Способ многопараметрического контроля состояния сложных электротехнических объектов

Изобретение относится к мониторингу электротехнических объектов. В способе многопараметрического контроля состояния сложных электротехнических объектов решают связанную мультифизическую задачу, позволяющую определить дополнительные недоступные эмпирическим путем параметры посредством методологии натурно-модельного эксперимента. Для оценки текущего состояния многопараметрического объекта всю многопараметрическую информацию, полученную эмпирическим путем и натурно-модельным подходом, объединяют в единое описание и сжимают с использованием метода главных компонент. Посредством сжатой мультифизической информации с применением регрессионного анализа прогнозируют тенденции и скорости развития возникающих дефектов для оценки остаточного ресурса оборудования. Повышается точность идентификации и прогноза работоспособности оборудования.

 

Изобретение относится к области мониторинга и контроля сложных электротехнических объектов, и может быть использовано в автоматизированных системах диагностики технического и функционального состояний многопараметрического объекта по данным измерительной информации.

Известен способ контроля и анализа многопараметрических систем (патент RU №2427875, опубликован 27.08.2011, МПК G05B 21/00, G06F 17/40), согласно которому оценку состояния многопараметрических систем проводят путем анализа массива данных, полученных со специальных датчиков. На основе массива причинно-следственных связей, которые составлены экспертом, где указано влияние одних параметров на другие, выстраивают самоорганизующийся алгоритм контроля параметров многопараметрической системы. Массив нормативов, необходимый для контроля и анализа, содержит информацию о соответствии каждого из параметров установленному значению, тем самым представляя собой множество параметров системы. Элементы этого оценочного множества могут принимать два оценочных значения: «соответствует», «не соответствует». Многопараметрическая система определяется в виде иерархии структурных элементов. Для контроля и анализа из оценочного множества выделяют элементы со значением «не соответствует» (искаженным значением). На основе причинно-следственных связей, определяют какие структурные элементы многопараметрической системы связаны с параметром с искаженными значениями.

Недостатком данного способа является отсутствие оценки величины и характера изменения интегрального состояния объекта по всему множеству

наблюдаемых измерительных параметров, к тому же возникает сложность определения причины отказа при наличии недостатка априорной информации.

Известен способ (патент RU №2134897, опубликован 20.08.1999, МПК G05B 19/408, G06F 17/40) согласно которому для обеспечения оперативного динамического анализа обобщенного состояния многопараметрического динамического объекта, осуществляют преобразование результатов допусковой оценки разнородных динамических параметров в соответствующие информационные сигналы с обобщением по всему множеству параметров в заданном временном интервале. При динамическом анализе определяют относительную величину и характер изменения интегрального состояния многопараметрического объекта. При этом операцию преобразования осуществляют путем формирования соответствующего цветового сигнала видимого спектра в зависимости от результатов допусковой оценки "в допуске - вне допуска" всех разнородных параметров на заданном временном интервале. Отображают информационные сигналы посредством матрицы-диаграммы состояний, столбцы которой соответствуют оцененному классу состояния параметров объекта, строки - заданным временным интервалам. После чего определяют относительную величину и характер изменения интегрального состояния объекта "норма - не норма" по изменению во времени цветовых сигналов оцененных классов состояний параметров по контролируемой характеристике исследуемого процесса.

Недостатком способа является относительно невысокая точность оценки состояния многопараметрического объекта и не выявление причин изменения его состояния до наступления критических значений контролируемых параметров вследствие не учета латентных характеристик объекта, чем обусловлена низкая вероятность принятия своевременного объективного решения о состоянии контролируемого объекта и предотвращения предаварийного состояния.

Известна технология многопараметрического непрерывного мониторинга эксплуатационной повреждаемости оборудования АЭС, описанная в патенте на изобретение RU №2574578, опубликованном 10.02.2016, МПК G21C 17/00

"Система многопараметрического непрерывного мониторинга эксплуатационной повреждаемости оборудования АЭС", согласно которой при помощи программного обеспечения установленного на блоке хранения и передачи данных, представляющий собой промышленный высокопроизводительный сервер, осуществляют дистанционно в автоматическом режиме управление системой, включая сбор, хранение и передачу данных, отображение и экспресс-анализ контролируемых параметров в режиме реального времени. Все данные мониторинга по линии Internet передают в удаленный аналитический центр для обработки и детального анализа. Параллельно с получением диагностических данных, записываемых системой непрерывного мониторинга, также выполняют расчетно-экспериментальное обоснование прочности и долговечности критической зоны на базе трехмерной конечно-элементной (КЭ) расчетной модели. Дополнительно существует возможность сопоставления данных мониторинга образования и развития дефектов эксплуатационной повреждаемости оборудования атомной электростанции в режиме реального времени с текущим состоянием оборудования и эксплуатационными режимами его работы, при этом трехмерная конечно-элементная модель выполнена с возможностью калибровки по данным измерений, полученных дополнительно с контрольных датчиков.

Недостатком является отсутствие возможности прогнозирования остаточного ресурса многопараметрического объекта для исключения избыточных диагностических работ. К тому же для качественной работы устройства и учета "малых" дефектов требуется установление дополнительных датчиков, что приводит к сложности реализации данного способа контроля. При этом результаты контроля указывают только на критические значения параметров и не указывают взаимосвязь с другими параметрами, что приводит к сложности объективной оценки состояния объекта.

Наиболее близким по своей технической сущности, взятым за прототип, к заявленному является способ для контроля технической установки, содержащей множество систем (патент RU №2313815, опубликован 27.12.2007, МПК G05B 23/02, G05B 17/02). Согласно способу-прототипу, контроль технической

установки осуществляют с использованием динамической модели, которую улучшают во время работы посредством методов искусственного интеллекта. Под динамической моделью понимается детерминированная и/или аналитическая модель. Модель может включать в себя физические и математические уравнения, а также их комбинации, которые объединены с помощью методов, основанных на искусственном интеллекте. Под методами искусственного интеллекта подразумеваются нейронные сети, нечеткая логика и генетические алгоритмы, на основе которых также возможно и прогнозирование будущего состояния технической установки. При этом основанный на искусственном интеллекте алгоритм ищет в исторических или мгновенных рабочих параметрах, полученных с измерительных устройств, и/или структурных параметрах системы и/или технической установки взаимосвязи между входными и выходными данными. Подобные вновь открытые взаимосвязи интегрируют в динамическую модель. Под "рабочими параметрами" подразумеваются все виды данных, которые поступают при работе технической установки как, например, результаты измерения температуры, данные датчиков, сигналы тревоги и т.д. Таким образом, описывают мгновенные и/или будущие эксплуатационные характеристики как отдельных систем, так и эксплуатационные характеристики установки, возникающей за счет взаимодействия систем.

Способ-прототип позволяет оценивать комплексное состояние системы на основе анализа данных и корреляций между ними. Однако недостатком данного способа является то, что для комплексной оценки многопараметрических объектов, которые включают в себя множество параметров различной физической природы, недостаточно использование однородных рабочих параметров и корреляции между ними. Состояние сложного электротехнического объекта также зависит и от параметров, которые не могут быть определены эмпирическим путем, например, в следствие физической недоступности места измерения. Как следствие способ-прототип обладает недостаточной точностью оценки состояния и развивающихся эксплуатационных дефектов многопараметрических объектов.

Задача изобретения - повышение точности идентификации интегрального состояния многопараметрического объекта между классами состояний за счет комплексной оценки множества разнородных физических параметров, а также повышение точности прогнозирования работоспособности многопараметрического объекта с целью сокращения сроков анализа по информационной поддержке принятия решений для своевременного проведения планово-предупредительных работ.

Указанная задача достигается тем, что способ многопараметрического контроля состояния сложных электротехнических объектов, заключающийся в том, что оценку и прогнозирование состояния сложных электротехнических объектов осуществляют на основе модели, включающей в себя физические и математические уравнения, при этом используют исторические и мгновенные данные рабочих параметров, полученные с измерительных датчиков, а также структурные параметры объекта интегрированные в модель, наряду с этим осуществляют установка взаимосвязи между этими параметрами, а также между входными и выходными данными объекта, также дополнительно с целью повышения точности идентификации интегрального состояния многопараметрического объекта решают связанную мультифизическую задачу, которая позволяет определить дополнительные недоступные эмпирическим путем параметры посредством методологии натурно-модельного эксперимента, при этом для оценки текущего состояния многопараметрического объекта всю многопараметрическую информацию, полученную эмпирическим путем и натурно-модельным подходом, объединяют в единое описание и сжимают с использованием методов понижения размерности данных, например, с применением метода главных компонент, причем, посредством сжатой мультифизической информации осуществляют, например, с применением регрессионного анализа, прогнозирование тенденции и скорости развития возникающих дефектов для оценки остаточного ресурса оборудования с целью своевременного проведения планово-предупредительных работ.

Предлагаемый способ реализуется следующим образом: на основе массива данных, представляющие собой исторические и мгновенные данные рабочих

параметров, полученных с датчиков сложного многопараметрического объекта, а также структурных параметров объекта, данных о взаимосвязи между этими параметрами и между входными и выходными данными объекта формируется мультифизическая модель сложного электротехнического объекта, включающая в себя физические и математические уравнения, например, с использованием конечно-элементного подхода, причем на базе методологии натурно-модельного эксперимента решается связанная мультифизическая задача для определения дополнительных недоступных эмпирическим путем параметров. Для оценки текущего состояния многопараметрического объекта всю многопараметрическая информация большой размерности, полученную эмпирическим путем и натурно-модельным подходом, объединяют и сжимают, посредством методов понижения размерности данных, например, с применением метода главных компонент. Используя полученную сжатую мультифизическую информацию, осуществляют прогнозирование тенденции и скорости развития возникающих дефектов, например, с применением регрессионного анализа, для оценки остаточного ресурса оборудования с целью своевременного проведения планово-предупредительных работ.

Способ многопараметрического контроля состояния сложных электротехнических объектов, заключающийся в том, что оценку и прогнозирование состояния сложных электротехнических объектов осуществляют на основе модели, включающей в себя физические и математические уравнения, при этом используют исторические и мгновенные данные рабочих параметров, полученные с измерительных датчиков, а также структурные параметры объекта, интегрированные в модель, наряду с этим осуществляют установку взаимосвязи между этими параметрами, а также между входными и выходными данными объекта, отличающийся тем, что решают связанную мультифизическую задачу, позволяющую определить дополнительные недоступные эмпирическим путем параметры посредством методологии натурно-модельного эксперимента, при этом для оценки текущего состояния многопараметрического объекта всю многопараметрическую информацию, полученную эмпирическим путем и натурно-модельным подходом, объединяют в единое описание и сжимают с использованием метода главных компонент, причем посредством сжатой мультифизической информации с применением регрессионного анализа осуществляют прогнозирование тенденции и скорости развития возникающих дефектов для оценки остаточного ресурса оборудования.



 

Похожие патенты:

Изобретение относится к технике контроля технического обслуживания инженерных систем объекта. Технический результат заключается в обеспечении достоверных данных проведения технического обслуживания (ТО) объекта и исключении возможности нарушения регламента ТО.

Изобретение относится к области вычислительной техники. Технический результат заключается в осуществлении мониторинга оборудования для оценки реального состояния его жизненного цикла, определения начала отказа, уровня техобслуживания, требуемого оборудованию.

Изобретение относится к способу испытаний электронной аппаратуры на основе аппаратно-программного внесения неисправностей с маршрутизацией. Техническим результатом изобретения является повышение точности контроля при испытаниях электронной аппаратурой.

Заявленное изобретение относится к комплексной сетевой системе для удаленных операций, которая распространяет методику неразрушающего контроля (НК), проводимого удаленным специалистом, на различные производственные процессы и процессы, осуществляемые во время эксплуатации.

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение обучения модели прогнозирования значений признаков кибер-физической системы (КФС) и вычисления порога ошибки для определения аномалии в КФС.

Изобретение относится к области контроля состояния технических объектов на базе периодических освидетельствований, в частности к способам оценки фактического состояния и остаточного ресурса рабочих колес гидротурбин в условиях эксплуатации.

Описывается создание базы знаний экспертной системы и использование такой системы для установления диагноза и/или выдачи прогноза аномалии в состоянии вибрационной машины или других вибрационных машин, рекомендации по мероприятиям технического обслуживания или информацию о времени выхода из строя вибрационной машины или других вибрационных машин.

Изобретение относится к фильтровентиляционным системам. В способе определения оптимального срока службы фильтра между заменами фильтра в фильтровентиляционной системе, получают параметр затрат, связанных с предметной частью фильтра и параметр затрат, связанных с эксплуатацией фильтра.

Изобретение относится к вычислительной технике, в частности к способам контроля, и может быть использовано в опытно-конструкторских работах и практике эксплуатации, где требуется определять оптимальную периодичность контроля сложных объектов.

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении операторской системы распознавания и отображения доступов оператора к объектам процесса.
Наверх