Устройство выбора площадки для посадки воздушного судна вертолётного типа



Устройство выбора площадки для посадки воздушного судна вертолётного типа
Устройство выбора площадки для посадки воздушного судна вертолётного типа
Устройство выбора площадки для посадки воздушного судна вертолётного типа
Устройство выбора площадки для посадки воздушного судна вертолётного типа
Устройство выбора площадки для посадки воздушного судна вертолётного типа
Устройство выбора площадки для посадки воздушного судна вертолётного типа

Владельцы патента RU 2756596:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к области радиолокации и может быть использовано при разработке систем обеспечения безопасной посадки воздушного судна вертолетного типа (ВСВТ) на водоем со снежно-ледяным покровом в условиях недостаточной информативности закабинного пространства о подстилающей поверхности. Техническим результатом изобретения является повышение вероятности выбора площадки для посадки воздушного судна вертолетного типа на водоем со снежно-ледяным покровом. Устройство содержит подключенные через антенный переключатель к единому приемо-передающему устройству, аналогово-цифровому преобразователю, микропроцессорной системе и блоку принятия решения антенную систему, состоящую из комплекса приемо-передающих антенн, установленных на борту в секторах α=2π/М, где М - количество приемо-передающих антенн, и направленной вертикально вниз неподвижной приемо-передающей антенны. Антенны комплекса выполнены отклоняющимися от вертикали на угол β=arctgR/hвсвт, где R - радиус зоны посадки, hвсвт - высота зависания воздушного судна вертолетного типа. В антенную систему дополнительно введен комплекс приемо-передающих антенн с вертикальной и горизонтальной поляризацией и блок определения состояния (идентификации) слоев подстилающей поверхности. Дополнительный комплекс приемо-передающих антенн установлен на борту в секторах α=0; 2π, отклоняющихся от вертикали на угол γ=25°…45° с центром ДН, совпадающим с центром ДН направленной вертикально вниз неподвижной приемо-передающей антенны. 3 ил.

 

Изобретение относится к области радиолокации и может быть использовано при разработке систем обеспечения безопасной посадки воздушного судна вертолетного типа (ВСВТ) на водоем со снежно-ледяным покровом в условиях недостаточной информативности закабинного пространства о подстилающей поверхности.

Известно «Устройство выбора площадки для посадки воздушного судна вертолетного типа», принятое за прототип, №2737760 опубл. 02.12.2020, МПК G01S 13/93, РЛС зондирования подстилающей поверхности размещенная в нижней части фюзеляжа вертолета для обеспечения возможности безопасной посадки вертолета на неподготовленную заснеженную площадку в условиях недостаточной информативности закабинного пространства о подстилающей поверхности.

Недостатком устройства-прототипа является низкая вероятность выбора площадки для посадки воздушного судна вертолетного типа, при наличии водоема со снежно-ледяным покровом места посадки, связанная с отсутствием оценки состояния подстилающей поверхности.

Техническим результатом изобретения является повышение вероятности выбора площадки для посадки воздушного судна вертолетного типа на водоем со снежно-ледяным покровом за счет того, что дополнительно введен в антенную систему комплекс приемопередающих антенн с вертикальной и горизонтальной поляризацией, установленных на борту в секторах α=0; 2π отклоняющихся от вертикали на угол γ=25°…45° с центром ДН, совпадающим с центром ДН направленной вертикально вниз неподвижной приемо-передающей антенны, блок определения состояния (идентификации) слоев подстилающей поверхности, электрически подключенных через антенный переключатель, единое приемо-передающее устройство и аналогово-цифровой преобразователь.

Известно [Особенности взлетов и посадок на пыльных, песчаных или заснеженных площадках: [Электронный ресурс]. URL: http://www.svvaul.ru /component/k2/600-osobennosti-vzletov-i-posadok-na-pylnykh-peschanykh-ili-zasnezhennykh-ploshchadkakh. (дата обращения: 22.10.2020)], посадку на заснеженную площадку по-вертолетному разрешается выполнять при толщине снежного покрова до 50 см, при наличии на поверхности плотного наста, исключающего возможность образования снежного вихря, в котором отсутствует горизонтальная и вертикальная видимость, чтобы избежать проваливания вертолета в сугроб. Для определения глубины снежного покрова при посадке человек должен двигаться по посадочной площадке [Меры безопасности при применении вертолетов: [Электронный ресурс]. URL: https://studopedia.ru/10_104903_meri-bezopasnosti-pri-primenenii-vertoletov.html (дата обращения: 22.10.2020)].

Известно [Особенности посадки по-вертолетному на пыльную (заснеженную) площадку: [Электронный ресурс]. URL: https://studopedia.su/16_21971_posadka.html (дата обращения: 22.10.2020)], потребная толщина пресноводного льда для посадки вертолета на колесном шасси определяется по формуле при температуре несущего винта Тнв≤-10°С, при 0≥Тнв≥-10°С, где Pmax - полетная масса, на лыжном шасси при Tнв≤-10°С, при 0≥Тнв≥-10°С.

Под обеспечением безопасной посадки воздушного судна вертолетного типа понимается исключение проваливания под снег, лед, опрокидывания вертолета при посадке днем и ночью, в простых и сложных метеоусловиях (туман, дымка, дождь, снег, запыленность или задымленность атмосферы), а также в условиях поднятой с грунта пыли или снега его вращающимся винтом [Приказ Минтранса РФ от 31 июля 2009 г. №128 «Об утверждении Федеральных авиационных правил «Подготовка и выполнение полетов в гражданской авиации Российской Федерации»].

Указанный технический результат достигается тем, что в устройство выбора площадки для посадки воздушного судна вертолетного типа, содержащее антенную систему состоящую из комплекса приемопередающих антенн, установленных на борту в секторах α=2π/М, где М - количество приемо-передающих антенн, отклоняющихся от вертикали на угол β=arctgR/hвсвт, где R - радиус зоны посадки, hвсвт - высота зависания воздушного судна вертолетного типа, и направленной вертикально вниз неподвижной приемо-передающей антенны, подключенных через антенный переключатель к единому приемопередающему устройству, аналогово-цифровому преобразователю, микропроцессорной системе и блоку принятия решения, согласно изобретению, дополнительно введен в антенную систему комплекс приемопередающих антенн с вертикальной и горизонтальной поляризацией, установленных на борту в секторах α=0; 2π отклоняющихся от вертикали на угол γ=25°…45° с центром ДН, совпадающим с центром ДН направленной вертикально вниз неподвижной приемо-передающей антенны, блок определения состояния (идентификации) слоев подстилающей поверхности, электрически подключенных через антенный переключатель, единое приемо-передающее устройство и аналогово-цифровой преобразователь.

Сущность заявляемого устройства состоит в том, что дополнительно введен в антенную систему комплекс приемо-передающих антенн с вертикальной и горизонтальной поляризацией, установленных на борту в секторах α=0; 2π отклоняющихся от вертикали на угол γ=25°…45° с центром ДН, совпадающим с центром ДН направленной вертикально вниз неподвижной приемо-передающей антенны, блок определения состояния (идентификации) слоев подстилающей поверхности, электрически подключенных через антенный переключатель, единое приемо-передающее устройство и аналогово-цифровой преобразователь.

Сущность изобретения поясняется фиг. 1 и фиг. 2, где представлено положение ВСВТ и обозначено: 1 - граница раздела «тропосфера - снежный покров»; 2 - граница раздела «снежный покров - ледяной покров»; 3 - граница раздела «ледяной покров - вода»; 4 - точка на ледяной поверхности с полярными координатами αmm-1+2π/М, где m=1…М, α0=0, М - количество приемо-передающих антенн, отклоняющихся от вертикали на угол β=arctgR/hвсвт, где R - радиус зоны посадки, куда направляется ось ДН m-ой приемо-передающей антенны комплекса приемо-передающих антенн, установленных в секторе α=2π/М, hвсвт - высота зависания ВСВТ, и по нормали; 5 - зона приема эхо-сигналов, ограниченная шириной ДН антенны β=2arctgR/всвт0, где hвсвт0 - высота зависания ВСВТ пред началом этапа посадки его m-ой приемо-передающей антенны; 6 - снежный покров; 7 - ледяной покров; 8 -вода; hвсвт - высота воздушного судна вертолетного типа; hc - толщина снежного покрова; hл - толщина ледяного покрова; 9 - точка на ледяной поверхности куда направляется ось ДН приемо-передающих антенн с вертикальной и горизонтальной поляризацией комплекса приемопередающих антенн, установленных в секторах α=0; 2π, отклоняющихся от вертикали на угол γ=25°…45° с центром ДН совпадающим с центром ДН направленной вертикально вниз неподвижной приемо-передающей антенны; 10 - зона приема эхо-сигналов, ограниченная шириной ДН антенны θ=2arctgR/hвсвт, состоит в том, что в процессе вертикального снижения при наличии снежно-ледяного покрова дополнительно осуществляют зондирование сигналом с линейной частотной модуляцией (ЛЧМ) в интервале β=arctgR/hвсвт и γ=25°…45°, позволяющий получить отраженный сигнал от границы раздела сред «тропосфера - снежный покров» в верхнем диапазоне частот, а от границы раздела сред «снежный покров - ледяной покров» и «ледяной покров - вода» в нижнем диапазоне частот, передающего устройства fпрд(t)=fн+νtлчм ∀ 0<tлчм<Tлчм, где fн - частота излучаемого ЛЧМ-сигнала в начальный момент времени, ν=(fк-fн)/Tлчм=В/Тлчм- скорость изменения частоты ЛЧМ-сигнала (крутизна ЛЧМ-сигнала), tлчм - время в течение отдельного периода модуляции ЛЧМ-сигнала (быстрое время), Тлчм - период модуляции зондирующего сигнала, т.е. время развертки ЛЧМ-сигнала, В - ширина спектра (девиация) ЛЧМ-сигнала, и прием отраженных эхо-сигналов fпрм(tлчм)=fн+ν(tлчм3), ∀ τ3<tлчмлчм от границ раздела сред «тропосфера - снежный покров», «снежный покров - ледяной покров» и «ледяной покров - вода» с временными задержками τ3=2r/Vcp, где r - расстояние до границ раздела сред, Vcp - скорость распространения электромагнитной волны в среде с М угловых направлений комплексом приемо-передающих антенн, установленными на борту в секторах α=2π/М, отклоняющихся на угол от вертикали β=arctgR/hвсвт, и по нормали, с комплекса приемо-передающих антенн с вертикальной и горизонтальной поляризацией, установленных в секторах α=0; 2π, отклоняющихся от вертикали на угол γ=25°…45° с центром ДН совпадающим с центром ДН направленной вертикально вниз неподвижной приемо-передающей антенны, определяют состояние (идентификацию) слоев подстилающей поверхности в виде снежно-ледяного покрова водоема по поляризационным отношениям коэффициентов отражения Френеля, глубину снежного покрова в каждом секторе приема hcm и сравнивают их с заданным значением глубины снежного покрова n, при значении меньше допустимого определяют глубину ледяного покрова в каждом секторе приема измерением hлm и сравнивают с рассчитанным значением толщины ледяного покрова hлΔ, при глубине снежного покрова выше заданного в любом из секторов либо глубине ледяного покрова меньше рассчитанного значения в любом из секторов посадку запрещают с рекомендацией экипажу отображением на многофункциональном индикаторе и в головных телефонах.

Структурная схема устройства выбора площадки для посадки воздушного судна вертолетного типа на водоем со снежно-ледяным покровом приведена на фиг. 3, где обозначено: 11 - комплекс приемопередающих антенн; 12 - антенный переключатель; 13 - приемо-передающее устройство; 14 - аналогово-цифровой преобразователь; 15 - блок определения состояния (идентификации) слоев подстилающей поверхности; 16 - микропроцессорная система; 17 - блок принятия решений.

Приемо-передающее устройство 13.1 осуществляет формирование линейно-частотного модулированного сигнала с частотой fпрд(t)=fн+vtлчм, подключенное к комплексу приемо-передающих антенн с вертикальной и горизонтальной поляризацией 11.1, установленных на борту в секторах α=0; 2π, отклоняющихся от вертикали на угол γ=25°…45° с центром ДН совпадающим с центром ДН направленной вертикально вниз неподвижной приемо-передающей антенны, через антенный переключатель 12.1 подключающий приемо-передающие антенны с вертикальной и горизонтальной поляризацией 11.1, управляемый микропроцессорной системой 16. ЛЧМ-сигнал излучается одновременно приемо-передающими антеннами с вертикальной и горизонтальной поляризацией в направлении центра ДН неподвижной приемо-передающей антенны расположенной по нормали к подстилающей поверхности. Отраженный сигнал от подстилающей поверхности принимается приемо-передающими антеннами с вертикальной и горизонтальной поляризацией отклоняющихся от вертикали на угол γ=25°…45°, в направлении центра ДН неподвижной приемо-передающей антенны расположенной по нормали к подстилающей поверхности и через антенный переключатель 12.1 поступает в приемник приемо-передающего устройства 13.1 с частотой fпрм(tлчм)=fн+ν(tлчм_τ3), Сигнал приемного устройства перемножается с сигналом передающего устройства в квадратурном смесителе, выходом которого является сигнал с разностной частотой (частотой биения) fб=fпрд-fпрм=ντ3=2rB/VcpТлчм на соответствующих поляризациях.

Сигнал с частотой биения поступает на n-разрядный аналого-цифровой преобразователь (АЦП) 14.1 с частотой дискретизации fд.

Выход АЦП электрически соединен с входом блока определения состояния (идентификации) слоев подстилающей поверхности 15.

Цифровой сигнал с АЦП 14.1 подается на вход блока определения состояния (идентификации) слоев подстилающей поверхности 15, осуществляется определение состояния снежно-ледяного покрова, посредством косвенного измерения комплексной относительной диэлектрической проницаемости каждого последующего нижележащего слоя снежно-ледяного покрова по поляризационным отношениям коэффициентов отражения Френеля сигналов с вертикальной и горизонтальной поляризацией [Машков В.Г. Метод дистанционной идентификации состояния снежно-ледяного покрова по отношениям коэффициентов отражения Френеля // Известия вузов России. Радиоэлектроника. 2020. Т. 23, №5. С. 46-56. doi: 10.32603/1993-8985-2020-23-5-46-56]. Выход блока 15 электрически соединен с входом микропроцессорной системы 16.

Приемо-передающее устройство 13.2 осуществляет формирование линейно-частотного модулированного сигнала с частотой fпрд(t)=fн+νtлчм, подключенное к комплексу приемо-передающих антенн 11.2, установленных на борту в секторах α=2π/М, отклоняющихся на угол от вертикали β=arctgR/hвсвт, и по нормали, с шириной ДН антенн θ=2arctgR/hвсвт0, где hвсвт0 - высота зависания ВСВТ пред началом этапа посадки его m-ой приемно-передающей антенны, R - радиус зоны посадки, через антенный переключатель 12.2 последовательно подключающий М приемо-передающих антенн 11.2, управляемый микропроцессорной системой 16. ЛЧМ-сигнал излучается последовательно приемо-передающими антеннами в направлении М секторов и по нормали к земной поверхности места посадки с не пересекающимися ДН. Отраженный сигнал от подстилающей поверхности принимается приемопередающими антеннами в направлении М секторов и по нормали к земной поверхности места посадки с не пересекающимися ДН и через антенный переключатель 12.2 поступает в приемник приемо-передающего устройства 13.2 с частотой fпрм(tлчм)=fн+ν(tлчм3). Сигнал приемного устройства перемножается с сигналом передающего устройства в квадратурном смесителе, выходом которого является сигнал с разностной частотой (частотой биения) fб=fпрд-fпрм=ντ3=2rB/VcpTлчм.

Сигнал с частотой биения поступает на n-разрядный аналого-цифровой преобразователь (АЦП) 14.2 с частотой дискретизации fд.

Выход АЦП электрически соединен с входом микропроцессорной системы 16 функционирующей согласно алгоритму, поясняющего принцип действия, представленного ниже.

Микропроцессорная система 16 синхронизирует последовательную работу приемо-передающего устройства 13.1 и приемо-передающих антенн с вертикальной и горизонтальной поляризацией 11.1 через антенный переключатель 12.1 с работой приемо-передающего устройства 13.2 и М приемо-передающих антенн 11.2 через антенный переключатель 12.2, вычисляет задержку первого максимума сигнала, соответствующая расстоянию до границы раздела сред «тропосфера - снежный покров», второго максимума соответствующая расстоянию до границы раздела сред «снежный покров - ледяной покров» и третьего максимума соответствующая расстоянию до границы раздела сред «ледяной покров -вода» согласно r=fбVcpTлчм/2B. Высота зависания ВСВТ hвсвт вычисляется относительно второго максимума соответствующая расстоянию до границы раздела сред «снежный покров - ледяной покров» в направлении М секторов и по нормали к подстилающей поверхности места посадки.

Разность времени задержки между этими максимумами будет соответствовать глубине снежного покрова в каждом секторе приема hсm которые сравниваются с заданным значением глубины снежного покрова h в блоке принятия решений 17. При превышении заданного значения глубины снежного покрова h формируется сигнал запрета посадки по превышению глубины снежного покрова в соответствующем М секторе.

При значении меньше допустимого определяется глубина ледяного покрова в каждом секторе приема hлm и сравнивают с рассчитанным значением толщины ледяного покрова hлΔ в блоке принятия решений 17.

При значении толщины ледяного покрова hлΔ меньше рассчитанного hлΔ формируется сигнал запрета посадки по толщине ледяного покрова меньше рассчитанного значения в соответствующем М секторе.

При глубине ледяного покрова в каждом секторе приема hлΔ больше допустимого формируется сигнал разрешения на посадку ВСВТ, поступающий в качестве рекомендации экипажу на многофункциональный индикатор и в головные телефоны.

Выходом устройства выбора площадки для посадки воздушного судна вертолетного типа на водоем со снежно-ледяным покровом является блок принятия решений 17, выходом которого является сигнал о разрешении или запрещении посадки на данной площадке.

Предлагаемое техническое решение является новым и имеет изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленное устройство выбора площадки для посадки воздушного судна вертолетного типа на водоем со снежно-ледяным покровом в условиях недостаточной информативности закабинного пространства в зоне посадки вертолета, обеспечивает оценку состояния (идентификацию) слоев снежно-ледяного покрова водоема по поляризационным отношениям эхо-сигналов с вертикальной и горизонтальной поляризацией, измерение глубины снежного и толщины ледяного покрова за счет приема эхо-сигналов непосредственно из зоны посадки вертолета с выдачей рекомендации экипажу на многофункциональный индикатор и в головные телефоны о возможности посадки воздушного судна вертолетного типа на водоем со снежно-ледяным покровом либо отсутствие таковой.

Устройство выбора площадки для посадки воздушного судна вертолетного типа, содержащее антенную систему, состоящую из комплекса приемо-передающих антенн, установленных на борту в секторах α=2π/М, где М - количество приемо-передающих антенн, отклоняющихся от вертикали на угол β=arctgR/hвсвт, где R - радиус зоны посадки, hвсвт - высота зависания воздушного судна вертолетного типа, и направленной вертикально вниз неподвижной приемо-передающей антенны, подключенных через антенный переключатель к единому приемо-передающему устройству, аналогово-цифровому преобразователю, микропроцессорной системе и блоку принятия решения, отличающееся тем, что дополнительно введен в антенную систему комплекс приемо-передающих антенн с вертикальной и горизонтальной поляризацией, установленных на борту в секторах α=0; 2π, отклоняющихся от вертикали на угол γ=25°…45° с центром диаграммы направленности (ДН), совпадающим с центром ДН направленной вертикально вниз неподвижной приемо-передающей антенны, блок определения состояния (идентификации) слоев подстилающей поверхности, электрически подключенных через антенный переключатель, единое приемо-передающее устройство и аналогово-цифровой преобразователь.



 

Похожие патенты:

Поляризационно-модуляционная радиомаячная система измерения угла крена ЛА содержит радиомаяк, включающий в себя передатчик (1) и передающую антенну (2), расположенные в точке с известными координатами. На борту ЛА система содержит приемную антенну (3), вращатель плоскости поляризации (4), выполненный в виде вращающейся секции круглого волновода с вмонтированной внутрь полуволновой фазовой пластины, линейный поляризатор (5), задающий генератор (6), синхронный шаговый микродвигатель (7), логарифмический приемник (8), балансный детектор (9), датчик углового положения (10), полосовой фильтр (11), блок формирования опорного сигнала (12), фазовый детектор (13), индикатор угла крена ЛА (14).

Система посадки летательного аппарата (ЛА) на корабль с применением цифровых технологий содержит корабельное оборудование и оборудование на борту ЛА. Корабельное оборудование содержит навигационную систему, систему относительной навигации, систему метеорологического обеспечения корабля для измерения набегающего на корабль вектора скорости ветра, дистанционный измеритель параметров ветра, ЭВМ с программно-математическим обеспечением, задатчик фазовых координат ВППл и цВППо и относительных фазовых координат цВППл и ЛА, а также момента касания ЛА ВППл, задатчик параметров поля вектора скорости ветра, задатчик параметров среды посадки, приемопередатчик, индикатор посадки ЛА, систему управления посадкой ЛА, корабельную часть финишера, систему управления авианесущим кораблем.

Многопозиционная система посадки (МПСП) летательных аппаратов (ЛА) содержит наземный запросчик, наземные станции с наземными приемниками ответных сигналов, центральную станцию с наземной ЭВМ управления, бортовую аппаратуру ЛА, бортовой приемник сигналов спутников глобальной спутниковой навигационной системы, систему псевдоспутников, совмещенных по расположению с наземными станциями.

Изобретение относится к способу предупреждения попадания летательного аппарата в вихревой след самолета-генератора вихрей. Для реализации способа получают информацию о конфигурации, местонахождении и ориентации летательного аппарата и самолета-генератора вихрей, а также информацию о параметрах окружающей среды в текущий момент времени, определяют геометрические характеристики опасной зоны вихревого следа, представляют визуальную информацию экипажу о риске попадания в опасную зону вихревого следа определенным образом.

Изобретение относится к способу предупреждения попадания летательного аппарата в опасную зону вихревого следа генератора вихрей. Способ заключается в том, что получают информацию о конфигурации, местонахождении, ориентации летательного аппарата, информацию о положении, геометрических и массовых характеристиках и о параметрах движения генератора вихрей в текущий момент времени, информацию о параметрах окружающей среды, определяют геометрические размеры опасной зоны вихревого следа, представляют визуальную информацию экипажу определенным образом.

Оптическая система посадки вертолета на корабельную взлетно-посадочную площадку содержит светосигнальную систему, состоящую из индикатора глиссады, индикатора курса, указателя истинного горизонта, индикатора истинной вертикали и вертикального перемещения, размещенных на надстройках корабля, размещенного на корме корабля оптического индикатора дальности в виде комбинации источников оптического излучения, размещенных на заданных расстояниях друг от друга.

Изобретение относится к радиотехнике и может быть использовано в системах инструментального обеспечения захода самолетов на посадку. Достигаемый технический результат - повышение безопасности захода самолета на посадку.

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокационных рельефометрических систем, предназначенных для определения местоположения летательных аппаратов в соответствии с корреляционно-экстремальным принципом навигации. Достигаемый технический результат - повышение скрытности, помехоустойчивости и разрешающей способности по дальности, а также точности определения наклонных дальностей в радиолокационных рельефометрических системах маловысотных летательных аппаратов.

Группа изобретений относится к системам обеспечения посадки вертолета. В первом варианте система посадки содержит ультразвуковой высотомер, приемник, блок обработки информации и управления, средство отображения, четыре акустических приемника, блок обработки данных, передатчик.

Изобретение относится к области навигации летательных аппаратов (ЛА), предназначено для обеспечения безопасности полетов ЛА путем использования системы автоматического зависимого наблюдения (АЗН) на борту ЛА. Достигаемый технический результат - повышение помехоустойчивости системы АЗН на основе повышения достоверности ее данных.

Устройство импульсной локации на основе автодина предназначено для измерения дальности до препятствия в системе предотвращения столкновений транспортных средств. Технический результат заключается в упрощении устройства объединением каналов приема и передачи в автодине.
Наверх