Акустический микроскоп

Использование: для исследования и анализа материалов с помощью ультразвуковых колебаний. Сущность изобретения заключается в том, что сканирующий акустический микроскоп содержит передающий акустический элемент, включающий звукопровод, сферическую акустическую линзу, приемный акустический элемент, жидкостную ячейку, установленную между передающим и приемными элементами, а также системы сканирования исследуемого объекта и восстановления его изображения на видеоконтрольном устройстве, а в области фокусировки акустической линзы установлена мезоразмерная частица с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ - длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде, лежащего в диапазоне от 0.5 до 0.83, при этом непосредственно на теневой стороне мезоразмерной частицы размещается вторая мезоразмерная частица, имеющая общую оптическую ось с первой частицей и с характерным размером не более характерного размера первой мезоразмерной частицы, но не менее поперечного размера сформированной области фокусировки первой мезоразмерной частицей. Технический результат: улучшение разрешающей способности акустических систем построения изображения исследуемых объектов. 2 ил.

 

Изобретение относится к устройствам для исследования и анализа материалов с помощью ультразвуковых колебаний, а именно к акустическим микроскопам.

Акустическая микроскопия – есть совокупность способов визуализации микроструктуры и формы малых объектов с помощью ультразвуковых и гиперзвуковых волн. Акустическая микроскопия основана на том, что ультразвуковые волны, прошедшие, отраженные или рассеянные отдельными участками объекта, имеют различные характеристики (амплитуду, фазу) в зависимости от локальных вязкоупругих свойств образца. Эти различия позволяют методами визуализации звуковых полей получать акустические изображения, восстанавливаемые компьютером на экране дисплея.

В сканирующей растровой акустической микроскопии сфокусированный в точку ультразвуковой пучок перемещается по объекту, изображение которого воссоздается по точкам в виде растра. Принимая ту или иную часть излучения, можно судить об акустических свойствах образца в области, размеры которой определяются размерами фокального пятна. Эти размеры согласно теории дифракции равны не менее длины волны ультразвуковых колебаний в данной среде.

Известен акустический микроскоп по патенту РФ №79219, содержащий излучатель ультразвука, акустическую линзу для фокусировки пучка, отраженного от объекта и акустического приемника.

Недостатком этого микроскопа является низкая разрешающая способность.

Диаметр пятна Эйри h определяется так называемым критерием Рэлея, который устанавливает предел концентрации (фокусировки) акустического поля с помощью линзовых систем [Борн М., Вольф Э. Основы оптики // - М.: Наука - 1970]:

h=2.44 λFD-1,

где λ – длина волны излучения, D – диаметр первичного зеркала или линзы, F – фокусное расстояние фокусирующего устройства.

Диаметр пятна Эйри h является важным параметром фокусирующей системы, который определяет ее собственную разрешающую способность в фокальной плоскости и определяет качество получаемого изображения. Он показывает минимальное расстояние между полем точечных источников в фокальной плоскости, которое способна зарегистрировать данная система. Максимальное разрешение идеальной линзовой системы не может превышать величины λ/2.

В зависимости от того, какая часть излучения после взаимодействия с объектом регистрируется, различают акустические микроскопы «на отражение», на «пропускание».

Известен сканирующий акустический микроскоп по патенту США № 4028933, содержащий передающий акустический элемент со сферической акустической линзой, приемный акустический элемент, жидкостную ячейку (иммерсионную среду), установленную между передающими и приемными элементами, а также системы сканирования исследуемого объекта и восстановления его изображения на экране видеоконтрольного устройства.

В микроскопе акустическая волна, возбуждаемая преобразователем, фокусируется акустической линзой. Исследуемый объект сканируется в фокальной плоскости линз. Акустический пучок, прошедший через объект, принимается акустической линзой приемного элемента, причем оптические оси и фокусы обеих линз совпадают.

Достоинством устройства является возможность получать изображение деталей объекта, сравнимых с длиной волны.

Недостатком данного устройства является низкое пространственное разрешение, ограниченное дифракционным пределом формирующей системы.

Наиболее близким по технической сущности к предлагаемому устройству и принятому за прототип является сканирующий акустический микроскоп по патенту РФ 172340, содержащий передающий акустический элемент, включающий звукопровод, сферическую акустическую линзу, приемный акустический элемент, жидкостную ячейку, установленную между передающим и приемными элементами, а также системы сканирования исследуемого объекта и восстановления его изображения на видеоконтрольном устройстве, а в области фокусировки акустической линзы установлена мезоразмерная частица с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ – длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде, лежащего в диапазоне от 0,5 до 0,83.

Достоинством устройства является достижение поперечного разрешения превышающего дифракционный предел.

Недостатком данного устройства является низкое пространственное разрешение, ограниченное поперечной шириной формируемой фотонной струей и не превышающей примерно (0,25–0,33)λ и протяженностью не более 10λ.

Задачей предлагаемого изобретения является разработка устройства с повышенным качеством получаемого изображения исследуемого объекта за счет повышения разрешающей способности акустической формирующей системы.

Технический результат, который может быть получен при выполнении заявленного устройства – улучшение разрешающей способности акустических систем построения изображения исследуемых объектов.

Поставленная задача решается благодаря тому, что в акустическом микроскопе содержащим передающий акустический элемент, включающий звукопровод, сферическую акустическую линзу, приемный акустический элемент, жидкостную ячейку, установленную между передающим и приемными элементами, а также системы сканирования исследуемого объекта и восстановления его изображения на видеоконтрольном устройстве, а в области фокусировки акустической линзы установлена мезоразмерная частица с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ – длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде, лежащего в диапазоне от 0,5 до 0,83, новым является то, что непосредственно на теневой стороне мезоразмерной частицы размещается вторая мезоразмерная частица, имеющая общую оптическую ось с первой частицей и с характерным размером не более характерного размера первой мезоразмерной частицы, но не менее поперечного размера сформированной области фокусировки первой мезоразмерной частицей.

Заявителем не выявлены какие-либо технические решения, идентичные заявленному, что позволяет сделать вывод о соответствии настоящего изобретения критерию «новизна».

Заявителем не выявлены источники информации, в которых содержались бы сведения о влиянии отличительных признаков изобретения на достигаемый технический результат. Указанные новые свойства объекта обусловливают, по мнению заявителя, соответствие изобретения критерию «изобретательский уровень».

Известны способы преодоления дифракционного предела, например, с помощью эффекта «фотонной наноструи» (например, см. A. Heifetz et al. Experimental confirmation of backscattering enhancement induced by a photonic jet // Appl. Phys. Lett., 89, 221118 (2006)). Поперечный размер фотонной наноструи составляет 1/3…1/4 длины волны излучения, что меньше дифракционного предела классической линзы.

При этом формировать локальные области концентрирования электромагнитной энергии вблизи поверхности мезоразмерных диэлектрических частиц возможно с помощью частиц различной формы, например, в форме сферы, куба, пирамиды, при облучении их электромагнитной волной с плоским волновым фронтом и т.д. [I.V. Minin and O.V. Minin. Diffractive optics and nanophotonics: Resolution below the diffraction limit, Springer, 2016 http://www.springer.com/us/book/9783319242514#aboutBook].

В результате проведенных исследований было обнаружено, что мезоразмерная частица, например, в форме куба или сферы, расположенная непосредственно на теневой стороне мезоразмерной частицы, выполненной, например, в форме куба или сферы и в области формирования «фотонной» струи, имеющая общую оптическую ось с первой частицей, с характерным размером не менее поперечного размера сформированной области фокусировки («фотонной» струи) и не более характерного размера первой мезоразмерной частицы, формирует на внешней границе второй мезоразмерной частицы с противоположной стороны от падающего излучения области с повышенной концентрацией энергии и с поперечными размерами порядка (0,16–0,20)λ и протяженностью не более примерно (1,2–3)λ.

Таким образом, вторая мезоразмерная частица освещается фотонной струей, сформированной первой мезоразмерной частицей, находящейся в области фокуса акустического фокусирующего устройства.

При выполнении второй мезоразмерной частицы с характерными размерами более поперечных размеров области фокусировки излучения первой мезоразмерной частицы, увеличиваются габариты устройства формирования изображения при сохранении качества концентрации акустического излучения частицей и улучшение пространственного разрешения не наступает. При характерных размерах мезоразмерной частицы менее поперечного размера сформированной области фокусировки первой мезоразмерной частицей локальная концентрация акустического поля вблизи поверхности частицы имеет поперечные размеры порядка ширины области фокусировки акустического поля, первой мезоразмерной частицей.

На фиг. 1 схематически изображен акустический микроскоп, работающий на прохождение.

На фиг.2 представлены результаты фокусировки излучения мезоразмерной сферической частицей сферической формы, размещенной в области фокусировки акустической линзы (прототип) и мезоразмерной сферической частицы на теневой стороне которой непрсредственно размещена вторая мезоразмерная частица, имеющая общую оптическую ось с первой частицей и с характерным размером не более характерного размера первой мезоразмерной частицы, но не менее поперечного размера сформированной области фокусировки первой мезоразмерной частицей. Диаметр первой мезоразмерной частицы равен 9,5λ, где λ длина волны акустического излучения, относительная скорость звука в материале частицы 0,8; Диаметр второй сферической мезоразмерной частицы 3,2λ. При этом относительная скорость звука в материале второй мезоразмерной частицы может быть меньше, чем относительная скорость звука в материале первой мезоразмерной частицы.

Обозначения: 1 – генератор 1, 2 – пьезоэлектрический преобразователь, 3 – звукопровод, 4 – акустическая линза, 5 – первая мезоразмерная частица, формируемую область повышенной концентрации акустической энергии и с высоким пространственным разрешением 6, 7 – вторая мезоразмерная частица, 8 – область фокусировки излучения, 9 – исследуемый объект, 10 – жидкостная ячейка (иммерсионная среда), 11 – приемный акустический элемент, 12 – устройство механического сканирования, 13 – видеоконтрольное устройство.

Устройство работает следующим образом.

Акустический микроскоп содержит в качестве передающего акустического элемента звукопровод из плавленого кварца с пьезоэлектрическим преобразователем из LiNBO3 2, сферическую акустическую линзу 4, первую мезоразмерную частицу из рексалита в форме сферы или куба 5, расположенную в области фокуса сферической акустической линзы 4. В результате дифракции и интерференции волн, первая мезоразмерная частица формирует узкую область фокусировки 6 в которой находится вторая мезоразмерная частица 7, примыкающая одной стороной к теневой стороне частицы 5 и находящаяся с ней на одной оптической оси. Вторая мезоразмерная частица 7 формирует область фокусировки излучения 8, в которой находится исследуемый объект 9.

Внешняя поверхность акустической линзы 4, мезоразмерные частицы 5 и 7, исследуемый объект 9 и приемный акустический элемент 11 находятся в жидкостной ячейке 10. Сигнал с генератора 1 возбуждает пьезопреобразователь 2 на необходимой частоте. В формируемой мезоразмерной частицей 7 области повышенной концентрации акустической энергии и с высоким пространственным разрешением 8 размещен исследуемый объект 9 который сканируется с помощью сканирующего устройства 12. Приемный элемент 11, выполнен, например, из пьезополупроводникового материала, например, СdS. Принятый сигнал, синхронизированный со сканирующим устройством 12, подается на видеоконтрольное устройство 13.

Сравнение прототипа и предлагаемого устройства производилось на частоте 1 МГц с жидкостной ячейкой из воды при 25°С (скорость звука 1490 м/с), в качестве материала частицы может использоваться рексолит (скорость звука 2311 м/с) относительная скорость звука 0,645, формы частиц сфера и куб с характерным размером 6λ и с характерным размером второй мезоразмерной частицы 2 λ. Было установлено, что по сравнению с прототипом, предложенное техническое решение обеспечивает более узкую поперечную область фокусировки в 1,6 раза, протяженность области фокусировки в 7,5 раз и увеличение максимальной интенсивности акустического поля в области фокусировки в 4,8 раз.

Сканирующий акустический микроскоп, содержащий передающий акустический элемент, включающий звукопровод, сферическую акустическую линзу, приемный акустический элемент, жидкостную ячейку, установленную между передающим и приемными элементами, а также системы сканирования исследуемого объекта и восстановления его изображения на видеоконтрольном устройстве, а в области фокусировки акустической линзы установлена мезоразмерная частица с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ - длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде, лежащего в диапазоне от 0.5 до 0.83, отличающийся тем, что непосредственно на теневой стороне мезоразмерной частицы размещается вторая мезоразмерная частица, имеющая общую оптическую ось с первой частицей и с характерным размером не более характерного размера первой мезоразмерной частицы, но не менее поперечного размера сформированной области фокусировки первой мезоразмерной частицей.



 

Похожие патенты:

Использование: для исследования и анализа материалов с помощью ультразвуковых колебаний. Сущность изобретения заключается в том, что сканирующий акустический микроскоп содержит передающий акустический элемент, включающий звукопровод, акустическую линзу, в области фокусировки которой установлена мезоразмерная частица с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ - длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде в диапазоне примерно от 0,5 до 0,83, приемный акустический элемент, жидкостную ячейку, установленную между передающим и приемными элементами, а также системы сканирования исследуемого объекта и восстановления его изображения на видеоконтрольном устройстве, при этом непосредственно на боковой поверхности частицы, перпендикулярно падающему излучению, установлен акустический экран с величиной акустического импеданса, отличающегося от импеданса мезоразмерной частицы и на расстоянии от освещенного торца частицы находящегося в диапазоне от 0 до L, где L длина частицы вдоль направления падения на нее излучения, и толщиной акустического экрана менее толщины мезоразмерной частицы в направлении падения излучения.

Использование: для визуализации внутреннего строения объектов с помощью ультразвуковых волн. Сущность изобретения заключается в том, что cпособ ультразвуковой томографии включает излучение в объект контроля и прием из него ультразвуковых сигналов с помощью антенной решетки, фиксацию реализации ультразвуковых колебаний, принятых каждым пьезопреобразователем при излучении ультразвукового сигнала независимо каждым ее пьезопреобразователем, и поточечное построение изображения внутренней структуры объекта контроля путем выбора изо всех принятых реализаций тех фрагментов, времена задержки которых равны временам распространения ультразвуковых сигналов от пьезопреобразователей, работающих в режиме передачи, к каждой точке фокусировки ультразвукового сигнала в объекте контроля и от нее к пьезопреобразователям, работающим в режиме приема, суммирование этих выбранных фрагментов для каждой точки фокусировки и запись результата суммирования.

Использование: для неразрушающего контроля крупногабаритных углеграфитовых изделий и заготовок. Сущность изобретения заключается в том, что осуществляют фиксацию углеродного изделия, нанесение на боковую и торцевые поверхности изделия координатной сетки с вертикальным и горизонтальным шагом соответственно (H+100) мм и (W+100) мм, где: H – высота антенной решетки ультразвукового томографа, W – ширина антенной решетки ультразвукового томографа, построчную съемку поверхности изделия с помощью низкочастотного ультразвукового томографа с двумерной антенной решеткой из электроакустических преобразователей с сухим точечным контактом, при этом рабочую частоту томографа задают в диапазоне 20-100 кГц, помечают ячейку координатной сетки при обнаружении в данной ячейке внутренних отражателей, при этом если помечают две или более соседних ячейки, то прямоугольная область, включающая в себя все смежные помеченные ячейки, размечают с половинным шагом путем деления ячеек обзорной сетки пополам, проводят построчную съемку области, размеченную с половинным шагом, собирают и обрабатывают обзорные подробные карты отдельных реализаций и анализируют для определения типа дефектов, их размера и расположение.

Использование: для формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн. Сущность изобретения заключается в том, что выполняют размещение объекта исследования в фокальной области акустической линзы, при этом между линзой и объектом размещается иммерсионная среда, связанная с исследуемым объектом, и прием отраженного или прошедшего излучения от объекта исследования, преобразование принятого излучения в электрические сигналы и формирование по данным электрическим сигналам визуально воспринимаемого изображения объекта наблюдения, при этом в области фокусировки излучения формирующей системы размещают мезоразмерную частицу с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ - длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде в диапазоне от 0.5 до 0.83, формируют на ее внешней границе с противоположной стороны от падающего излучения область с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4 и протяженностью не более 10λ и размещают объект исследования в этой области.

Использование: для ультразвуковой томографии. Сущность изобретения заключается в том, что используют антенную решетку, состоящую из N=2k преобразователей, в качестве зондирующих используют набор из N/2 Сплит-сигналов, функционально преобразователи антенной решетки разделяют на две равные половины, независимо и одновременно подают на используемые в качестве излучающих первые N/2 элементов антенной решетки N/2 Сплит-сигналов, а вторые N/2 элементов антенной решетки используют в качестве приемных преобразователей, принимают из объекта контроля ультразвуковые эхо-сигналы, фиксируют реализации ультразвуковых эхо-сигналов, далее каждую половину набора преобразователей повторно делят пополам, первые половины наборов преобразователей используют в качестве излучающих, а вторые - в качестве приемных преобразователей, независимо и одновременно излучают Сплит-сигналы и фиксируют эхо-сигналы, этот процесс повторяют до тех пор, пока в каждой половине не останется по одному преобразователю, далее все зафиксированные эхо-сигналы оптимально фильтруют, а оптимально отфильтрованные сигналы используют для поточечного построения изображения внутренней структуры контролируемого объекта.

Изобретение относится к медицине, а именно к педиатрии при диагностике врожденных заболеваний, и может быть использовано для ранней диагностики синдрома Алажилля у детей.

Изобретение относится к медицине, а именно к педиатрии, для диагностики врожденных заболеваний, и может быть использовано для ранней диагностики прогрессирующего семейного внутрипеченочного холестаза у детей (ПСВХ).

Использование: в ультразвуковой интроскопии веществ. Сущность изобретения заключается в том, что акустический микроскоп содержит генератор с формирователем зондирующих импульсов, пьезопреобразователь с акустической линзой, коммутатор зондирующих и отраженных сигналов, трехкоординатный привод для сканирования образца, формирователь потока жидкости, блок управления сканированием, блоки формирования, обработки и регистрации измерительной информации.

Использование: для ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями. Сущность изобретения заключается в том, что две антенные решетки на наклонных призмах размещают на поверхности контролируемого изделия на заранее рассчитанном расстоянии между собой, излучают ультразвуковые импульсы в контролируемое изделие независимо каждым элементом излучающей решетки, фиксируют отраженные от донной поверхности ультразвуковые эхо-импульсы элементами регистрирующей решетки, восстанавливают множество парциальных изображений, учитывая трансформацию типов волн при отражениях, получают изображение профиля донной поверхности, по которому получают таблицу значений толщины контролируемого изделия в каждой точке.

Использование: для получения изображения зоны сварки. Сущность изобретения заключается в том, что сканируют сечение тестируемого объекта, перпендикулярное направлению сварки, с помощью ультразвукового луча и принимают сигнал, отраженный тестируемым объектом при сканировании сечения, формируют изображение сканированного сечения, исходя из принятого отраженного сигнала, с тем чтобы обследовать микроструктуру зоны сварки, причем при формировании изображения волну, отраженную от микроструктуры зоны сварки, усиливают, при этом вычитают движущийся средний колебательный сигнал Ra со средним показателем m из принятого и оцифрованного колебательного сигнала Rb, с тем чтобы устранить слабо изменяющуюся компоненту принятого сигнала, выделяют сигнал, отраженный от микроструктуры зоны сварки, и усиливают только выделенный отраженный сигнал.
Наверх