Радиокомплекс для метеорной и трансионосферной связи

Изобретение относится к радиотехнике и радиоэлектронике, предназначено для проведения сеанса связи на дальние расстояния без ретрансляторов и может быть использовано для создания новых телекоммуникационных систем и адаптивных систем связи. Технический результат состоит в обеспечении возможности проведения сеанса связи с высокоскоростной передачей информации. Для этого радиокомплекс для метеорной и трансионосферной связи содержит синхронометр, плату ПЛИС, персональный компьютер, монитор, цифроаналоговый преобразователь (ЦАП), широкополосный усилитель мощности, передающий антенно-фидерный тракт, аналого-цифровой преобразователь (АЦП), фильтр низких частот, приемную антенну. 1 ил.

 

Изобретение относится к радиотехнике и радиоэлектронике, предназначено для проведения сеанса связи на дальние расстояния без ретрансляторов, и может быть использовано для создания новых телекоммуникационных систем и адаптивных систем связи.

Известна базовая станция дистанционного зондирования атмосферы, состоящая из передающей и приемной частей. Передающая часть содержит двухсистемный приемник навигационных сигналов ГЛОНАСС/GPS; синхронометр; цифровой вычислительный синтезатор; широкополосный усилитель мощности; антенно-фидерное устройство. Приемная часть содержит антенно-фидерное устройство; усилитель высокой частоты; аналого-цифровой преобразователь; цифровой гетеродин DDC; цифровой вычислительный синтезатор; синхронометр; двухсистемный приемник навигационных сигналов ГЛОНАСС/GPS; ЭВМ и монитор.

Наиболее близким техническим решением (прототипом) является система трансионосферного распространения радиоволн, содержащая приемо-передающую части и состоит термостатированного кварцевого генератора, фильтра нижних частот, двухсистемного приемника навигационных сигналов ГЛОНАСС/GPS, цифроаналогового преобразователя (ЦАП); делителя с переменным коэффициентом деления, сравнителя частот с цифровым интерфейсом, вычислительного устройства, усилителя-формирователя, первого и второго накопителя; блока управления, первого и второго блока обработки сигналов; первого и второго цифровых вычислительных синтезаторов (ЦВС); первого смесителя, широкополосного усилителя мощности; передающего антенно-фидерного устройства, приемного антенно-фидерного устройство; блока входных фильтров; аналого-цифрового преобразователя (двухканальный АЦП); второго и третьего смесителей. Перечисленные блоки соединены между собой в общую приемо-передающую структурную схему.

Однако, при всех достоинствах известной системы трансионосферного распространения радиоволн, она не позволяет получить высокоскоростной канал связи.

Положительный технический результат - возможность создания канала связи с высокоскоростной передачей информации.

Технический результат достигается за счет того, что в радиокомплекс для метеорной и трансионосферной связи, содержащий цифроаналоговый преобразователь (ЦАП); последовательно соединенные широкополосный усилитель мощности и передающий антенно-фидерный тракт; приемную антенну, фильтр низких частот и аналого-цифровой преобразователь (АЦП), причем новым является то, что введены синхронометр, плата ПЛИС, персональный компьютер и монитор; причем выходы синхронометра подключены к тактовым входам платы ПЛИС и персонального компьютера соответственно; выход персонального компьютера подключен к монитору; плата ПЛИС подключена к персональному компьютеру; выход платы ПЛИС подсоединен к ЦАП, а вход - к АЦП; выход ЦАП подключен к входу широкополосного усилителя мощности; последовательно соединенные приемная антенна, фильтр низких частот и АЦП; при этом формирование и первичная цифровая обработка связного сигнала происходит в плате ПЛИС, где формируется сложный частотно-модулированный сигнал, который описывается следующей формулой: где

U0 - амплитуда ЧМ сигнала;

ƒ0 - начальная частота ЧМ сигнала;

ƒ' - скорость изменения частоты сигнала,

а вторичная обработка сигнала происходит в персональном компьютере, в частности, построение АЧХ и ДЧХ радиолиний, выбор оптимальных рабочих частот, на которых возможна высокоскоростная передача информации; синхронометр служит для синхронизации основных узлов радиокомплекса: ПЛИС, АЦП, ЦАП и персонального компьютера.

Радиокомплекс для метеорной и трансионосферной связи (см. чертеж) содержит синхронометр 1, плату ПЛИС 2, персональный компьютер 3, монитор 4, цифроаналоговый преобразователь (ЦАП) 5, широкополосный усилитель мощности 6, передаюгций антенно-фидерный тракт 7, аналого-цифровой преобразователь (АЦП) 8; фильтр низких частот (ФНЧ) 9, приемную антенну 10.

Радио комплекс состоит из синхронометра 1, выходы которого подключены к тактовым входам платы ПЛИС 2 и персонального компьютера 3 соответственно; персональный компьютер 3 подключен к монитору 4; плата ПЛИС 2 соединена с персональным компьютером 3; выход платы ПЛИС 2 подключен к входу ЦАП 5, выход последнего подключен к входу широкополосного усилителя мощности 6, выход которого подключен к передающему антенно-фидерному тракту 7; приемная антенна 10 через ФНЧ 9 подключена к входу АЦП 8; выход последнего подключен к входу платы ПЛИС 2.

Радиокомплекс для метеорной и трансионосферной связи работает следующим образом.

Синхронометр 1 вырабатывает синусоидальный сигнал опорной частоты, который поступает на тактовые входы платы ПЛИС 2 и персонального компьютера 3 и служит для синхронизации основных узлов радиокомплекса: ПЛИС, АЦП, ЦАП и персонального компьютера. В плате ПЛИС 2 формируется сложный частотно-модулированный сигнал, который описывается следующей формулой:

где U0 - амплитуда ЧМ сигнала;

ƒ0 - начальная частота ЧМ сигнала;

ƒ' - скорость изменения частоты сигнала.

Этот сигнал поступает на ЦАП 5, где формируется «ступенчатый» ЧМ сигнал, который поступает на вход широкополосного усилителя мощности 6, и, далее через передающий антенно-фидерный тракт 7 излучается в атмосферу.

Принятый сигнал на приемную антенну 10 через ФНЧ 9 поступает на вход АЦП 8, выход которого подключен к входу платы ПЛИС 2, где происходит первичная цифровая обработка ЧМ сигнала, т.е. понижение частоты принятого сигнала. Далее, обработанный сигнал поступает в персональный компьютер 3 со специализированным программным обеспечением, которое позволяет построить амплитудно-частотные и дистанционно-частотные характеристики (АЧХ и ДЧХ) радиолиний различной протяженности и ориентации.

Монитор 4 служит для отображения информации.

После построения АЧХ и ДЧХ радиолинии происходит выбор оптимальных рабочих частот, радиосвязь на которых будет энергетически выгодной. Далее в ПЛИС формируется QAM-сигнал и начинается высокоскоростная передача информации.

Радиокомплекс предназначен для работы в полярной и среднеширотной областях ионосферы, при этом он способен передавать информацию до 2000 км без ретрансляторов. Диапазон рабочих частот радиокомплекса: 10-100 МГц, т.е. он обеспечивает связь в KB- и УКВ-диапазонах.

Литература

1. Патент №2611587 Российской Федерации. МПК G01S 1/08. Базовая станция дистанционного зондирования атмосферы / Рябов И.В., Толмачев СВ., Чернов Д.А. и др. Заявл. 23.12.2015. Опубл. 28.02.2017. Бюл. №3.-6 с.

2. Патент №2650196 Российской Федерации. МПК G01S 13/95. Система дистанционного зондирования трансионосферного распространения радиоволн для метеорной радиосвязи / Рябов И.В., Толмачев С.В., Стрельников И.В., Дегтярев И.В. Заявл. 03.05.2017. Опубл. 11.04.2018. Бюл.№13. - 7 с. (прототип).

Радиокомплекс для метеорной и трансионосферной связи, содержащий цифроаналоговый преобразователь (ЦАП); последовательно соединенные широкополосный усилитель мощности и передающий антенно-фидерный тракт; приемную антенну, фильтр низких частот и аналого-цифровой преобразователь (АЦП), отличающийся тем, что введены синхронометр, плата ПЛИС, персональный компьютер и монитор; причем выходы синхронометра подключены к тактовым входам платы ПЛИС и персонального компьютера соответственно; выход персонального компьютера подключен к монитору; плата ПЛИС подключена к персональному компьютеру; выход платы ПЛИС подсоединен к ЦАП, а вход - к АЦП; выход ЦАП подключен к входу широкополосного усилителя мощности; последовательно соединенные приемная антенна, фильтр низких частот и АЦП; при этом формирование и первичная цифровая обработка связного сигнала происходит в плате ПЛИС, где формируется сложный частотно-модулированный сигнал, который описывается следующей формулой: где

U0 - амплитуда ЧМ сигнала;

ƒ0 - начальная частота ЧМ сигнала;

ƒ' - скорость изменения частоты сигнала,

а вторичная обработка сигнала происходит в персональном компьютере, в частности построение АЧХ и ДЧХ радиолиний, выбор оптимальных рабочих частот, на которых возможна высокоскоростная передача информации; синхронометр служит для синхронизации основных узлов радиокомплекса: ПЛИС, АЦП, ЦАП и персонального компьютера.



 

Похожие патенты:

Изобретение относится к спутниковым сетям связи. Техническим результатом является обеспечение возможности первоначального приема сигналов от множества спутников в расширенной зоне покрытия для выбора подходящего спутника.

Изобретение относится к области адаптивных систем и может быть использовано для адаптивной фильтрации стохастических сигналов и параметров состояния стохастических систем. Технический результат - обеспечение устойчивости и повышение точности калмановской фильтрации за счет адаптивного определения компонентов дисперсионной матрицы помех измерения в процессе текущего оценивания стохастических сигналов и параметров состояния стохастических систем на основе точных измерений, поступающих в нерегулярные (или случайные) моменты времени.

Заявляемое техническое решение относится к области автоматизированных систем, предназначенных для контроля жизненного цикла объекта и его инфраструктуры. Технический результат заключаются в сборе и анализе данных о жизненном цикле объекта законченного строительства или находящегося в стадии строительства и их инфраструктуры.

Изобретение относится к радиотехнике. Технический результат заключается в повышении точности привязки устройств к реальным географическим координатам.

Изобретение относится к области точного приборостроения и может быть использовано при создании систем начальной ориентации различных объектов на основе использования спутниковых измерений. Способ определения начальной ориентации объекта состоит в том, что по показаниям размещенных на жестком основании двух спутниковых навигационных приемников (СНП), один из которых расположен в центре масс объекта, а другой - на известном расстоянии от него в направлении оси крена, в режиме высокоточного позиционирования определяются координаты обоих СНП в геоцентрической системе координат, по значениям которых определяется угол тангажа как разность с прямым углом угла, образованного в геоцентрической системе координат векторами, лежащими между точками расположения СНП и между началом геоцентрической системы координат и центром масс объекта.

Изобретение относится к контактным линиям электроснабжения. Способ защиты от опасных электрических потенциалов при эксплуатации и ремонте контактной сети заключается в том, что снимают рабочее напряжение в контактной сети и принимают меры против ошибочной подачи его на место работы, проверяют отсутствие напряжения и выполняют наложение заземлений, шунтирующих штанг или перемычек, включение разъединителей.

Изобретение относится к области спутниковой навигации. Техническими результатами являются повышение скорости сходимости высокоточного позиционирования спутниковой навигации, сокращение времени для инициализации точного позиционирования пользователя, исключение зависимости от линий связи и одновременное улучшение точности и надёжности услуг системы.

Изобретение относится к технике связи и может использоваться в спутниковых системах навигации. Технический результат состоит в повышении надежности отслеживания сигнала.

Изобретение относится к области радиотехники (гидроакустики), в частности к способам бистатического определения местоположения цели, и может использоваться в средствах бистатической радиолокации (гидролокации) для измерения направления на цель и расстояния до нее. Достигаемый технический результат - определение местоположения цели при отсутствии приема эхо-сигнала в направлении на цель (при отсутствии прямой видимости цели на приемной позиции) и исключение процесса сканирования пространства узконаправленной антенной приемокоординатного устройства (ПКУ) в интересах сокращения времени поиска цели.

Изобретение относится к области мониторинга сложных инженерных сооружений, а именно для оперативного контроля состояния элементов конструкций сложных и уникальных инженерных сооружений, таких как мосты, плотины, большепролетные и высотные здания и т.п. Система предназначена для автоматизированного контроля, в режиме реального времени, состояния конструкций сложного инженерного сооружения, обнаружения потенциально опасных деформаций и нарушений целостности элементов конструкции, используя четырехсистемный мультичастотный приемник глобальных навигационных спутниковых систем ГЛОНАСС/GPS/Galileo/BeiDou, а также для прогнозирования разрушения или потери устойчивости конструкции и предоставления результатов мониторинга и прогнозирования потребителям посредством информационного сервиса.

Изобретение относится к способам обработки сигналов в метеорологических радиолокационных комплексах (МРЛК) и может быть использовано для обнаружения зон обледенения в секторах взлета и посадки летательных аппаратов (ЛА). Достигаемый технический результат – повышение эффективности обнаружения зон обледенения в секторах взлета и посадки ЛА.
Наверх