Способ ликвидации свалки твердых бытовых отходов

Во многих крупных населенных пунктах старые не функционирующие свалки твердых бытовых отходов (ТБО) располагаются в границах жилых районов, что недопустимо по существующим санитарно-эпидемиологическим нормам. Передислокация таких свалок должна предусматривать организацию полигона захоронения ТБО в соответствии с законодательством РФ вне жилых поселений, что является дорогостоящим мероприятием. Способ ликвидации свалки ТБО предусматривает разделение свалочных масс методом сухого грохочения по размеру и составу содержимого свалки, выделения мелкодисперсной фракции – свалочного грунта, который может составлять до 70% от массы всех захороненных отходов, и перевод его в грунт-рекультивант с дальнейшим использованием для рекультивации очищенной от ТБО территории, а выделяемые из свалочных масс древесные и полимерные отходы, металлический лом, мусор строительный, лом асфальтовых и асфальтобетонных покрытий направляются на вторичную переработку. Обезвреживание мелкодисперсной фракции ведут обработкой нагретым до 80±10°С воздухом и водными растворами бишофита концентрацией 26 г/л и калиевых солей гуминовых кислот концентрацией 0,5 г/л. Количество растворов составляет 3-10% каждого от массы обрабатываемого грунта. Техническим результатом предлагаемого изобретения является полная ликвидация существующей свалки и рекультивация загрязненной территории. 3 з.п. ф-лы, 4 табл., 4 пр.

 

Во многих крупных населенных пунктах старые не функционирующие свалки твердых бытовых отходов (ТБО) располагаются в границах жилых районов, что недопустимо по существующим санитарно-эпидемиологическим нормам. Передислокация таких свалок должна предусматривать организацию полигона захоронения ТБО в соответствии с законодательством РФ вне жилых поселений, что является технически сложным и дорогостоящим мероприятием.

Известен способ сжигания отходов (Инженерно-технический справочник ИТС 9-2015 по наилучшим доступным технологиям «Обезвреживание отходов термическим способом (сжигание отходов)»), который может быть использован при ликвидации свалки ТБО. К недостаткам способа можно отнести возможные выбросы токсичных газообразных веществ в атмосферу (бензапирен, оксиды углерода, серы, азота, диоксины) и образование зольного остатка 3-4 класса опасности, составляющего от 40% до 80% от массы исходного мусора, который необходимо вывозить на полигон захоронения.

Известны многочисленные способы обустройства свалок ТБО: перевод несанкционированной свалки ТБО в полигон захоронения отходов (патент RU 2697095, кл. В09В 1/00, опубл. 2019), санитарная консервация свалок (Патент RU 2469805, кл. B09 B1/00, опубл. 2012), захоронение обработанных раствором флокулянтов отходов в котловане-могильнике (патент RU 2393310, кл. E04G 23/08, опубл. 2010 г.), который обустраивают рядом с уничтожаемым объектом. Однако эти способы не приводят к изменению состава и объема свалки ТБО и не могут считаться мероприятиями по ликвидации отходов.

Известен способ рекультивации объектов, оказывающих негативное действие на окружающую среду (патент RU 2633397, кл. В09В 3/00, опубл. 2017), взятый нами за прототип, в котором загрязненные строительные материалы и грунт очищаются промыванием подобранным растворителем (выщелачивателем) на специально построенном полигоне с организованной дренажной системой сбора раствора, восстановлением его на станции водоочистки и повторным использованием. Способ эффективен при рекультивации высоко загрязненных промышленных объектов, однако использование его для ликвидации свалки ТБО затруднительно в связи со сложным составом отходов.

Техническим результатом предлагаемого изобретения является полная ликвидация свалки твердых бытовых отходов без вывоза на полигоны захоронения с рекультивацией территории грунтом-рекультивантом, полученным из свалочных масс.

Способ ликвидации свалки твердых бытовых отходов, отличающийся тем, что свалочные массы разделяются методом сухого грохочения по размеру и составу содержимого свалки, выделения мелкодисперсной (менее 10 мм) фракции – свалочного грунта и перевод его в грунт-рекультивант с дальнейшим использованием для рекультивации очищенной от отходов территории, а выделяемые из свалочных масс древесные и полимерные отходы, металлический лом, мусор строительный, лом асфальтовых и асфальтобетонных покрытий направляются на вторичную переработку. Выделяемый свалочный грунт обезвреживается путем обработки нагретым до 80±10ºС воздухом, растворами бишофита (28 г/л) и калиевыми солями гуминовых кислот (0,5 г/л), взятыми в количестве по 3 - 10% от массы обрабатываемого грунта, причем калиевые соли гуминовых кислот получают из низинного торфа с содержанием органических веществ не менее 85% в пересчете на сухую массу при пропускании торфо-щелочной пульпы через ультразвуковой реактор мощностью не менее 3 кВт без нагрева. Получаемый грунт-рекультивант для повышения его биологической активности дополнительно смешивается с осадками сточных вод (ОСВ), обезвреженных при 80±10°С в количестве не более 5 - 15% ОСВ от массы полученного грунта-рекультиванта.

Пример 1. Исследовались образцы грунтов свалки ТБО, закрытой в 1983 году. Отбор проб осуществлялся в 8-ми контрольных точках, на различных глубинах: от (0–0,3) до 10 м. Выбранные контрольные точки характеризуют состояние почв на территории свалки и в ее массе. Фоновая точка характеризует состояние почвы за пределами свалки на глубинах (0–0,05) и (0,05-0,2) м. Всего отобрано 26 проб свалочного грунта и 2 фоновые пробы. Из них методом усреднения получено 8 образцов по контрольным и один – по фоновой точкам, а также один усредненный образец по всем контрольным точкам. Для десяти образцов проведен анализ водных вытяжек методом биотестирования с применением тест-объекта дафнии «Daphnia magna» с целью установления класса опасности воздействия на окружающую среду отхода по токсичности. Исследования проводились согласно ФР.1.39.2007.03222 «Методика определения токсичности воды и водных вытяжек из почв, осадков, сточных вод, отходов по смертности и изменению плодовитости дафний». Критерием оценки токсичности водных вытяжек образцов служит гибель 50% и более дафний за 96 часов экспозиции. Результаты определения класса опасности усредненных образцов представлены в таблице 1.

Таблица 1

Пример 2. Полученные в примере 1 десять мелкодисперсных образцов были обдуты горячим воздухом температурой 80±10 ºС. Для всех полученных мелкодисперсных образцов проведен анализ водных вытяжек методом биотестирования с применением тест-объекта дафнии «Daphnia magna» с целью установления класса опасности воздействия на окружающую среду отхода по токсичности. Результаты определения класса опасности мелкодисперсных усредненных образцов представлены в таблице 2.

Таблица 2

Как следует из представленных в таблице 2 результатов по определению класса опасности мелкодисперсных образцов, прошедших обработку горячим воздухом, токсичность свалочного грунта (относительно данных, представленных в таблице 1) существенно снизилась. Этот факт можно объяснить уничтожением микробиоты кислородом воздуха и снижением подвижности вредных веществ (соединений тяжелых металлов, органических веществ) при аэрации субстрата.

Пример 3. Из усредненной пробы (пример 2) приготовлены восемь образцов, семь из которых смешанны с растворами бишофита и гумата калия, причем калиевые соли гуминовых кислот получены из низинного торфа с содержанием органических веществ 92,6% в пересчете на сухую массу при пропускании торфо-щелочной пульпы через ультразвуковой реактор мощностью 3 кВт без нагрева. Концентрат бишофита (28%) и концентрат гумата калия (32 г/л) приняты за 100%. Из этих товарных концентратов были приготовлены 10% водный слабокислый раствор бишофита (26 г/л) и 1,5% водный слабощелочной раствор гумата калия (0,5 г/л). Результаты определения класса опасности образцов свалочного грунта, обработанных растворами бишофита и гумата калия представлены в таблице 3.

Таблица 3.

Результаты, представленные в таблице 3, доказывают эффективность совместного применения растворов бишофита и гумата калия для снижения токсичности свалочного грунта до пятого класса опасности и, тем самым, перевода его в грунт-рекультивант. Наилучший результат (по критерию класса опасности отхода) получен для образцов 6-8, в которых свалочный грунт обрабатывался водными растворами бишофита (концентрацией 26 г/л) и гумата калия (0,5 г/л), взятыми в количестве по 3-10% от массы грунта. Найденная рецептура позволяет использовать модифицированный свалочный грунт для целей рекультивации, т.е. в качестве грунта-рекультиванта.

Пример 4. Повышение биологической активности грунта-рекультиванта с использованием осадков сточных вод (ОСВ) городского водоканала. Образцы ОСВ содержали органического вещества 62%, имели влажность 76% и были термообработаны при температуре 80°С для уничтожения патогенной микрофлоры. Биологическую активность модифицированных образцов грунта-рекультиванта определяли по ГОСТ 13038-84 «Метод определения всхожести». В качестве объекта были выбраны семена мягкой пшеницы. Контрольная среда в растильне — песок с размером частиц 0,4—0,8 мм (образец Контроль П). Второй контрольный образец – почвогрунт с фоновой точки (Контроль Ф). Образец исходного грунта-рекультиванта – образец 6 (Обр6) из Примера 3. Грунт-рекультивант модифицировали добавлением 5% ОСВ (образец Обр6+ОСВ5), 10% ОСВ (образец Обр6+ОСВ10), 15% ОСВ (образец Обр6+ОСВ15) и 20% ОСВ (образец Обр6+ОСВ20). Семена проращивали на образцах влажностью 60%. Результаты оценки биологической активности и класса опасности полученных образцов приведены в таблице 4.

Таблица 4.

Представленные в таблице 4 результаты свидетельствуют о положительном влиянии добавки ОСВ в количестве от 5% до 15% к грунту-рекультиванту, но большая концентрация ОСВ приводит к изменению класса опасности воздействия на окружающую среду с 5 на 4, что недопустимо.

1. Способ ликвидации свалки твердых бытовых отходов, включающий разделение свалочной массы на мелкодисперсную фракцию и прочие отходы, с последующим обезвреживанием выделенной мелкодисперсной фракции с получением грунта-рекультиванта, при этом обезвреживание ведут обработкой нагретым до 80±10°С воздухом и водными растворами бишофита концентрацией 26 г/л и калиевых солей гуминовых кислот концентрацией 0,5 г/л, количество растворов составляет 3-10% каждого от массы обрабатываемого грунта, прочие отходы направляют на вторичную переработку, а полученный грунт-рекультивант используют для рекультивации очищенной от отходов территории.

2. Способ по п.1, в котором полученный грунт-рекультивант дополнительно смешивают с предварительно термообработанными при температуре 80±10°С воздухом осадками сточных вод в количестве 5-15% от массы грунта-рекультиванта.

3. Способ по п.1 или 2, в котором калиевые соли гуминовых кислот получены из низинного торфа с содержанием органических веществ не менее 85% в пересчете на сухую массу с дополнительным пропусканием торфо-щелочной пульпы через ультразвуковой реактор мощностью не менее 3 кВт без нагрева.

4. Способ по п.1 или 2, в котором выделенная мелкодисперсная фракция имеет размер частиц менее 10 мм.



 

Похожие патенты:

Изобретение относится к области экологии и природопользования, сельского хозяйства и может быть использовано для увеличения экологической устойчивости и срока службы газонных экосистем, а также для детоксикации загрязненных тяжелыми металлами почв городских территорий и садово-огородных товариществ городских агломераций.

Изобретение относится к области экологии и рекультивации земель. Способ включает реагентную обработку осадков сточных вод с последующим компостированием.
Изобретение относится к области охраны окружающей среды, а именно к составу нейтрализующего компонента, который может быть использован для обезвреживания нефтеотходов при их попадании в водоем, почву или при разливе на твердую поверхность.

Изобретение относится к области экологической безопасности и рекультивации. Способ осуществляют путем внесения в рекультивируемый грунт органо-минерального мелиоранта в пропорции от 10:1 до 15:1 с перемешиванием.

Изобретение относится к области строительства и эксплуатации сооружений нефтяной и газовой промышленности и обеспечивает организованный отвод поверхностных и грунтовых нефтезагрязненных вод, защиту окружающей среды при хранении нефти и газа, прокладке и ремонте трубопроводов в траншеях, за счет вторичного использования дезактивированного силикагеля - адсорбента осушки углеводородных газов.

Изобретение относится к области рекультивации и утилизации пород отвалов и может быть использовано в горной промышленности и сельском хозяйстве при получении конструктозема.
Изобретение относится к области сельского хозяйства. Предложен способ рециклинга гидропонного субстрата на основе кокосового волокна, включающий промывку субстрата проточной водой, обеззараживание, удаление воды и сушку субстрата.

Изобретение относится к области рекультивация отработанных карьеров. Способ включает перемещение и укладку почвенных групп.

Изобретение относится к области рекультивации нарушенных земель и ликвидации шламовых амбаров. Способ включает внесение в буровой шлам фосфогипса в количестве 2% массовых долей с последующим механическим перемешиванием.
Изобретение относится к охране окружающей природной среды, в частности к экологичной утилизации отходов, образующихся при бурении скважин и добычи нефти и газа. Техногенный грунт характеризуется тем, что он получен из следующих ингредиентов, взятых в следующем соотношении: отходы от бурения скважин и добычи нефти и газа, включающие глинистый грунт и токсичные компоненты - 1,0 м3; инертный материал на основе минерального грунта - не менее 0,4 м3; стабилизатор грунта на основе минеральной кислоты и поверхностно-активного вещества - 85-250 мл; вода по расчету на влажность готового продукта не более 80%.

Группа изобретений относится к способам и устройствам термического обезвреживания отходов с получением энергии. Устройство обезвреживания отходов содержит реактор окисления, снабженный загрузочным устройством, отсеком выгрузки, горелочным узлом, нагревательным элементом и датчиком температуры.
Наверх