Пьезоэлектрический датчик давления

Заявленное устройство относится к приборостроению, в частности к измерителям динамического давления в широких диапазонах давлений и скоростей их изменений при моделировании аэродинамических процессов в аэродинамических и ударных трубах. В пьезоэлектрическом датчике давления содержится корпус, стакан, в котором расположен чувствительный элемент, состоящий из пьезоэлемента и токосъемника, стакан закрывает чувствительный элемент и поджимает его к основанию датчика с усилием, равным суммарному усилию от максимально возможного воздействия на чувствительный элемент статического и динамического давлений. Причем стакан выполнен из диэлектрика и закрывает боковую поверхность чувствительного элемента по скользящей посадке, в корпус введена крышка с множественной перфорацией, а передний торец пьезоэлемента введен второй токосъемник, связанный с электрическим возбудителем обратного пьезоэффекта с малой амплитудой и частотой, близкой к частоте собственных колебаний пьезоэлемента. Технический результат - минимизация инерционности датчика и повышение точности измерения. 1 з.п. ф-лы, 2 ил.

 

Заявленное устройство относится к приборостроению, в частности к измерителям динамического давления в широких диапазонах давлений и скоростей их изменений. При моделировании аэродинамических процессов в аэродинамических и ударных трубах требуется минимизация датчиков давления. Минимизация размеров датчиков без ущерба их функциональности позволяет максимально разместить их на поверхностях моделей для идентификации поля давления. Датчики должны иметь минимальное время отклика для регистрации давления в высокоскоростных воздушных потоках.

Известен «Способ изготовления пьезоэлектрического датчика давления» (Патент на изобретение РФ №2489694, МПК G01L 9/08, опубл. 20.08.2013, которым изготавливают датчик, содержащий не менее двух пьезоэлементов, поджатых корпусом с мембраной, которую выполняют с жестким центром, осуществляют герметичное соединение корпуса с основанием, после чего нагружают мембрану избыточным давлением, величина которого больше верхней границы измеряемого диапазона, до пластической деформации части мембраны. Отношение диаметра жесткого центра к диаметру мембраны выбирают из диапазона больше 0,65, но меньше 1.

Недостаток устройства – в наличии мембраны между источником давления и чувствительным пьезоэлементом. Мембрана с жестким центром увеличивает инерционность устройства, что не позволяет использовать устройство для регистрации динамического давления высоко- и гиперзвуковых потоков. Наличие двух чувствительных пьезоэлементов, при неидентичности структур пьезоэлементов может привести к погрешности коэффициента передач датчика давления.

Известен «Способ изготовления пьезоэлектрического датчика давления» (патент на изобретение РФ № 2339013, МПК G01L 9/08, опубл. 20.11.2008) которым изготавливают датчик для измерения быстропеременных и акустических давлений. При изготовлении пьезоэлектрического датчика давления пьезоэлементы с электродами, изоляторами, тонкостенным кожухом и силопередающим элементом, его устанавливают на основание, а затем закрепляют в технологическом корпусе. Все детали сборки чувствительного элемента с рассчитанным усилием стягивают в тонкостенном кожухе, сопрягающемся по периметру с одного торца с силопередающим элементом, а с другого - с основанием. Сопряжения в нижней части технологического корпуса выполнены с пазами. Чувствительный элемент устанавливают в корпус датчика и производят герметизацию внутренней полости датчика с помощью сварки корпуса с основанием.

Недостаток устройства – в инерционности устройства, содержащем силопередающий элемент, выполняющий роль утолщенной мембраны.

Содержание не одного, а трех чувствительных пьезоэлементов, из-за не идентичности структур пьезоэлементов, может привести к погрешность коэффициента передач датчика давления.

Наиболее близким техническим решением является «Пьезоэлектрический датчик давления» (Патент на изобретение № 2523091, МПК G01L 9/08 опубл. 27.02.2014), содержащий корпус с мембраной, в котором расположен чувствительный элемент, состоящий из пьезоэлементов, токосъемника, расположенного между пьезоэлементами, и основания. Тонкостенный стакан закрывает чувствительный элемент и поджимает его к основанию датчика с усилием, равным суммарному усилию от максимально возможного воздействия на мембрану статического и динамического давлений. Размеры стакана определены согласно математическому выражению: h=(0,16…0,3)*D/2. Здесь: h - высота стакана; D - внешний диаметр стакана. Дно стакана выполнено толщиной, обусловленной исключением прогиба мембраны в центральной части стакана.

Недостаток устройства – в наличии глухой, утолщенной мембраны между источником давления и чувствительным пьезоэлементом. Этот факт увеличивает инерционность устройства, что снижает быстродействие устройства при измерении давления высоко- и гиперзвуковых потоков.

Устройство содержит не один, а два чувствительных пьезоэлемента, однако из-за не идентичности структур пьезоэлементов возможна погрешность коэффициента передач датчика давления.

Технический результат заявленного устройства направлен на минимизацию инерционности датчика и повышение точности измерения.

Технический результат достигается тем, что в пьезоэлектрическом датчике давления, содержащем корпус, стакан, в котором расположен чувствительный элемент, состоящий из пьезоэлемента и токосъемника, стакан закрывает чувствительный элемент и поджимает его к основанию датчика с усилием, равным суммарному усилию от максимально возможного воздействия на чувствительный элемент статического и динамического давлений, стакан выполнен из диэлектрика и закрывает боковую поверхность чувствительного элемента по скользящей посадке, в корпус введена крышка с множественной перфорацией, а передний торец пьезоэлемента введен второй токосъемник, связанный с электрическим возбудителем обратного пьезоэффекта с малой амплитудой и частотой, близкой к частоте собственных колебаний пьезоэлемента.

Кроме того, скользящая посадка стакана выполнена в виде колец, а остальное соединение боковой поверхности стакана с чувствительным элементом выполнено по свободной посадке.

Пьезоэлектрический датчик давления представлен на фиг.1, а вариант пьезоэлектрического датчика давления с кольцами показан на фиг.2.

На фигурах: 1- пьезоэлемент, 2- второй токосъемник (металлизация переднего торца пьезоэлемента), 3 - первый токосъемник (металлизация заднего торца пьезоэлемента), 4 - стакан, 5 - корпус, 6 – крышка с множественной перфорацией.

Пьезоэлектрический датчик давления имеет пьезоэлемент 1 с токосъемниками 2 и 3 , выполненных в виде металлизации передней и задней кромок, с припаянными к ним проводниками. Пьезоэлемент 1 установлен в стакан 4, монтируемый в корпус 5 , который закрывается крышкой 6 с множественной перфорацией. Стакан 4 выполнен из изоляционного материала, например, из бакелита или карболита. Он закрывает боковую поверхность чувствительного элемента по скользящей посадке (фиг.1) . Скользящая посадка стакана 4 может быть выполнена в виде колец, а остальное соединение боковой поверхности стакана с чувствительным элементом выполнено по свободной посадке (фиг.2.). Проводник от первого токосъемника 3 соединен с регистрирующей аппаратурой. Второй токосъемник 2 соединен с источником возбуждения обратного пьезоэффекта пьезоэлемента с малой амплитудой и частотой, близкой к собственной частоте пьезоэлемента. При изготовлении вытачивают стакан 4 по плотной посадке, далее внутри шлифовальной коронкой стакан стачивается и внутренняя поверхность стакана 4 становится гладкой как на фиг.1., или с зубцами, Потом под давлением вставляют пьезокристал. Перед эксплуатацией устройство нагружают на минимальное и максимальное давление, регулируют жесткую посадку чувствительного элемента в стакане 4, а последнего – в корпусе 5. При этом фиксируют соответствующие выходные сигналы. По сигналам, соответствующим минимальному и максимальному давлению определяют коэффициент передачи заявленного устройства и максимальную погрешность. Достаточность перфораций в крышке 6 определяется по максимальному выходному сигналу.

Вибрация переднего торца пьезоэлемента 1 от обратного пьезоэффекта позволяет понизить порог трогания. Время отклика пъезоэлектрического датчика давления определяется лишь самим пьезоэлементом 1 за счет отсутствия мембраны. Крышка с множественной перфорацией 6 корпуса 5 защищает пъезоэлектрического датчика давления от осколков мембран при инициировании ударной волны, и позволяет контактировать давлению ударной волны с передним торцом пьезодатчика.

Работает устройство следующим образом. Собранное и проградуированное устройство устанавливается в объект. Например, в стенку ударной трубы кратковременного действия или в модель перед гиперзвуковым соплом [1]. Весь корпус датчика находится в толще экспериментальной установки, поэтому за короткое время прохождения ударной волны, влияния колебания корпуса практически не происходит из-за разницы скоростей ударной волны в вакуумном канале и волны в металле массивного корпуса установки. На поверхности канала ударной трубы, заподлицо выставляется крышка с множественной перфорацией 6 датчика. Второй токосъемник 2 на переднем торце датчика, подключен к источнику, вызывающего колебания пьезоэлемента с малой амплитудой и частотой, близкой к частоте собственных колебаний пьезоэлемента.

При прохождении фронта ударной волны, с заднего торца 3 датчика снимается сигнал, пропорциональный давлению.

Пьезоэлемент имеет высокую собственную частоту колебания

, (1)

где - показатель затухания. При воздействии единичным импульсом колебания затухают. При возбуждении колебаний с малой амплитудой и частотой , близкой к частоте собственных колебаний:

(2)

изменение линейных размеров пьезоэлемента:

(3)

будет определяться, в основном, вторым слагаемым. Амплитудно-частотная характеристика определится выражением:

. (4)

Чувствительность пьезоэлемента повышается при приближении к частоте . Максимальная амплитуда имеет вид:

, (5)

где добротность

(6)

пьезоэлемента известна до установки его в устройство.

Амплитуда вынужденных колебаний регулируется напряженностью Е электрического поля. При этом пьезомодуль обратного пьезоэффекта, также как и добротность пьезоэлемента известны до установки пьезоэлемента в устройство.

Таким образом, чувствительность заявленного устройства повышается, пьезоэлемент и его передняя кромка как бы вибрируют около своего нового нуля, чувствительность повышается. Кроме того, отсутствие жесткой инерционной мембраны, увеличивающей параметры в формуле (3) и добротность (5), также приводит к повышению времени отклика устройства.

1. Пьезоэлектрический датчик давления, содержащий корпус, стакан, в котором расположен чувствительный элемент, состоящий из пьезоэлемента и токосъемника, стакан закрывает чувствительный элемент и поджимает его к основанию датчика с усилием, равным суммарному усилию от максимально возможного воздействия на чувствительный элемент статического и динамического давлений, отличающийся тем, что стакан выполнен из диэлектрика и закрывает боковую поверхность чувствительного элемента по скользящей посадке, в корпус введена крышка с множественной перфорацией, в передний торец пьезоэлемента введен второй токосъемник, связанный с электрическим возбудителем обратного пьезоэффекта с малой амплитудой и частотой, близкой к частоте собственных колебаний пьезоэлемента.

2. Пьезоэлектрический датчик давления по п. 1, отличающийся тем, что скользящая посадка стакана выполнена в виде колец, а остальное соединение боковой поверхности стакана с чувствительным элементом выполнено по свободной посадке.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно, к высокоточным микроэлектронным скважинным преобразователям и датчикам, работающих в агрессивных средах при высоких температурах выше 125°С и давлении от 10 до 150 МПа.

Изобретение предлагает систему с датчиком на основе электроактивного материала (предпочтительно электроактивного полимера), содержащую датчик (22) на основе электроактивного материала и систему (28) управления для выполнения измерений, относящихся к импедансу датчика на основе электроактивного материала, на по меньшей мере первой и второй различных частотах.

Заявленный пьезоэлектрический датчик давления используется в приборостроении для преобразования звуковой энергии в электрический сигнал при высоких избыточных давлениях среды, достигающих 100 МПа и более.

Датчик, способ его изготовления и электронное устройство. Датчик (100) включает в себя: несущую подложку (101), тонкопленочный транзистор (102) (TFT), расположенный на несущей подложке и включающий в себя электрод (1025) истока, первый изоляционный слой (106), расположенный на TFT (102) и содержащий первое сквозное отверстие (1071), проходящее через первый изоляционный слой (106), проводящий слой (1031), расположенный в первом сквозном отверстии (1071) и на части первого изоляционного слоя (106) и электрически соединенный с электродом (1025) истока через первое сквозное отверстие (1071), смещающий электрод (1032), расположенный на первом изоляционном слое (106) и отдельный от проводящего слоя (1031), активный считывающий слой (1033), соответственно, соединенный с проводящим слоем (1031) и смещающим электродом (1032), и вспомогательный проводящий слой (1034), расположенный на проводящем слое (1031).

Изобретение относится к измерительной технике, а именно к частоторезонансным чувствительным элементам (ЧЭ) дифференциального давления и построенным на их основе преобразователям, датчикам с частотным и цифровым выходом, способным с высокой точностью измерять малые перепады относительно больших давлений жидких и газообразных агрессивных сред.

Изобретение относится к технологии получения пьезоэлектрического кристалла на основе лангатата с высокой стабильностью и высокими изоляционными свойствами для использования в качестве пьезоэлектрического элемента датчика давления для измерения давления при сгорании внутри камеры двигателя внутреннего сгорания.

Изобретение относится к измерительной технике, а именно к частоторезонансным чувствительным элементам (ЧЭ) для датчиков дифференциального давления, способных с высокой точностью измерять малые перепады относительно больших давлений жидких и газообразных агрессивных сред.

Изобретение относится к области измерительной техники, а именно к устройствам с пьезоэлектрическим датчиком, которые преобразуют величину переменных сил давления в электрический сигнал.

Изобретение относится к области измерительной техники для измерения давления жидких и газовых сред. Чувствительный элемент на поверхностных акустических волнах (ПАВ) для измерения давления содержит пьезоплату, на поверхности которой сформированы образующие линию задержки (ЛЗ) ПАВ-структуры, включающие встречно-штыревой преобразователь (ВШП), размещенный на акустическом пути.

Изобретение относится к техническим устройствам для измерения давления в пластичных и сыпучих средах, в т.ч. грунтах.
Наверх