Способ проведения наземных тепловакуумных испытаний космических объектов в условиях, имитирующих космические

Изобретение относится преимущественно к наземным тепловакуумным испытаниям космических объектов (КО). Способ включает размещение КО в вакуумной камере с криоэкранами, имитирующими «холодный» космос, и облучение КО световым потоком от имитатора солнечного излучения. КО вращают в световом потоке вокруг вертикальной оси и оценивают работоспособность КО при его функционировании по программе полета. Световой поток разделяют на горизонтальный и вертикальный световые потоки и облучают ими КО попеременно, соблюдая высокоточную имитацию неоднородности, непараллельности и удельной тепловой мощности падающего на КО потока - в зависимости от имитируемой ориентации КО относительно Солнца. Техническим результатом является повышение достоверности и снижение энерго- и трудоёмкости наземных испытаний, главным образом крупногабаритных КО с системами обеспечения теплового режима, чувствительными к ориентации КО в условиях земной гравитации.

 

Изобретение относится к области испытательной технике, в частности к наземным тепловакуумным испытаниям космических объектов (КО) в условиях, приближенных к эксплуатации КО в открытом космическом пространстве, а также может найти применение в тех областях техники, где предъявляются повышенные требования к излучательным и отражательным характеристикам изделий, изготовленных из различных материалов или имеющих разные покрытия.

Известен способ проведения наземных тепловакуумных испытаний КО в условиях, имитирующих космические, заключающийся в размещении КО в вакуумной камере с криоэкранами, вакуумировании вакуумной камеры, захолаживании криоэкранов жидким азотом, облучении поверхности КО световым потоком от имитатора солнечного излучения (Патент РФ №2209751, МПК: B64G 7/00 (2000.01), B64G 1/50 (2000.01), опубликовано 10.08.2003 г, бюл. №22).

Известен также способ, взятый в качестве прототипа, проведения наземных тепловакуумных испытаний КО в условиях, имитирующих космические, заключающийся в помещении КО в вакуумную камеру с криоэкранами, вакуумировании вакуумной камеры, создании на поверхности КО рабочей температуры путем имитации «холодного» космоса криоэкранами, окружающими КО и находящимися при температуре жидкого азота, и облучения световым потоком солнечного спектра от имитатора солнечного излучения, вращении КО в потоке солнечного спектра, имитируя условия ориентации КО, и оценке работоспособности КО путем функционирования его по программе полета (Андрейчук О.Б., Малахов Н.Н. Тепловые испытания космических аппаратов. - М.: Машиностроение, 1982 г., стр. 22-24, стр. 50-52).

Недостатком аналога и прототипа является то, что облучение КО происходит в одном направлении и это не позволяет попеременно, а в некоторых случаях и одновременно (например, при возникновении нештатной ситуации для быстрого получения экстремальных температур на КО) облучать другие поверхности КО, что, в свою очередь, связано с имитацией натурных условий ориентации объекта при его вращении в космическом пространстве относительно Солнца. Поэтому необходимо каждый раз останавливать испытания и производить операции по перестановке КО, а это связано с большими трудозатратами и энергозатратами. Это слив жидкого азота из криоэкранов, продувка их теплым воздухом, демонтаж КО и установка его в другое положение с повторными электрическими проверками, вывод вакуумной камеры на рабочий режим. Кроме того при испытаниях крупногабаритных КО рабочий объем вакуумной камеры часто не позволяет проводить необходимые развороты КО и не обеспечивается равномерный световой поток по поверхности КО, а также, в том случае, если система обеспечения теплового режима КО построена на тепловых трубах, которые работают только строго в горизонтальном положении в условиях действия гравитационного поля.

Задачей изобретения является обеспечение проведения наземных тепловакуумных испытаний КО в условиях, имитирующих космические.

Техническим результатом изобретения является повышение достоверности тепловакуумных испытаний за счет возможности создания светового солнечного потока вокруг всех поверхностей КО, снижение трудозатрат и энергопотребления, и возможность проведения тепловакуумных испытаний крупногабаритных КО в сборе, и КО, системы обеспечения теплового режима которых не функционируют при изменении их ориентации в условиях земной гравитации.

Технический результат достигается за счет того, что в способе проведения наземных тепловакуумных испытаний КО в условиях, имитирующих космические, заключающемся в помещении КО в вакуумную камеру с криоэкранами, вакуумировании вакуумной камеры, создании на поверхности КО рабочей температуры путем имитации «холодного» космоса криоэкранами, окружающими КО и находящимися при температуре жидкого азота, и облучения световым потоком солнечного спектра от имитатора солнечного излучения, вращении КО в потоке солнечного спектра, имитируя условия ориентации КО, и оценке работоспособности КО путем функционирования его по программе полета, при этом разделяют световой поток солнечного спектра на горизонтальный и вертикальный, оси световых потоков солнечного спектра взаимно перпендикулярны, и облучают КО попеременно горизонтальным и вертикальным световыми потоками с высокими точностными характеристиками по неоднородности уровней плотностей падающего потока излучения, непараллельности и удельной тепловой мощности падающего теплового потока, в зависимости от имитируемой траектории полета КО по отношению к Солнцу.

По сравнению с прототипом значительно возрастает достоверность наземных тепловакуумных испытаний, которая достигается за счет возможности создания светового солнечного потока вокруг всех поверхностей КО.

Предлагаемый способ реализуется следующим образом:

- помещают КО в вакуумную камеру (например, ВК 600/300), имеющую криоэкраны, расположенные по ее внутреннему контуру;

- вакуумируют вакуумную камеру с помощью вакуумных насосов (например, механических Oerlikon Leybold RUTA WH7000/DV1200/G, турбомолекулярных Edwards STP-iXA4506C, криогенных HSR AG VELCO1250) до давления, исключающего конвективный теплообмен в вакуумной камере (обычно до давления 1⋅10-2 -1⋅10-4 Па);

- одновременно с вакуумированием вакуумной камеры создают на поверхности КО рабочую температуру путем захолаживания криоэкранов до температуры, имитирующей «холод» окружающего космического пространства (например, при захолаживании криоэкранов жидким азотом, до температуры минус 186±3°С);

- облучают световым потоком солнечного спектра КО от имитатора солнечного излучения (например, ИС-500 ВК600/300), при этом разделяют световой поток солнечного спектра на горизонтальный и вертикальный путем взаимно перпендикулярного размещения двух имитаторов солнечного излучения, оси световых потоков солнечного спектра взаимно перпендикулярны, и облучают КО попеременно горизонтальным и вертикальным световыми потоками с высокими точностными характеристиками по неоднородности уровней плотностей падающего потока излучения, непараллельности и удельной тепловой мощности падающего теплового потока (например, неоднородность уровней плотностей падающего потока излучения <10% (Асланян P.O. и др. Имитаторы солнечного излучения для термовакуумных испытаний космического аппарата, Сибирский журнал науки и технологий. 2017. Т. 18, №2, стр. 326), непараллельность лучей до 4 угловых градусов и удельная тепловая мощность падающего теплового потока 1340-1440 Вт/м2 (Асланян P.O. и др. Имитаторы солнечного излучения для термовакуумных испытаний космического аппарата, Сибирский журнал науки и технологий. 2017. Т. 18, №2, стр. 324), в зависимости от имитируемой траектории полета КО по отношению к Солнцу;

- вращают КО относительно вертикальной оси, совпадающей с направлением силы тяжести, с помощью опорно-поворотного устройства в потоке солнечного спектра, имитируя условия ориентации КО, и оценивают работоспособность КО путем функционирования его по программе полета;

- отогревают криоэкраны с помощью подачи в них теплого воздуха до нормальной температуры (15-20°С) и разгерметизируют вакуумную камеру.

Предлагаемое техническое решение позволяет повысить достоверность наземных тепловакуумных испытаний, за счет возможности создания имитируемого теплового солнечного потока вокруг всех поверхностей КО и снизить трудозатраты, так как испытания можно провести за одну установку КО в вакуумной камере без перемонтажа. Особенно это важно при моделировании тепловых процессов, происходящих на КО, обусловленных частой сменой ориентации КО на орбите, и появляется возможность проведения тепловакуумных испытаний крупногабаритных КО в сборе.

Предлагаемый способ достаточно прост в эксплуатации и может найти применение для получения данных при решении проблем, связанных с обеспечением теплового режима КО, находящихся в открытом космическом пространстве, в особенности для КО, системы обеспечения теплового режима которых не функционируют при изменении их ориентации в условиях земной гравитации.

Способ проведения наземных тепловакуумных испытаний космических объектов в условиях, имитирующих космические, заключающийся в том, что помещают космический объект в вакуумную камеру с криоэкранами, вакуумируют вакуумную камеру, создают на поверхности космического объекта рабочую температуру путем имитации «холодного» космоса криоэкранами, окружающими космический объект и находящимися при температуре жидкого азота, и облучения световым потоком солнечного спектра от имитатора солнечного излучения, вращают космический объект в световом потоке солнечного спектра, имитируя условия ориентации космического объекта, и оценивают работоспособность космического объекта путем функционирования его по программе полета, отличающийся тем, что разделяют световой поток солнечного спектра на горизонтальный и вертикальный, при этом оси световых потоков солнечного спектра взаимно перпендикулярны и облучают космический объект попеременно горизонтальным и вертикальным световыми потоками с высокими точностными характеристиками по неоднородности уровней плотностей падающего потока излучения, непараллельности и удельной тепловой мощности падающего теплового потока в зависимости от имитируемой траектории полета космического объекта по отношению к Солнцу.



 

Похожие патенты:

Изобретение относится к области космической техники, в частности к тепловакуумным испытаниям космических аппаратов (КА) в условиях, приближенных к натурным. Стенд для проведения тепловакуумных испытаний КА в условиях, имитирующих натурные, включает вакуумную камеру с загрузочной крышкой, систему вакуумирования, криогенный экран, имитатор солнечного излучения, опорно-поворотное устройство для размещения КА, систему управления работой вакуумной камеры и имитатором солнечного излучения, систему управления работой КА.

Группа изобретений относится к космической промышленности. Устройство для разработки и/или испытания полезной нагрузки для спутника содержит интерфейс полезной нагрузки, соединенный с полезной нагрузкой, и линию связи, соединяющую устройство с компьютером.

Изобретение относится к испытательной технике, а более конкретно к испытаниям прецизионных раскрываемых конструкций космического аппарата. Устройство для обезвешивания прецизионных раскрываемых конструкций космического аппарата содержит двуплечий рычаг, на одном конце которого закреплен обезвешиваемый объект, а на другом уравновешивающий груз.

Изобретение относится к космической технике, в частности к вакуумным камерам для проведения испытаний электрических ракетных двигателей. Вакуумная установка для испытаний электрических ракетных двигателей содержит горизонтально ориентированную вакуумную цилиндрическую камеру (1) с торцевыми (6, 7) и боковыми (8) фланцами.

Изобретение относится к устройствам для ведения экстремальных тренировок, например, космонавтов, водолазов, летчиков, спортсменов различных видов спорта и всем желающим использовать экстремальные нагрузки.

Изобретение относится к имитации отличной от земной силы тяжести в сочетании с радиационным воздействием космических лучей на биологические объекты (БО) в условиях, характерных для орбиты Земли, поверхности Марса, Луны и других небесных тел.

Изобретение относится к испытательной технике, а более конкретно к наземной экспериментальной отработке для обезвешивания раскрываемых конструкций космического аппарата.

Изобретение относится к космической технике, а более конкретно созданию космических аппаратов (КА). Способ изготовления КА, содержащего систему электропитания, имеющую в своем составе солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения, заключающийся в сборке электрических схем.

Заявленная группа изобретений относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство.

Изобретение относится к космической технике, а более конкретно к испытаниям элементов космического аппарата (КА). Способ испытаний многозвенной системы космического аппарата на функционирование заключается в том, что КА устанавливают на системе обезвешивания.
Изобретение относится к экспериментальной космической биологии и может быть использовано при выполнении космических биологических экспериментов, осуществляемых с запуском в космос и последующим возвращением на Землю размножаемых биологических объектов.
Наверх