Тепловыделяющая сборка ядерного реактора

Изобретение относится к тепловыделяющим сборкам ядерных реакторов. Тепловыделяющая сборка ядерного реактора содержит головку, пучок тепловыделяющих элементов, дистанционирующие решетки и антидебрисный фильтр. Антидебрисный фильтр установлен в хвостовике тепловыделяющей сборки и выполнен в виде групп прямолинейных пластин, расположенных в поперечном сечении хвостовика. Верхняя и нижняя группы пластин расположены под углом к продольной оси тепловыделяющей сборки и соединены средней группой пластин, параллельных продольной оси тепловыделяющей сборки с образованием вдоль продольной оси тепловыделяющей сборки каналов прямоугольного поперечного сечения для прохода теплоносителя. При этом каналы, образованные верхней и средней группами пластин, расположены под углом 0…15° к продольной оси тепловыделяющей сборки. Каналы, образованные средней и нижней группами пластин, расположены под углом 15…25° к продольной оси тепловыделяющей сборки с наклоном, противоположным наклону каналов, образованных верхней и средней группами пластин. Верхняя и нижняя группы пластин расположены вдоль продольной оси тепловыделяющей сборки с зазором. Техническим результатом является повышение надежности и работоспособности тепловыделяющей сборки. 2 з.п. ф-лы, 8 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к атомной энергетике, а именно к тепловыделяющим сборкам ядерных реакторов.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Из уровня техники известна конструкция тепловыделяющей сборки ядерных реакторов ВВЭР-440, ВВЭР-1000 (см. Кириллов П.Л. и др. Справочник по теплогидравлическим расчетам (ядерные реакторы, теплообменники, парогенераторы). М.: Энергоатомиздат, 1990., рис. П.8.1, П.8.3 и П.8.5, с. 317-319), которая состоит из пучка твэлов 1, расположенных по треугольной сетке, закрепленных в нижней несущей решетке 7 и соединенных между собой дистанционирующими решетками 2, закрепленными на центральной трубе 9. В ТВСА ВВЭР-1000 дистанционирующие решетки крепятся также к уголкам 3, прикрепленным винтами 6 к хвостовику 4. В ТВС-2М дистанционирующие решетки крепятся к направляющим каналам 8. Во всех конструкциях тепловыделяющих сборок имеется головка 5 для обеспечения загрузки-выгрузки тепловыделяющей сборки.

Известна тепловыделяющая сборка ядерного реактора (см. патент US 20090092217 от 29.05.1996, G21C 3/322), содержащая головку, хвостовик, пучок твэлов, расположенных по квадратной сетке, закрепленных в несущей решетке и соединенных между собой дистанционирующими решетками, фильтр в головке, предназначенный для задержания от попадания в теплоноситель конструктивных элементов тепловыделяющей сборки, например, инконелевых вставок дистанционирующих решеток в случае их разрушения и осыпания в пучок твэлов.

Функция данного фильтра аналогична функции отбойной сетки рабочей кассеты ВВЭР-440 (см. патент RU 2364962 от 24.04.2008, G21C 3/00), также предназначенной для задержания фрагментов конструктивных элементов тепловыделяющей сборки в случае гипотетического их разрушения.

Однако рабочая кассета имеет чехол, и наличие отбойной сетки в этом случае изолирует фрагменты тепловыделяющей сборки от попадания в контур реактора, а для тепловыделяющей сборки без чехла существует вероятность выхода их из пучка твэлов в контур реактора через зазор между тепловыделяющими сборками, что делает такое усложнение конструкции тепловыделяющей сборки не оправданным с точки зрения практического эффекта.

При этом фильтр в известной тепловыделяющей сборке не может задерживать посторонние предметы (не относящиеся к конструктивным элементам тепловыделяющей сборки) на входе в тепловыделяющую сборку, которые, как показывает практика, имеются в теплоносителе и могут приводить к повреждению конструктивных элементов тепловыделяющих сборок (например, оболочек твэлов) в процессе эксплуатации.

В рабочей кассете ядерного реактора ВВЭР-440 несущая решетка шестиугольной формы имеет 126 круглых отверстий для установки твэлов, центральное отверстие для установки центральной трубы, 102 отверстия в форме «гантели» для протока теплоносителя, 12 отверстий минимальным диаметром 5,9 мм. и полуотверстия по контуру опорной решетки для протока теплоносителя. Отверстия типа «гантель» образованы двумя отверстиями с минимальным радиусом 2,95 мм., соединенными отверстием с минимальной шириной 5 мм. Отверстия для установки твэлов и центральной трубы имеют диаметр 5+0.1 мм., причем по контуру каждой грани шестигранной несущей нижней решетки расположены по семь отверстий для нижних заглушек твэлов (см. Дементьев Б.Д. Ядерные энергетические реакторы. М.: Энергоатомиздат, 1990, с. 31-35). Несущая решетка РК-3 ядерного реактора ВВЭР-440 имеет дополнительно круглые отверстия для установки несущих труб.

Аналогичную конструкцию имеет нижняя несущая решетка тепловыделяющей сборки ядерного реактора ВВЭР-1000, которая дополнительно имеет круглые отверстия для установки направляющих каналов.

Функционально нижняя решетка является несущим силовым элементом, удерживающим пучок твэлов в стационарном режиме и при транспортно-технологических операциях, а в тепловыделяющей сборке ядерного реактора ВВЭР-1000 она также обеспечивает загрузку-выгрузку тепловыделяющей сборки с помощью направляющих каналов.

Существенным недостатком известных несущих решеток является возможность пропускать с потоком теплоносителя посторонние предметы больших размеров. Например, большая ширина и длина проливных отверстий штатной несущей нижней решетки позволяет пропускать в пучок твэлов посторонние цилиндрические предметы диаметром до 6,3 мм. и плоские шириной до 13,4 мм. при толщине до 5,2 мм. Несущая решетка с круглыми проливными отверстиями и несущая решетка типа «ромашка» для ТВС-2М также не обладают требуемыми антидебрисными свойствами и пропускают длинные цилиндрические посторонние предметы до размера в поперечном направлении 7,18 мм. и 6,63 мм. соответственно.

Проведенными экспериментальными исследованиями подтверждено, что существующие конструкции несущей решетки имеют эффективность задержания посторонних предметов произвольной формы 50…60%, что как показала практика недостаточно, так как разгерметизация оболочек твэлов по этой причине составляет ~56% от общего количества отказов.

В связи с этим возникла необходимость в оснащении тепловыделяющих сборок дополнительными антидебрисными фильтрами для улавливания посторонних предметов в теплоносителе, установленными в хвостовике тепловыделяющей сборки.

В настоящее время тепловыделяющие сборки ядерных реакторов имеют антидебрисные фильтры.

В проекте ТВС-2М для ядерного реактора ВВЭР-1000 был разработан антидебрисный фильтр, состоящий из 12 перфорированных пластин, установленных под определенным углом друг к другу с помощью дополнительных ребер в сложную пространственную конструкцию, при этом большая протяженность сварных швов снижает надежность сварных соединений.

Были предложения также оснастить штатные несущие нижние решетки дополнительными прутками из проволоки 1,5…2 мм., приваренными на нижнюю поверхность решетки в районе проливных отверстий, что в условиях массового производства реализовать практически невозможно.

Данные конструкции антидебрисных фильтров были исследованы в ОАО «ЭНИЦ» и результаты исследований были представлены на 7-ой МНТК «Безопасность, эффективность и экономика атомной энергетики», Москва, 26-27 мая 2010 г. в докладе «Экспериментальное исследование эффективности антидебрисных фильтров кассет ВВЭР-1000».

Сравнительные исследования различных конструкций антидебрисных фильтров, проведенные ОАО «ЭНИЦ», показали, что эффективность задержания посторонних предметов для антидебрисного фильтра ТВС-2М составляет 77,9%, а для антидебрисного фильтра ТВСА - 79,1%, т.е. увеличивается почти до 80%.

При этом, однако, увеличивается и перепад давления теплоносителя на входном участке тепловыделяющей сборки в 1,45…1,65 раза по сравнению с перепадом давления на несущей нижней решетке.

Известна конструкция тепловыделяющей сборки (см. патент US 5481578 от 02.01.1996, G21C 3/31), фильтр которой представляет собой поле перфорированных втулок малого диаметра, установленных вдоль потока теплоносителя, при этом перфорация втулок выполнена перпендикулярно потоку. Втулки закрепляются между двумя перфорированными плитами. Функционально улавливание посторонних предметов таким фильтром осуществляется за счет смены направления потока теплоносителя и организации прохода теплоносителя через мелкие отверстия во втулках. Недостатком такой конструкции является трудоемкость изготовления, связанная с наличием большого количества мелких частей (втулок) и необходимостью их перфорации. Данная конструкция будет иметь значительное гидравлическое сопротивление вследствие того, что поток при прохождении сквозь фильтр дважды меняет свое направление на 90°.

Известна конструкция тепловыделяющей сборки (патент US 5867551 от 02.02.1999, G21C 3/30), в которой фильтр конструктивно выполняет еще функции опорной плиты и представляет собой волнообразную пластину. В волнах пластины выполнены два типа пазов: в форме креста и в форме круга, разделенного на 4 сектора. К недостаткам данной конструкции можно отнести технологическую сложность изготовления плиты, которая имеет сложную пространственную форму, т.к. "волна" проходит не через все сечение плиты, а образует локальные вершины и впадины, в которых и выполнены пазы.

Известна тепловыделяющая сборка с фильтром (патент WO 98/28752 от 20.12.1996, G21C 3/32), который представляет собой плиту с выполненными в ней цилиндрическими отверстиями. Для решения проблемы забивания проходных отверстий посторонними предметами в данной конструкции вдоль рядов отверстий выполнены конусные несквозные пазы, которые "захватывают" часть отверстий. При попадании посторонних предметов в такой паз он будет стремиться к центру паза, освобождая при этом площадь цилиндрического отверстия и не уменьшая проходного сечения.

Недостатком данной конструкции является то, что для повышения эффективности работы фильтра (способность улавливать более мелкие частицы) отверстия должны иметь малый диаметр. При снижении диаметра проходных отверстий увеличивается гидравлическое сопротивление тепловыделяющей сборки.

Недостатком всех известных конструкций фильтров является то, что они не могут быть изготовлены посредством механической обработки, поскольку имеют узкие щели, отверстия малого диаметра, довольно тонкие перемычки между ними, что обуславливает высокую трудоемкость их изготовления.

Наиболее близким аналогом предлагаемой тепловыделяющей сборки является тепловыделяющая сборка ядерного реактора, содержащая головку 5, пучок твэлов 1 и направляющие каналы 8, дистанционирующие решетки 2, антидебрисный фильтр, установленный в хвостовике 4, представляющий собой перфорированную пластину с отверстиями в виде пазов, имеющих форму символа V (RU 2264666 от 16.01.2004, G21C 3/30).

Недостатком этого антидебрисного фильтра являются малая, 0,3...0,6 мм. толщина перемычек между отверстиями при толщине пластины - 6…8 мм.

Изготовление данного антидебрисного фильтра как электроэрозионным способом, так и с помощью гидроабразивной резки приводит к большим трудозатратам.

При этом известная конструкция антидебрисного фильтра, имея довольно высокую эффективность по отношению к криволинейным посторонним предметам, практически не эффективна против посторонних предметов в форме прямолинейных стержней и плоских предметов большой ширины любой длины, имеющих толщину менее 2 мм.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей данного изобретения является повышение эффективности антидебрисного фильтра при сохранении гидравлического сопротивления тепловыделяющей сборки на прежнем уровне.

Техническим результатом изобретения является повышение надежности и работоспособности тепловыделяющей сборки ядерных реакторов за счет улучшения конструкции антидебрисного фильтра.

Данный технический результат достигается тем, что тепловыделяющая сборка ядерного реактора содержит головку 5, пучок твэлов 1, дистанционирующие решетки 2 и антидебрисный фильтр 10 для задержания посторонних предметов. Антидебрисный фильтр установлен в хвостовике тепловыделяющей сборки и выполнен в виде групп прямолинейных пластин, расположенных в поперечном сечении хвостовика.

ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Верхняя 13 и нижняя 15 группы пластин расположены под углом к продольной оси тепловыделяющей сборки 11 и соединены средней 14 группой пластин, параллельных продольной оси тепловыделяющей сборки с образованием вдоль продольной оси тепловыделяющей сборки каналов 16-17 прямоугольного поперечного сечения для прохода теплоносителя. При этом каналы, образованные верхней и средней группами пластин, расположены под углом 23 к продольной оси тепловыделяющей сборки, составляющим 0…15°. Каналы, образованные средней и нижней группами пластин, расположены под углом 24 к продольной оси тепловыделяющей сборки, составляющим 15…25°, с наклоном, противоположным наклону каналов, образованных верхней и средней группами пластин.

Верхняя и нижняя группы пластин расположены вдоль продольной оси тепловыделяющей сборки 11 с зазором 21.

Каналы, образованные верхней и средней группами пластин смещены относительно каналов, образованных средней и нижней группами пластин, в направлении, перпендикулярном продольной оси тепловыделяющей сборки.

Антидебрисный фильтр 10 может быть установлен в поперечном сечении хвостовика на входе или на выходе теплоносителя из хвостовика.

Поперечное сечение каналов для прохода теплоносителя в форме прямоугольника имеет высоту 2…3 мм. и ширину 7…10 мм.

Профиль каналов имеет форму ломаной прямой при общей высоте антидебрисного фильтра 10…15 мм.

Наличие у антидебрисного фильтра каналов, образованных верхней и средней группами пластин и расположенных под углом 0…15° к продольной оси тепловыделяющей сборки, и каналов, образованных средней и нижней группами пластин и расположенных под углом 15…25° к продольной оси тепловыделяющей сборки с наклоном, противоположным наклону каналов, образованных верхней и средней группами пластин, расположение верхних и нижних групп пластин вдоль продольной оси тепловыделяющей сборки с зазором и смещение каналов, образованных верхней и средней группами пластин, относительно каналов, образованных средней и нижней группами пластин, в направлении, перпендикулярном продольной оси тепловыделяющей сборки, обеспечивает фильтрацию посторонних прямолинейных предметов, вошедших с потоком теплоносителя 12 в каналы фильтра с дальнейшим их поворотом в каналах.

Такая конструкция антидебрисного фильтра обеспечивает повышенную эффективность против посторонних предметов в форме прямолинейных стержней и плоских предметов любой длины, имеющих толщину менее 2 мм.

Причем расположение каналов фильтра на выходе из него потока теплоносителя под меньшим углом к продольной оси тепловыделяющей сборки приводит к направлению потока теплоносителя на выходе из антидебрисного фильтра к продольной оси тепловыделяющей сборки, что способствует снижению коэффициента гидравлического сопротивления, вибрации и гидравлических нагрузок в нижней части тепловыделяющей сборки и пучка твэлов.

Толщина пластин антидебрисного фильтра составляет 0,5…1,0 мм. Пластины соединены друг с другом «паз в паз». Для увеличения прочности соединений и жесткости элементов антидебрисного фильтра пластины могут быть сварены между собой, а также с ободом 22 посредством лазерной, электронно-лучевой или аргонодуговой сварки.

Предлагаемый антидебрисный фильтр может быть выполнен из нержавеющей стали типа Х18Н10Т с использованием современной цифровой высокопроизводительной технологии газолазерной резки, освоенной в серийном производстве. Также данный антидебрисный фильтр может быть выполнен из нержавеющей стали с помощью аддитивных технологий.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Изобретение поясняется чертежами.

На фиг. 1 изображена тепловыделяющая сборка ядерного реактора.

На фиг. 2 изображен антидебрисный фильтр круглой формы (вид сверху) тепловыделяющей сборки.

На фиг. 3 изображен антидебрисный фильтр ромбической формы (вид сверху) тепловыделяющей сборки.

На фиг. 4 изображен антидебрисный фильтр квадратной формы (вид сверху) тепловыделяющей сборки.

На фиг. 5 изображена структура антидебрисного фильтра тепловыделяющей сборки.

На фиг. 6 изображена пластина верхней группы антидебрисного фильтра тепловыделяющей сборки.

На фиг. 7 изображена пластина средней группы антидебрисного фильтра тепловыделяющей сборки.

На фиг. 8 изображена пластина нижней группы антидебрисного фильтра тепловыделяющей сборки.

Антидебрисный фильтр состоит из пластин трех групп: верхняя группа пластин с нижними пазами 18, средняя группа пластин с двусторонними косыми пазами 19 и нижняя группа пластин с верхними пазами 20, образующие каналы 16-17 для протока теплоносителя.

1. Тепловыделяющая сборка ядерного реактора, содержащая головку, пучок твэлов, дистанционирующие решетки, антидебрисный фильтр, установленный в хвостовике, отличающаяся тем, что антидебрисный фильтр выполнен в виде групп прямолинейных пластин, расположенных в поперечном сечении хвостовика, верхняя и нижняя группы пластин расположены по углом к продольной оси тепловыделяющей сборки и соединены средней группой пластин, параллельных продольной оси тепловыделяющей сборки с образованием вдоль продольной оси тепловыделяющей сборки каналов прямоугольного поперечного сечения, при этом каналы, образованные верхней и средней группами пластин, расположены под углом 0…15° к продольной оси тепловыделяющей сборки, каналы, образованные средней и нижней группами пластин, расположены под углом 15…25° к продольной оси тепловыделяющей сборки с наклоном, противоположным наклону каналов, образованных верхней и средней группами пластин, верхняя и нижняя группы пластин расположены вдоль продольной оси тепловыделяющей сборки с зазором, каналы, образованные верхней и средней группами пластин, смещены относительно каналов, образованных средней и нижней группами пластин, в направлении, перпендикулярном продольной оси тепловыделяющей сборки.

2. Тепловыделяющая сборка ядерного реактора по п. 1, отличающаяся тем, что антидебрисный фильтр выполнен из нержавеющей стали с использованием газолазерной резки.

3. Тепловыделяющая сборка ядерного реактора по п. 1, отличающаяся тем, что антидебрисный фильтр выполнен из нержавеющей стали с использованием аддитивных технологий.



 

Похожие патенты:

Группа изобретений относится к атомной энергетике. Тепловыделяющая сборка ядерного реактора содержит пучок из 126 тепловыделяющих элементов.

Изобретение относится к геттерному устройству для продуктов деления и способу получения геттерного устройства для продуктов деления. Геттерный элемент включает геттерный материал, способный к взаимодействию с продуктом деления, содержащимся в потоке жидкости и/или газа, выходящего из тепловыделяющей сборки ядерного реактора.

Изобретение относится к созданию системы горячего водоснабжения (ГВС). Отличительным признаком предлагаемого изобретения от используемых в настоящее время систем ГВС второго типа является то, что в нем рассматривается практическая возможность использования для водонагрева вместо тепла недешевых традиционных источников в виде угля, солярки, природного газа и т.п., а теплогенерации отработавшего ядерного топлива (ОЯТ), например отработавших ТВС ядерных реакторов ВВЭР-1000, РБМК-1000 и др., которые после 3-летнего использования в реакторе помещаются в бассейн выдержки для последующей процедуры утилизации.

Группа изобретений относится к реакторам ядерного деления и тепловыделяющим сборкам. Канал для ядерной тепловыделяющей сборки содержит трубчатый корпус, имеющий боковую стенку с внутренней поверхностью и наружной поверхностью и выполненный с возможностью вмещения ядерного топлива в тепловыделяющей области, и удлиненный элемент, проходящий от наружной поверхности вдоль по меньшей мере части тепловыделяющей области и имеющий контактную поверхность, выполненную с возможностью стабилизации канала во время работы ядерной тепловыделяющей сборки, причем удлиненный элемент дополнительно имеет углубление, проходящее внутрь от контактной поверхности.

Изобретение относится к тепловыделяющей сборке для ядерных реакторов на быстрых нейтронах и способам ее применения. Тепловыделяющая сборка для ядерного реактора содержит кожух, содержащий центральную секцию, вмещающую стержни ядерного топлива, и верхнюю секцию, образующую часть головки сборки, вмещающую устройство верхней нейтронной защиты (ВНЗ).

Группа изобретений относится к атомной энергетике. Тепловыделяющая сборка (ТВС) ядерного реактора содержит твэлы с ядерным топливом, часть которых может иметь выгорающий поглотитель, каждый из которых имеет оболочку из циркониевого сплава, герметизированную контактно-стыковой сваркой с помощью заглушки и цангового наконечника, располагаемого в отверстии нижней решетки.

Изобретение относится к атомной энергетике. Опорная решетка-фильтр для тепловыделяющей сборки ядерного реактора выполнена в виде перфорированной пластины, имеющей в плане форму шестиугольника, с круглыми отверстиями, предназначенными для установки направляющих каналов (НК) или несущих труб (НТ) и центральной трубы (ЦТ), с пазами для прохода теплоносителя и с опорными площадками для контакта с наконечниками тепловыделяющих элементов, расположенными по правильной треугольной сетке.

Изобретение относится к тепловыделяющим сборкам (ТВС) ядерных реакторов типа ВВЭР (ВВЭР-440, ВВЭР-1000 и т.п.). В заявленном изобретении предусмотрено оснащение ТВС анти- debris-фильтрами (АДФ), устанавливаемыми в хвостовики ТВС, при этом несущая решетка тепловыделяющей сборки с фильтрующими свойствами (НРФ) тепловыделяющей сборки ядерного реактора имеет криволинейные каналы для прохода теплоносителя, причем вход теплоносителя в канал и выход из него сдвинуты на некоторый угол вокруг оси отверстий под твэлы и направляющие каналы до достижения непрозрачности НРФ, причем верхняя часть канала параллельна оси ТВС.

Изобретение относится к к тепловыделяющим сборкам (ТВС) ядерных реакторов типа ВВЭР (ВВЭР-440, ВВЭР-1000 и т.п.). В заявленной ТВС предусмотрено выполнение анти debris-фильтров (АДФ) в форме толстостенной цилиндрической оболочки, имеющей несколько концентричных относительно ее оси рядов равномерно расположенных каналов для прохода теплоносителя, изогнутых в окружном направлении до обеспечения непрозрачности фильтра вдоль оси тепловыделяющей сборки, причем соседние ряды каналов смещены относительно друг друга в осевом направлении.

Изобретение относится к атомной энергетике, а именно к тепловыделяющим сборкам (ТВС) ядерных реакторов типа ВВЭР (ВВЭР-440, ВВЭР-1000 и т.п.). ТВС оснащена анти debris-фильтром (АДФ), устанавливаемым в хвостовики ТВС.
Наверх