификации наночастицами благородных металлов для создания высокоэффективного фотокатализатора, предназначенного для фотокаталитических реакций окисления органических соединений в мягких условиях.

Изобретение может быть использовано при очистке растворов, содержащих соединения шестивалентного хрома и морскую воду, а именно для очистки отработавшего раствора ингибитора коррозии, содержащего 100-2000 мг/л хромата калия K2CrO4.

Группа изобретений относится к водоумягчительному устройству и к способу эксплуатации водоумягчительного устройства. Водоумягчительное устройство содержит фильтр, который выполнен с возможностью снижения жесткости первого потока необработанной воды с получением второго потока воды со сниженной жесткостью, первый датчик для измерения электрического параметра первого потока и второй датчик для измерения электрического параметра второго потока.

Изобретение предназначено для фильтрации. Фильтрующее устройство содержит наружный корпус; воронкообразный разделительный элемент (4), который предназначен для хранения воды, подлежащей фильтрации, находится или может быть размещен в наружном корпусе и ограничивает в наружном корпусе резервуар для хранения отфильтрованной воды, причем воронкообразный разделительный элемент (4) определяет путь (7) потока для воды, подлежащей фильтрации; место (17) установки, которое образовано в воронкообразном разделительном элементе (4) в области пути (7) потока для приема с возможностью съема первого фильтрующего элемента (10), причем первый фильтрующий элемент (10) содержит сменный фильтр (101) картриджного типа; выпускное отверстие (30), которое предназначено для отфильтрованной воды из первого фильтрующего элемента (10), образовано в месте (17) установки и обеспечивает прием с возможностью съема второго фильтрующего элемента (11); вентиляционное отверстие, которое располагает в сообщении место (17) установки с наружной стороной наружного корпуса.

Изобретение относится к химической промышленности и охране окружающей среды. Сточные воды подвергают электродиализной обработке с получением обессоленной воды с пониженным содержанием органических ионов аммония и концентрат, содержащий органические ионы аммония.

Изобретение относится к способу регенерации акриловой смолы, используемой для удаления и воды органических загрязнений. Способ включает обеспечение совокупности частиц акриловой смолы, имеющей расчетный параметр Ханша от -0,2 до 0,5, при этом одна или более гуминовая кислота, одна или более фульвовая кислота или их смесь адсорбирована на указанную акриловую смолу.

Изобретение относится к обработке промышленных сточных вод и, более конкретно, сточных вод от предприятия по производству удобрений, такого как предприятие по производству нитрофосфатных, органических или органоминеральных удобрений.

Изобретение относится к способу защиты и очистки водных ресурсов и, в частности, к способу защиты/очистки воды посредством повторного заполнения пласта, поврежденного добычей угля, железосодержащей отработанной водой и может быть применено в области восстановления водоносного слоя и защиты водных ресурсов в пласте.

Изобретение может быть использовано для очистки промышленных, питьевых и сточных вод, загрязненных высоким содержанием мышьяксодержащих соединений. Установка для очистки водных сред от мышьяксодержащих соединений с использованием магнитоактивного сорбента, содержит резервуар-накопитель 1 с плавающей крышкой, насос-дозатор 5, сорбционную колонну 2 периодического действия, смеситель 3 с мешалкой, насос-дозатор 6, магнитный сепаратор 4, насос загрузочный 7, нутч-фильтр 8 разъемной конструкции, обеспечивающий выгрузку осадка и замену фильтрующих элементов.
Наверх