Узел порционный для измерения показателя кислотности растворов

Изобретение относится к сельскому хозяйству. Предложен узел порционный для измерения показателя кислотности в питательных растворах при выращивании растений, включающий систему для измерения и подачи кислотного раствора с использованием индикаторов. В большой емкости выше максимального уровня раствора расположена меньшая емкость для измерений, выполненная из химически инертного материала с размещённым в ней измерительным стеклянным электродом, подающим сигнал на измерительное устройство, которое преобразует сигнал в численные величины кислотности. К меньшей емкости подведен патрубок, подающий калибровочную жидкость в неё из другой емкости, причем второй патрубок подает измеряемый раствор из большой емкости в меньшую. Узел обеспечивает повышение степени достоверности производимых измерений кислотности. 1 ил.

 

Изобретение относится к области сельского хозяйства, в частности к выращиванию растений в защищенном грунте и может найти применение в системах приготовления питательных растворов переменного химического состава и кислотности при возделывании различных культур.

Известно техническое решение, при котором кислотность раствора измеряют Рh метром путем подъема жидкости в стеклянном калибровочном капилляре с различным диаметром ( патент №2315073,опубликован 10.07.2008 г. Бюллетень № 19. МПK G10N00011, С02F1/46).

Данное решение не достаточно точное в определении кислотности раствора, что снижает качественные показатели выращиваемых растений при увеличении или снижении Рh. Каждый элемент в наборе измерения требует выполнения технологической операции по очистке прибора. Следовательно, известное техническое решение недостаточно эффективно.

Известно также устройство для повышения точности регулирования концентрации компонента питательного раствора, которое имеет канал регулирования кислотности, состоящий из датчика кислотности, блока сравнения сигналов с выхода последнего и сигналов с выхода сумматора, исполнительного узла, подключенного к выходу блока сравнения и состоящего из регулятора и насоса-дозатора (а.с. № 1769815, конвенционный приоритет 30.10.1989, МПК А01G 9/24, G 05 D 11/02).

Недостатком данного технического решения является игнорирование надлежащих условий работы стеклянного электрода для измерения рН, которые включают в себя регулярную промывку измерительного элемента с такой же регулярной его калибровкой.

Наиболее близким техническим решением является система для измерения кислотности Ph, включающая набор чувствительных элементов Ph. При этом каждый индикатор используется при разных значениях Ph в зависимости от первого Ph отклика каждого индикатора (патент № 2456578, опубликован 20.07.2012, Бюллетень №20. МПК G01N21/27).

Недостаток ближайшего аналога-прототипа заключается в том, что применяемый состав средств измерения достаточно сложный при различных значениях Ph. Введение в раствор различных индикаторов усложняет способ и снижает достоверность полученного результата.

Технический результат заявленного изобретения – упрощение устройства за счет исключения ручного труда по обслуживанию, повышение достоверности результатов и надежности работы в получении требуемого значения кислотности раствора

Техническое решение заключается в том, что в большой емкости выше максимального уровня раствора расположена меньшая для измерений, выполненная из химически инертного материала с размещённым в ней измерительным стеклянным электродом, подающим сигнал на измерительное устройство, которое преобразует сигнал в численные величины кислотности, к меньшей емкости подведен патрубок, подающий калибровочную жидкость в неё из другой емкости, причем второй патрубок подает измеряемый раствор из большой емкости в меньшую.

Устройство состоит из рабочей ёмкости 1, внутри неё выше максимального уровня раствора размещена малая ёмкость для измерений 2, которая выполнена из химически инертного материала и имеет свободный перелив через верхний край. В ёмкости 2 находится измерительный стеклянный электрод 3 с выдачей электрических сигналов на измерительное устройство 4, которое преобразует эти сигналы в численные величины показателя кислотности. К ёмкости 2 подведён патрубок 5 – для подачи насосом 6 калибровочной жидкости из ёмкости 7, а также патрубок 8 – для подачи насосом 9 измеряемого раствора, находящегося в рабочей ёмкости 1 (рисунок 1).

Устройство работает следующим образом.

В начале каждого цикла измерения в малую ёмкость для измерения 2 подают небольшое количество калибровочной жидкости посредством кратковременного включения в работу насоса 6. Измерительное устройство 4 показывает кислотность калибровочного раствора, которая должна совпадать с его маркировкой. После этого включают насос 9 на достаточно продолжительный период времени, при этом стеклянный электрод 3 постоянно омывают измеряемым раствором. Измерительный электрод 3 выдаёт соответствующие электрические сигналы на преобразующее устройство 4.

После замера показателей кислотности раствора, находящегося в ёмкости 1, насос 9 выключают, затем кратковременно включают в работу насос 6 для омывания измерительного электрода 3 порцией калибровочной жидкости. В этой среде измерительный электрод 3 находится до следующего измерения. Рабочий цикл закончен.

Ёмкость для измерений 2 пренебрежимо мала по сравнению с ёмкостью 1, в которой находится порция измеряемого раствора, имеющего каждый раз иную концентрацию растворённых в нём солей, щелочей и кислот. Поэтому порция промывочной (калибровочной) жидкости после выполнения каждого замера не вносит сколько-нибудь заметной погрешности в измеряемую величину, тем более что верхний край ёмкости 2 расположен всегда выше уровня раствора в ёмкости 1.

При использовании предлагаемого устройства:

- повышается степень достоверности производимых измерений кислотности вследствие реализации цикла «калибровка-измерение-промывка»;

- исключается ручной труд при обслуживании измерительного устройства;

- степень усреднения питательного раствора по всему его объёму отделена от процесса периодических измерений рН, в связи с чем становится доступным установление времени, достаточного для достижения однородности раствора во всём его объёме.

Новые существенные признаки заявляемого изобретения:

- применение наряду с большой рабочей ёмкостью отдельной малой измерительной ёмкости со свободным переливом, в которую постоянно погружён измерительный элемент – стеклянный электрод;

- использование независимых ёмкостей и насосов для обеспечения последовательной подачи в измерительную ёмкость калибровочной жидкости, измеряемого раствора и промывочной жидкости;

- постоянное нахождение измерительного элемента – стеклянного электрода в промывочной жидкости, обеспечивающей постоянную готовность измерительного элемента к работе.

Узел порционный для измерения показателя кислотности в питательных растворах при выращивании растений, включающий систему для измерения и подачи кислотного раствора с использованием индикаторов, отличающийся тем, что в большой емкости выше максимального уровня раствора расположена меньшая для измерений, выполненная из химически инертного материала с размещённым в ней измерительным стеклянным электродом, подающим сигнал на измерительное устройство, которое преобразует сигнал в численные величины кислотности, к меньшей емкости подведен патрубок, подающий калибровочную жидкость в неё из другой емкости, причем второй патрубок подает измеряемый раствор из большой емкости в меньшую.



 

Похожие патенты:
Изобретение относится к области сельского хозяйства, в частности к плодоводству. Способ включает высокоплотную схему посадки 4,0×1,5 м.

Изобретение относится к сельскому хозяйству. Устройство для определения флуктуирующей асимметрии оптических характеристик листьев растений содержит первый зажим с расположенными на нем первыми входным и выходным оптическими разъемами, первый источник света, первый гибкий световод, соединяющий первый источник света с первым входным оптическим разъемом, спектрометр, устройство управления, причем оно дополнительно содержит второй зажим с расположенными на нем вторыми входным и выходным оптическими разъемами, второй источник света, второй гибкий световод, разветвленный гибкий световод, направляющую, при этом второй гибкий световод соединяет второй источник света с вторым входным оптическим разъемом, разветвленный гибкий световод своими разветвленными жгутами соединен с первым и вторым выходными оптическими разъемами, а неразветвленым жгутом соединен с спектрометром, первый и второй зажимы присоединены к направляющей с возможностью взаимного перемещения и фиксации на ней, электрически устройство управления соединено с первым, вторым источниками света и спектрометром.

Изобретение относится к области сельского хозяйства. Способ включает анализ продуктивности почвы с учетом абиотических факторов путем отбора почвы для анализа, определения содержания агрохимических показателей, определение факторов агроклиматического ресурса данной территории, влияющих на урожайность культуры: фотосинтетической активной радиации (ФАР), влагообеспеченности, биогидротермического потенциала (БГТП), биоклиматического потенциала (БКП), определение урожайности выбранной сельскохозяйственной культуры в зависимости от внешней и почвенной среды по формуле: ,где: У - урожай по сумме i-x факторов; n - количество факторов принятых при расчете урожая; i - фактор, влияющий на урожай и прибавку урожая - гумус, фосфор, калий, кислотность, микроэлементы - показатели из агрохимического анализа почв; Уi1 - урожай, обеспечиваемый показателями почвенного плодородия по i-фактору; Уi2 - прибавка урожая, обеспечиваемая дополнительным i-фактором; ai - поправочный коэффициент на влияние кислотности почвы, построение номограммы в виде графика, выбор для конкретной сельскохозяйственной культуры по номограмме показатель прогнозируемого урожая, наложение на номограмму линейки и определение требуемой дозы удобрений, при этом дозу удобрений для сельскохозяйственной культуры устанавливают с учетом обеспеченности почв питательными веществами, рассчитывают получение прибавки в 1 т/га урожая, в качестве основных показателей питательности почв выбирают гумус, фосфор и калий.

Изобретение относится к области экологии, в частности к очистке воздуха автомобильных дорог с помощью растений-аккумуляторов вредных веществ. Способ включает использование растений, аккумулирующих токсические и вредные вещества.

Изобретение относится к сельскохозяйственному мониторингу и планированию. Технический результат заключается в расширении арсенала технических средств.

Группа изобретений относится к области сельского хозяйства, в частности к растениеводству. Способ включает стадии: a) высевания указанной линии маиса в нескольких местах; b) определения индекса стресса для каждого места из стадии a), где определение индекса стресса предусматривает измерение одного параметра окружающей среды с равными интервалами на протяжении по меньшей мере одного периода времени; c) измерения урожая зерна указанной линии маиса для каждого места из стадии a); d) вычисления линейной регрессии между индексом стресса из стадии b) и урожаем зерна из стадии c); e) определения выносливости к засухе на основании регрессии из стадии d).

Изобретение относится к способам обработки почвы в сельском хозяйстве, а именно к способам поддержания оптимальной температуры почв для восстановления экосистемы в пустынях и полупустынях.

Изобретение относится к области физиологии растений. Способ включает комплексный анализ морфологических и биометрических характеристик растений.
Изобретение относится к области сельского хозяйства. В способе для дефолиации хлопчатника применяют горячий воздух.

Группа изобретений относится к области интеллектуального сельского хозяйства. Техническим результатом является увеличение контролируемой области посадок и повышение скорости обследования растений.
Наверх