Способ локализации отделов головного мозга

Изобретение относится к вычислительной технике, а именно к локализации отделов головного мозга. Способ содержит этапы, на которых: получают изображения магнитно-резонансной томографии в формате DICOM; конвертируют изображения из формата DICOM в формат BIDS; обрабатывают конвертированные изображения в формате BIDS, по меньшей мере осуществляют очистку от шумов, корегистрацию со структурной МРТ, а также нормализацию; создают индивидуальный шаблон для конкретного пациента, с учетом индивидуальной анатомии, посредством преобразования универсального шаблона, характеризующий локализацию отделов головного мозга; из полученного индивидуального шаблона выделяют независимые компоненты во временных рядах, в которых присутствует активность в отделах головного мозга; осуществляют локализацию отделов головного мозга, при этом: вычисляют меру близости временного ряда в каждом вокселе фМРТ и получают карту корреляций с выделенными искомыми временными рядами; к каждому элементу карты корреляции строят его z-преобразование; применяют пороговую технику к z-преобразованной карте и выделяют воксели, совокупность которых составляет отделы головного мозга. Изобретение обеспечивает определение локализации отделов головного мозга по данным фМРТ покоя. 2 з.п. ф-лы, 2 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Настоящее техническое решение относится к области вычислительной техники, в частности, к способу локализации отделов головного мозга.

УРОВЕНЬ ТЕХНИКИ

Из уровня техники известен источник информации RU 2 504 329 C1, 20.01.2014, раскрывающий способ выявления в коре головного мозга сенсомоторных зон, ответственных за локомоцию, включающий проведение МРТ в режиме T1 MPR (Multiplanar reconstruction) и фМРТ с последующим проведением навигационной транскраниальной магнитной стимуляции, отличающийся тем, что фМРТ проводят с использованием сенсомоторной пассивной парадигмы, имитирующей опорную нагрузку при ходьбе с помощью аппарата «КОРВИТ», полученные данные МРТ в режимах T1 MPR и фМРТ загружают в систему NBS eXimia Nexstim и строят индивидуальную трехмерную модель головного мозга обследуемого с нанесением на нее зон активации, выявленных на фМРТ с помощью сенсомоторной пассивной парадигмы, соотносят реальные анатомические образования головного мозга с данными, полученными на МРТ в режимах T1 MPR, после чего накладывают электромиографические электроды системы eXimia Nexstim на исследуемые мышцы голени - m. gastrocnemius, m. soleus, m. tibialis anterior, участвующие в процессе ходьбы, для регистрации вызванных моторных ответов проводят магнитную стимуляцию зон активации, полученных на фМРТ, с определением вызванных моторных ответов, имеющих амплитуду 100-500 мкВ, при напряженности магнитного поля в точке стимуляции 80-110 В/м, выявляют из них точку с максимальной амплитудой вызванных моторных ответов, в которой определяют пассивный моторный порог по минимальной интенсивности магнитной стимуляции, при которой более чем в половине повторных стимулов регистрируют вызванные моторные ответы с амплитудой более 50 мкВ, картируют на индивидуальной трехмерной модели головного мозга моторное представительство мышц по интенсивности 110% от выбранного моторного порога для локализации сенсомоторных зон коры головного мозга, ответственных за локомоцию.

Из уровня техники известен источник информации RU 2 688 993 C1, 23.05.2019, раскрывающий способ выявления зон активации, соответствующих управляющим функциям головного мозга, включающий проведение функциональной магнитно-резонансной томографии (фМРТ) головного мозга с блоковым дизайном, отличающийся тем, что выполняют сканирование в процессе выполнения восьми блоков с чередованием блока покоя и блока активации в количестве 10 сканирований для каждого блока, причем блок покоя проводят с закрытыми глазами, а периоды блока активации соответствуют выполнению по голосовой команде испытуемым серийного счета про себя от одного и далее с пропуском чисел, кратных трем, затем проводят обработку полученных 80 сканирований в режиме Т2* с цветовым картированием зон активации, соответствующих управляющим функциям головного мозга, по усилению интенсивности сигнала и последующим наложением полученных в режиме Т2* карт зон активации на объемную реконструкцию головного мозга.

Предлагаемый способ локализации отделов головного мозга отличается от известных из уровня техники решений тем, что создают индивидуальный шаблон пациента, а также выделяют независимые компоненты во временных рядах на созданном индивидуальном шаблоне, для определения локализация речевых, моторных и двигательных отделов головного мозга.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Технической проблемой, на решение которой направлено заявленное техническое решение, является создание способа локализации отделов головного мозга, который охарактеризован в независимом пункте формулы. Дополнительные варианты реализации настоящего изобретения представлены в зависимых пунктах изобретения.

Технический результат заключается в определении локализации отделов головного мозга по данным фМРТ покоя.

Заявленный результат достигается за счет осуществления способа локализации отделов головного мозга содержащий этапы, на которых:

получают изображения магнитно-резонансной томографии в формате DICOM;

конвертируют изображения из формата DICOM в формат BIDS;

обрабатывают конвертированные изображения в формате BIDS, по меньшей мере осуществляют очистку от шумов, корегистрацию со структурной МРТ, а также нормализацию;

создают индивидуальный шаблон для конкретного пациента, с учетом индивидуальной анатомии, посредством преобразования универсального шаблона, характеризующий локализацию отделов головного мозга;

из полученного индивидуального шаблона выделяют независимые компоненты во временных рядах, в которых присутствует активность в отделах головного мозга;

осуществляют локализацию отделов головного мозга, при это:

вычисляют меру близости временного ряда в каждом вокселе фМРТ и получают карту корреляций с выделенными искомыми временными рядами;

к каждому элементу карты корреляции строят его z-преобразование;

применяют пороговую технику к z-преобразованной карте и выделяют воксели, совокупность которых составляет отделы головного мозга.

В частном варианте реализации предлагаемого способа, отделами головного мозга являются: речевой отдел, зрительный отдел и двигательный отдел.

В другом частном варианте реализации предлагаемого способа, индивидуальный шаблон пациента представляет собой трехмерную карту.

ОПИСАНИЕ ЧЕРТЕЖЕЙ

Реализация изобретения будет описана в дальнейшем в соответствии с прилагаемыми чертежами, которые представлены для пояснения сути изобретения и никоим образом не ограничивают область изобретения. К заявке прилагаются следующие чертежи:

Фиг.1 иллюстрирует пример осуществления способа.

Фиг. 2 иллюстрирует пример общей схемы вычислительного устройства.

ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В приведенном ниже подробном описании реализации изобретения приведены многочисленные детали реализации, призванные обеспечить отчетливое понимание настоящего изобретения. Однако квалифицированному в предметной области специалисту, будет очевидно каким образом можно использовать настоящее изобретение, как с данными деталями реализации, так и без них. В других случаях хорошо известные методы, процедуры и компоненты не были описаны подробно, чтобы не затруднять излишне понимание особенностей настоящего изобретения.

Кроме того, из приведенного изложения будет ясно, что изобретение не ограничивается приведенной реализацией. Многочисленные возможные модификации, изменения, вариации и замены, сохраняющие суть и форму настоящего изобретения, будут очевидными для квалифицированных в предметной области специалистов.

Для определения индивидуальной локализации (картирования) речевых, зрительных или двигательных отделов головного мозга, перед операцией проводится структурное МР-исследование и специализированное фМРТ-исследование (называемое стимулозависимой фМРТ), при котором в процессе многократного МР-сканирования пациент должен выполнять определенные действия, соответствующие картируемой зоне мозга. Выполненные пациентом реальные действия во время сканирования, соотнесенные с последовательностью фиксируемых МР-изображений, позволяют определить локализацию (выполнить картирование) отделов головного мозга, а именно: речевого отдела, зрительного отдела и двигательного отдела . Результатом картирования является изображение мозга с выделенными зонами. С использованием этого изображения, хирург выбирает тактику оперативного вмешательства и следует ей во время операции.

Картирование с помощью стимулозависимой фМРТ имеет ряд существенных недостатков:

зависит от физического и психологического состояния пациента и может быть просто невозможно по объективным причинам (например, если пациент находится в бессознательном состоянии);

имеет высокую “временную трудоемкость” (необходимо много повторений для каждой задачи, по 10-15 минут, что, помимо дороговизны процедуры, приводит к усталости пациента и появлению артефактов движения);

само выполнение движения пациентом также приводит к появлению артефактов движения.

При этом в стимулозависимой фМРТ может активироваться не вся функциональная область, а лишь специфичная экспериментальной парадигме часть (например, только часть моторной коры, отвечающая за движение кисти руки в случае определения двигательных зон).

В настоящее время программное обеспечение для картирования указанных областей по стимулозависимой фМРТ является проприетарным и поставляется либо производителями томографов, либо нейронавигационного оборудования.

Предлагаемый способ выполняется на вычислительном устройстве.

Предлагаемое решение строит последовательность двумерных изображений (срезов), каждое из которых соответствует определенному срезу мозга, и на которых цветом выделены соответствующие алгоритму зоны. Последовательность двумерных изображений строится по данным структурного МР-сканирования и данным фМРТ-сканирования покоя, которые являются трехмерным снимком мозга.

Последовательность таких двумерных срезов в формате PNG является входными данными и может быть загружена в нейронавигационное оборудование, доступна хирургу до и во время операции, и позволяет выбирать и реализовывать тактику хирургического вмешательства.

На Фиг.1 представлена схема осуществления предлагаемого способа. Входными данными являются изображения структурной магнитно-резонансной томографии (МРТ) и функциональной магнитно-резонансной томографии (фМРТ), в состоянии покоя, в формате DICOM, полученные с аппарата магнитно-резонансной томографии.

Полученные изображения структурной МРТ и фМРТ в формате DICOM конвертируют в формат BIDS, посредством общеизвестных методов, которые включены в работу предлагаемого способа.

Осуществляют предобработку изображения структурной МРТ и фМРТ в формат BIDS. Полученные данные фМРТ в состоянии покоя проходят очистку от шумов, корегистрацию со структурной МРТ и нормализацию.

Предобработка структурной и функциональной МРТ состоит из нескольких отдельных блоков, корректность работы и валидность результатов каждого из которых проверялась различными способами.

Блок пространственной корегистрации структурных и функциональных МР-изображений основан на методе boundary-based registration с шестью степенями свободы (https://www.sciencedirect.com/science/article/abs/pii/S1053811909006752?via%3Dihub), а оценка параметров движения головы испытуемого во время записи осуществляется алгоритмом mcflirt (https://www.sciencedirect.com/science/article/abs/pii/S1053811902911328?via%3Dihub).

Пространственная нормализация проводится при помощи нелинейной регистрации в пакете ANTS (Avants B.B. et al. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain // Med. Image Anal. 2008.) и приведения к стандартному шаблону «ICBM 152 Nonlinear Asymmetrical template».

Согласно рекомендациям работы, Power J.D. (Power J.D. et al. Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection // PLoS One. 2017.)временные коррекции проводятся после пространственных по известным и испытанным методам 3dTshift пакета AFNI ( Cox R.W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages // Comput. Biomed. Res. 1996.).

Очистка данных от артефактов движения проводилась при помощи доступного и протестированного пакета AROMA (Pruim R.H.R. et al. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data // Neuroimage. 2015.). Данный пакет автоматического удаления артефактов движения (ICA-AROMA) основан на ICA (independent component analysis) и использует небольшой (n = 4) набор теоретически мотивированных временных и пространственных характеристик. Данный пакет не требует переобучения классификаторов, сохраняет автокорреляционную структуру данных и в значительной степени сохраняет временные степени свободы.

Результатом предобработки являются фМРТ-данные в том же формате BIDS, приведенные к универсальному шаблону стандартного мозга человека и очищенные от шумов.

Осуществляют построение универсальных шаблонов, характеризующие локализацию искомых зон здорового человека, с использованием данных атласа функциональных зон мозга «90 fROIs» и медицинских знаний о локализации искомых зон здорового человека (раскрытых, например, в источниках информации Kapsalakis I.Z. et al. Preoperative Evaluation with fMRI of Patients with Intracranial Gliomas // Radiol. Res. Pract. 2012. Vol. 2012. P. 1–17. Esteban O. et al. FMRIPrep : a robust preprocessing pipeline for functional MRI // preprint. 2018. Shirer W.R. et al. Decoding subject-driven cognitive states with whole-brain connectivity patterns // Cereb. Cortex. 2012. Vol. 22, № 1. P. 158–165. Kuchcinski G. et al. Three-tesla functional MR language mapping : Comparison with direct cortical stimulation in gliomas // Neurology. 2015. Vol. 84, № 6. P. 560–568.).

Создают индивидуальный шаблон для конкретного пациента, характеризующий локализацию отделов головного мозга, с учетом индивидуальной анатомии, посредством преобразования универсального шаблона, а именно создают трехмерную карту той же пространственной размерности, что и предобработанные структурные МРТ и фМРТ-данные.

В процедуре создания индивидуального шаблона происходит преобразование (адаптация) универсального шаблона под конкретного пациента с учетом его индивидуальной анатомии. За основу универсального шаблона берут функциональные отделы мозга, полученные из анатомического атласа функциональных зон мозга [7]. По данным литературы (раскрытых, например, в источниках информации Kuchcinski G. et al. Three-tesla functional MR language mapping : Comparison with direct cortical stimulation in gliomas // Neurology. 2015. Vol. 84, № 6. P. 560–568. Briganti C. et al. Reorganization of functional connectivity of the language network in patients with brain gliomas // Am. J. Neuroradiol. 2012. Vol. 33, № 10. P. 1983–1990. Wise R. et al. Language activation studies with positron emission tomography // Ciba Found Symp. 1991. Vol. 163. P. 218–234. Mitchell T.J. et al. A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging // Neurosurgery. 2013. Vol. 73, № 6. P. 969–983.), были выбраны наиболее часто встречаемые в исследованиях двигательных, зрительных и речевых функций зоны мозга, из которых путем объединения, была создана универсальная маска для каждой из зон здорового человека, для которых создавались алгоритмы.

Затем, универсальные шаблоны были адаптированы под индивидуальную анатомию конкретного пациента путем линейной корегистрации с индивидуальной структурной МРТ, выполненной посредством пакета antsRegistration программы ANTs v2.1.0 (https://www.sciencedirect.com/science/article/abs/pii/S1361841507000606?via%3Dihub) и последующей нормализацией к универсальному шаблону «ICBM 152 Nonlinear Asymmetrical template».

Из полученного индивидуального шаблона выделяют независимые компоненты во временных рядах, в которых присутствует активность в отделах головного мозга.

Выделение независимых компонент во временных рядах, построенных для каждого пикселя фМРТ-последовательности, в которых значимо присутствует активность искомых зон. Эти независимые компоненты выделяются с помощью технологии анализа независимых компонент с ограничениями, где ограничениями будут считаться данные из созданного индивидуального шаблона. Результатом этой процедуры будут найденные компоненты, в которой значимо присутствует активность искомых зон.

Далее опишем стандартный метод анализа независимых компонент.

Стандартный метод Анализа Независимых Компонент (Independent Component Analysis, ICA) решает следующую задачу. Относительно наблюдаемого сигнала предполагается, что он получается, как линейная комбинация неизвестных взаимно независимых сигналов (источников)

где — неизвестная матрица.

Задача состоит в нахождении матрицы с помощью которой компоненты оцениваются величиной вид

с использованием выбранного критерия качества такого решения.

Одним из критериев используемых для нахождения матрицы является максимизация ”негауссовости”. Этот способ основан на фундаментальном результате теории информации о том, что среди всех непрерывных распределений с одинаковыми дисперсиями гауссовское распределение обладает наибольшей энтропией. Исходя из этого, в качестве целевой функции выбирается подлежащая максимизации и называемая Negentropy мера «негауссовости»:

где H – энтропия случайного вектора, – гауссовский случайный вектор c нулевым средним и дисперсиями, равными дисперсиям вектора [Hyvarinen, A., Oja, E., 2000. Independent component analysis: algorithms and applications. Neural Networks 13 (4–5), 411–430]. Решение такой задачи не единственно и может требовать дополнительных условий. Само вычисление такой функции трудоемко и для нее используются специальные приближения [Hyvarinen, A., Oja, E., 2000. Independent component analysis: algorithms and applications. Neural Networks 13 (4–5), 411–430].

Анализ независимых компонент с ограничениями. Как уже было указано ранее, под ограничениями понимаются данные, полученные из созданного индивидуального шаблона.

В Анализе Независимых Компонент с ограничениями (Constrained ICA) к задаче оптимизации (1) добавляются ограничения:

заданные векторы ограничений вида неравенств и вида равенств, соответственно. В качестве таких ограничений могут выступать ограничения где — заданные сигналы и — заданные пороги для лучшего различения разных выходов a — строки матрицы [Lin Q.H. et al. Semiblind spatial ICA of fMRI using spatial constraints // Hum. Brain Mapp. 2010. Vol. 31, № 7. P. 1076–1088]. Сигналы могут определять, например, пространственные ограничения для выделения определенных зон мозга в fMRI анализе [Lin Q.H. et al. Semiblind spatial ICA of fMRI using spatial constraints // Hum. Brain Mapp. 2010. Vol. 31, № 7. P. 1076–1088].

Указанная в начале раздела задача оптимизации сводится к задаче минимизации функции Лагранжа:

где — вспомогательная переменная (для перевода ограничения с неравенством в ограничение c равенством и — положительные множители Лагранжа, — коэффициент штрафа в слагаемых, введенных для обеспечения локальной выпуклости (положительной определенности Гессиана функции L) [Lu W, Rajapakse JC, 2005: Approach and applications of constrained ICA. IEEE Trans Neural Netw 16:203–212].

После исключения z, сумма второго и третьего слагаемых в функции Лагранжа (соответствующих ограничениям-неравенствам) заменяется функцией [Lu W, Rajapakse JC, 2005: Approach and applications of constrained ICA. IEEE Trans Neural Netw 16:203–212]

С помощью ограничений-равенств могут ограничиваться дисперсии вектора или накладываться условия некоррелированности его компонент.

Осуществляют локализация искомых зон пациента.

Вычисляют меру близости (корреляция Пирсона) временного ряда в каждом вокселе фМРТ-изображения к выделенным независимым компонентам в которых значимо присутствует активность искомых зон. На основе вычислений строится карта корреляций с выделенными искомыми временными рядами.

К каждому элементу карты корреляций строится его z-преобразование, которое рассчитывается путем вычитания среднего значения по совокупности из индивидуального необработанного показателя и последующего деления разницы на стандартное отклонение по совокупности. К z-преобразованной карте корреляций применяют пороговую технику, отсечение значений ниже заранее заданного порога, которое позволяет выделить воксели, совокупность которых составляет искомые зоны. Значение порога было выбрано по результатам тестовых испытаний на основе экспертных мнений врачей, которые учитывают показатели карты областей, например, но не ограничиваясь, локализация, связность участков, гладкость границ, объем.

В результате получают трехмерные карты локализации речевых, зрительных и двигательных отделов головного мозга. Вышеуказанный способ применяется для построения трехмерной карты локализации отделов головного мозга отдельно для каждой зоны, а именно речевой, зрительной и двигательной.

На Фиг. 2 далее будет представлена общая схема вычислительного устройства (200), обеспечивающего обработку данных, необходимую для реализации заявленного решения.

В общем случае устройство (200) содержит такие компоненты, как: один или более процессоров (201), по меньшей мере одну память (202), средство хранения данных (203), интерфейсы ввода/вывода (204), средство В/В (205), средства сетевого взаимодействия (206).

Процессор (201) устройства выполняет основные вычислительные операции, необходимые для функционирования устройства (200) или функциональности одного или более его компонентов. Процессор (201) исполняет необходимые машиночитаемые команды, содержащиеся в оперативной памяти (202).

Память (202), как правило, выполнена в виде ОЗУ и содержит необходимую программную логику, обеспечивающую требуемый функционал.

Средство хранения данных (203) может выполняться в виде HDD, SSD дисков, рейд массива, сетевого хранилища, флэш-памяти, оптических накопителей информации (CD, DVD, MD, Blue-Ray дисков) и т.п. Средство (203) позволяет выполнять долгосрочное хранение различного вида информации, например, вышеупомянутых файлов с наборами данных пользователей, базы данных, содержащих записи измеренных для каждого пользователя временных интервалов, идентификаторов пользователей и т.п.

Интерфейсы (204) представляют собой стандартные средства для подключения и работы с серверной частью, например, USB, RS232, RJ45, LPT, COM, HDMI, PS/2, Lightning, FireWire и т.п.

Выбор интерфейсов (204) зависит от конкретного исполнения устройства (200), которое может представлять собой персональный компьютер, мейнфрейм, серверный кластер, тонкий клиент, смартфон, ноутбук и т.п.

В качестве средств В/В данных (205) в любом воплощении системы, реализующей описываемый способ, должна использоваться клавиатура. Аппаратное исполнение клавиатуры может быть любым известным: это может быть, как встроенная клавиатура, используемая на ноутбуке или нетбуке, так и обособленное устройство, подключенное к настольному компьютеру, серверу или иному компьютерному устройству. Подключение при этом может быть, как проводным, при котором соединительный кабель клавиатуры подключен к порту PS/2 или USB, расположенному на системном блоке настольного компьютера, так и беспроводным, при котором клавиатура осуществляет обмен данными по каналу беспроводной связи, например, радиоканалу, с базовой станцией, которая, в свою очередь, непосредственно подключена к системному блоку, например, к одному из USB-портов. Помимо клавиатуры, в составе средств В/В данных также может использоваться: джойстик, дисплей (сенсорный дисплей), проектор, тачпад, манипулятор мышь, трекбол, световое перо, динамики, микрофон и т.п.

Средства сетевого взаимодействия (206) выбираются из устройства, обеспечивающий сетевой прием и передачу данных, например, Ethernet карту, WLAN/Wi-Fi модуль, Bluetooth модуль, BLE модуль, NFC модуль, IrDa, RFID модуль, GSM модем и т.п. С помощью средств (205) обеспечивается организация обмена данными по проводному или беспроводному каналу передачи данных, например, WAN, PAN, ЛВС (LAN), Интранет, Интернет, WLAN, WMAN или GSM.

Компоненты устройства (200) сопряжены посредством общей шины передачи данных (210).

В настоящих материалах заявки было представлено предпочтительное раскрытие осуществление заявленного технического решения, которое не должно использоваться как ограничивающее иные, частные воплощения его реализации, которые не выходят за рамки испрашиваемого объема правовой охраны и являются очевидными для специалистов в соответствующей области техники.

1. Способ локализации отделов головного мозга, содержащий этапы, на которых:

получают изображения магнитно-резонансной томографии в формате DICOM;

конвертируют изображения из формата DICOM в формат BIDS;

обрабатывают конвертированные изображения в формате BIDS, по меньшей мере осуществляют очистку от шумов, корегистрацию со структурной МРТ, а также нормализацию;

создают индивидуальный шаблон для конкретного пациента, с учетом индивидуальной анатомии, посредством преобразования универсального шаблона, характеризующий локализацию отделов головного мозга;

из полученного индивидуального шаблона выделяют независимые компоненты во временных рядах, в которых присутствует активность в отделах головного мозга;

осуществляют локализацию отделов головного мозга, при этом:

вычисляют меру близости временного ряда в каждом вокселе фМРТ и получают карту корреляций с выделенными искомыми временными рядами;

к каждому элементу карты корреляции строят его z-преобразование;

применяют пороговую технику к z-преобразованной карте и выделяют воксели, совокупность которых составляет отделы головного мозга.

2. Способ по п.1, отличающийся тем, что отделами головного мозга являются: речевой отдел, зрительный отдел и двигательный отдел.

3. Способ по п.1, отличающийся тем, что индивидуальный шаблон пациента представляет собой трехмерную карту.



 

Похожие патенты:

Изобретение относится к медицине, а именно к пульмонологии, кардиологии и респираторной медицине сна. В качестве клинических и инструментальных признаков у пациента определяют индекс апноэ-гипопноэ (событий в час) (А), число баллов по шкале сонливости Эпфорта (баллы) (Е), минимальную ночную сатурацию (%) (S), время на сатурации менее 90% (% от общего времени сна) (Т), возраст в годах (Ag), индекс массы тела (В), окружность шеи (см) (О), окружность талии (см) (O1).

Изобретение относится к медицине, а именно к пульмонологии, кардиологии и респираторной медицине сна. У больного с апноэ-гипопноэ определяют возраст в годах (Ag), индекс массы тела (В), окружность шеи (см) (О), окружность талии (см) (O1).

Изобретение относится к области медицины. Предложен способ прогнозирования инфекционных осложнений критического состояния.

Изобретение относится к медицине, а именно к пульмонологии, кардиологии и респираторной медицине сна. Определяют число баллов по шкале сонливости Эпфорта и минимальную ночную сатурацию.

Изобретение относится к медицине, а именно к ветеринарии, иммунологии, и может быть использовано для тестирования иммунологической толерантности у животных. С целью оценки иммунологической ареактивности в раннем возрасте производят иммунизацию производителей их же семенем.

Изобретение относится к медицине, а именно к ядерной медицине, и может быть использовано для оценки риска рецидива дифференцированного рака щитовидной железы после проведения радиойодтерапии.

Изобретение относится к медицине, а именно к пульмонологии, и может быть использовано для акустической диагностики состояния вентиляционной функции легких. Способ включает регистрацию шумов форсированного выдоха, по полученным данным определяют полную акустическую продолжительность Та и полную акустическую энергию А шумов в максимальной полосе частот 200-2000 Гц и полосовые параметры продолжительности t1, …, t9 и энергии A1, …, А9 шумов в 200-герцовых полосах данного интервала, рассчитывают среднечастотные полосовые параметры данных шумов в пределах диапазона 200-1000 Гц Асч = ∑Am/m, tcч = ∑tm/m, где m выбирают от 1 до 4, и высокочастотные полосовые параметры в пределах диапазона 800-2000 Гц как Авч = ∑An/n, tвч = ∑tn/n, где n выбирают от 1 до 6.

Изобретение относится к медицине. Система для диагностики и оповещения инсульта, состоящая из фитнес-браслета с датчиком пульса и давления и смартфона с приложением для обработки сигналов, поступающих с фитнес-браслета, на наличие признаков предынсультного состояния с возможностью: включения таймера для исключения ошибки, активации на смартфоне сигнала с выводом на экран методики распознавания симптомов инсульта и рекомендуемых действий, сброса предупреждающего сигнала или вызова близкого человека, запуска второго таймера ожидания сброса предупреждающего сигнала, по окончании которого отправляется сообщение о состоянии здоровья и местоположении абонента.

Изобретение относится к области медицины и предназначено для повышения безопасности дорожного движения. Способ медицинского контроля состояния здоровья водителя транспортного средства предполагает использование автоматизированной системы, основанной на применении наносекундной радиоэлектроники в приборах кардиомониторинга, показателей тепловизионного регистратора, встроенного в руль автомобиля пульсоксиметра, которые, не обременяя действий водителя, передают в режиме реального времени в базу данных служб контроля, посредством сети интернет, информацию о состоянии его здоровья и реакцию по пути следования на сигналы светофора, продублированные на приборной панели автомобиля.
Изобретение относится к медицине, а именно к психиатрии и медицинской психологии. Посредством двигательной методики Е.П.
Наверх