Способ транспортирования метано-водородной смеси

Настоящее изобретение относится к газовой промышленности и может быть использовано при транспортировке газообразных энергоносителей на дальние расстояния. Изобретение касается способа транспортирования метано-водородной смеси. Формируют метано-водородную смесь с содержанием водорода от 68 до 92 об. %, которую предварительно смешивают с пентаном, количество которого выбирают, исходя из условия достижения плотности полученной метано-водородной смеси величины, соответствующей величине плотности транспортируемой смеси газа без водорода при значениях давления Р=101325 Па и температуры Т=20°С, соответствующих стандартным условиям, согласно правилу аддитивности, используя следующую формулу:

где А - содержание пентана, добавляемого к МВС; ρCH4 - плотность метана, кг/м3; ρH2 - плотность водорода, кг/м3; ρC5 - плотность пентана, кг/м3; ωCH4 - содержание метана в МВС; ωH2 - содержание водорода в МВС, полученную смесь подвергают сжатию до 220 атм, затем по окончании процесса компримирования пентан отделяют от метано-водородной смеси, которую направляют в трубопровод для транспортирования с обеспечением величины давления на выходе из трубопровода, соответствующей условиям хранения или подачи потребителю. Технический результат - уменьшение энергетических затрат на транспортировку водорода с высоким содержанием водорода в транспортируемой смеси и затрат на сероочистку. 3 табл., 1 ил.

 

Настоящее изобретение относится к газовой промышленности и может быть использовано при транспортировке газообразных энергоносителей на дальние расстояния.

В последнее время водородные технологии активно осваиваются практически во всех передовых странах мира. Главной причиной указанных разработок является необходимость оперативного решения природоохранных задач глобального масштаба. Водородная энергетика является ключевым фактором глобальной энергетической трансформации, позволяющей снизить парниковые выбросы.

Широкомасштабное применение водорода требует решение проблем, связанных с его транспортировкой. Водород можно транспортировать к месту его использования в газообразном или жидком состояниях, а также с помощью твердых или жидких носителей, которые содержат водород в связанном виде. Транспортировку газообразного водорода возможно осуществлять как по специальным водородным трубопроводам, так и по существующим трубопроводам природного газа.

Основная задача трубопроводного транспорта - обеспечение максимального переноса энергоносителя на расстояние с минимальными затратами энергии и капитальными вложениями.

Известен способ транспортирования и хранения водорода с использованием диоксида углерода для транспортирования и хранения, предусматривающий стадию компрессии смеси (US 2011064647, 2011).

Недостатками известного способа являются сложная технологическая схема реализации, приводящая, к высоким энергозатратам и капитальным вложениям, в том числе, высокие затраты на очистку от диоксида углерода.

Из известных технических решений наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ транспортирования метано-водородной смеси, включающий смешивание водорода, полученного электролизом воды, с природным газом с содержанием водорода в смеси в пределах 15~20%, сжатие смеси с последующим ее разделением, очисткой от серы и подачи водорода в резервуар для хранения (CN 208735278, 2019).

Существенными недостатками известного решения является низкое содержание водорода в транспортируемой смеси, что ограничивает производительность действующих газопроводов по водороду, повышенные гидравлические потери при транспортировке, а также наличие сернистых соединений в используемом газе.

Технической проблемой, на решение которой направлено настоящее изобретение, является уменьшение энергетических затрат на транспортировку водорода с высоким содержанием водорода в транспортируемой смеси и затрат на сероочистку.

Указанная проблема решается способом транспортирования метано-водородной смеси, заключающимся в том, что формируют метано-водородную смесь с содержанием водорода от 68 об. % до 92 об. %, которую предварительно смешивают с пентаном, количество которого выбирают, исходя из условия достижения плотности полученной метано-водородной смеси величины, соответствующей величине плотности транспортируемой смеси газа без водорода при значениях давления Р=101325 Па и температуры Т=20°С, соответствующих стандартным условиям, согласно правилу аддитивности, используя следующую формулу:

где: А - содержание пентана, добавляемого к МВС; ρCH4 - плотность метана, кг/м3; ρH2 - плотность водорода, кг/м3; ρC5 - плотность пентана, кг/м3; ωCH4 - содержание метана в МВС; ωH2 - содержание водорода в МВС.

Полученную смесь подвергают сжатию до 220 атм, затем по окончании процесса компримирования пентан отделяют от метано-водородной смеси, которую направляют в трубопровод для транспортирования с обеспечением величины давления на выходе из трубопровода, соответствующей условиям хранения или подачи потребителю.

Достигаемый технический результат заключается в обеспечении условий компримирования метано-водородной смеси и минимизации гидравлических потерь в процессе транспортировки водородной смеси по трубопроводу за счет оптимизации соотношения водорода и метана в смеси.

Сущность способа поясняется нижеприведенными примерами реализации предлагаемого способа. При этом условия примеров приближены к реальным условиям транспортировки водородных смесей по магистральному газопроводу «Северный поток 2» (таблица 1, таблица 2).

Как известно, наиболее распространенным способом сжатия технологических потоков является компрессия с помощью центробежных компрессоров. При этом скорость вращения находится в диапазоне от 3000 об/мин до 11000 об/мин. Скорость вращения зависит как от давления сжатия, так и плотности компримируемой среды.

Наибольшую техническую сложность, связанную с низкой плотностью водорода, представляет компрессия метано-водородной смеси (МВС) с содержанием Н2 в ней от 60 до 98%. до давления ~22.0 МПа.

Обеспечение условий сжатия метано-водородных смесей предлагается достичь повышением плотности сжимаемой метано-водородной смеси до значения, соответствующего величине плотности транспортируемой смеси газа без водорода при стандартных условиях, путем добавления в смесь на этапе сжатия газообразного пентана с последующим его удалением после окончания сжатия перед началом транспортировки метано-водородной смеси.

Удаление пентана из смеси осуществляют, например, путем ее охлаждения и конденсации пентана.

Количество добавляемого пентана зависит от конкретного состава компримируемой метано-водородной смеси.

Для приведения значений плотности к значению, соответствующему стандартным условиям, а именно, величине 0,701 кг/м3, количество добавляемого газообразного пентана рассчитывают следующим образом.

Согласно правилу аддитивности плотность смеси рассчитывают по следующей формуле:

где: А - содержание пентана, добавляемого к МВС; ρCH4 - плотность метана, кг/м3; ρH2 - плотность водорода, кг/м3; ρC5 - плотность пентана, кг/м3; ωCH4 - содержание метана в МВС; ωH2 - содержание водорода в МВС.

Использование данной формулы позволяет определить, какое количество пентана необходимо ввести в МВС для получения смеси плотностью 0,701 кг/м3.

Расчет часовой мощности компрессора сжатия МВС производят по формуле

где: Nф - фактическая мощность, кВт/ч; Nтеор - теоретическая мощность, кВт/ч; V - расход сжимаемого газа, ст. м.3/ч; p0 - давление при нормальных условиях, 101315 Па; p1 - начальное давление, Па; p2 - конечное давление, Па; η - КПД компрессора.

Расход сжимаемого газа выбирают из таблицы №3.

1. ВАРИАНТ ТРАНСПОРТИРОВКИ МВС с 65 об. % Н2

Используют метано-водородную смесь (МВС), полученную паровой конверсией ПГ, который предварительно подвергают очистке от серы.

Содержание метана 35 об. %; содержание водорода 65 об. %. Объем транспортируемого газа на входе в трубопровод - 42.33 млрд. ст. м.3/год или 4.9451 млн. ст. м.3/час при 8560 рабочих часов в год.

По формуле (1) определяют плотность смеси.

ρсм1=(1-А)×(0,715×0,35+0,0895×0,65)+А×3,2128=0,701 кг/м3

Откуда следует, что А=0,1352 или 13,52%, следовательно, содержание МВС в смеси с пентаном составляет 86,48%.

Соотношение МВС:C5H12=1:0,156

Объем компримируемого газа с добавкой пентана рассчитывают по следующей формуле:

где: V0 - расход МВС, млрд. ст. м3/год.

Так как в году 8560 рабочих часов, получаем 5,72 млн. ст. м3/час.

Расчет по формуле (2) позволяет получить часовую мощность компрессора сжатия МВС с пентаном.

Начальное давление смеси - 30 атм.;

Конечное давление сжатия - 220 атм.

Производят двухступенчатое сжатие с 30 до 70 атм. и с 70 до 220 атм.

КПД первой ступени - 0,7;

КПД второй ступени - 0,65.

Для каждой ступени ведут расчет по формуле (2):

Потребляемую мощность компрессорной группы рассчитывают по формуле (4):

В пересчете на МВС получают:

где: N1 - мощность компрессорной группы, отнесенная к объему МВС, кВт/1000 ст. м.3 МВС; V1 - объем транспортируемого МВС на входе в трубопровод, млн. ст. м.3/час.

Пересчет на водород чистотой 98% при степени выделения 95% из 1000 ст. м.3 МВС производится по формуле (6):

где: VH2 - количество извлеченного водорода, ст. м3.

Далее производят расчет удельного расхода электроэнергии.

Таким образом, удельный расход электроэнергии 154,6 кВт на 1000 ст. м.3 98% водорода.

2. ВАРИАНТ ТРАНСПОРТИРОВКИ МВС с 70 об. % Н2.

В качестве метано-водородной смеси (МВС) используют продувочный газ синтеза метанола.

Содержание метана 30 об. %; содержание водорода 70 об. %. Объем транспортируемого газа на входе в трубопровод 46,95 млрд. ст. м.3/год или 5,4848 млн. ст. м3/час. Плотность смеси МВС с добавкой пентана должна составлять 0.701 кг/ст. м3. Используя формулу (1), находят значение А.

А=0,1444 или 14,44%, тогда содержание МВС в смеси с пентаном составляет 0.8556 или 85,56%.

Соотношение МВС:C5H12=1:0,169

Объем компримируемого газа с добавкой пентана 54.8738 млрд ст. м3/год или 6.41 млн ст. м3/час при 8560 рабочих часов в год.

Начальное давление смеси - 70 атм.;

Конечное давление сжатия - 220 атм.

Коэффициент КПД сжатия 0.7.

Потребляемая мощность компрессора, согласно формуле (2), составляет - 513469,1 кВт/час или согласно формуле (5), 93,62 кВт/1000 ст. м3 МВС.

В пересчете на водород чистотой 98% при степени выделения 95% из 1000 нм3 МВС, согласно формуле (6), получается 678.6 ст. м3.

Удельный расход электроэнергии, рассчитанный по формуле (7), составляет 137,96 кВт на 1000 ст. м3 98% водорода.

3. ВАРИАНТ ТРАНСПОРТИРОВКИ МВС с 75 об. % Н2.

В качестве метано-водородной смеси (МВС) используют продувочный газ синтеза метанола.

Содержание метана 25 об. %; содержание водорода 75 об. %. Объем транспортируемого газа на входе в трубопровод 47,30 млрд. ст. м.3/год или 5.525 млн. ст. м3/час.

Плотность смеси МВС с добавкой пентана должна составлять 0.701 кг/м3. Используя формулу (1), находят значение А.

А=0,1534 или 15,34%, а содержание МВС в смеси с пентаном составляет 0.8466 или 84,66%.

Соотношение МВС:C5H12=1:0.181

Объем компримируемого газа с добавкой пентана - 55.87 млрд. ст. м.3/год или - 6.53 млн. ст. м.3/час.

Расчет по формуле (2) позволяет получить часовую мощность компрессора сжатия МВС с пентаном.

Начальное давление смеси - 70 атм.;

Конечное давление сжатия - 220 атм.

Коэффициент КПД сжатия 0.7

Потребляемая мощность компрессорной группы по формуле (4) - 300666 кВт/час или, согласно формуле (5), 54,42 кВт /1000 ст. м3 МВС.

В пересчете на водород чистотой 98% при степени выделения 95% из 1000 нм3 МВС, по формуле (6), получается 727.04 ст. м3.

Удельный расход электроэнергии, согласно формуле (7), составляет 74,85 кВт на 1000 ст. м.3 98% водорода.

4. ВАРИАНТ ТРАНСПОРТИРОВКИ МВС с 80 об. % Н2.

В качестве метано-водородной смеси (МВС) используют продувочный газ синтеза метанола.

Содержание метана 20 об. %; содержание водорода 80 об. %. Объем транспортируемого газа на входе в трубопровод 53,28 млрд. ст. м.3/год или 6.2243 млн. ст. м.3/час.

Плотность смеси МВС с добавкой пентана должна составлять 0.701 кг/м3. Используя формулу (1), находят значение А.

А=0,1622 или 16,22%, а содержание МВС в смеси с пентаном составляет 0.8378 или 83,78%.

Соотношение МВС:C5H12=1:0.194.

Объем компримируемого газа с добавкой пентана - 63.595 млрд. ст. м.3/год или 7.43 млн. ст. м.3/час.

Расчет по формуле (2) позволяет получить часовую мощность компрессора сжатия МВС с пентаном.

Начальное давление смеси - 70 атм.;

Конечное давление сжатия - 220 атм.

Коэффициент КПД сжатия 0.7

Потребляемая мощность компрессорной группы, согласно формуле (4), 342072,1 кВт/час, или, согласно формуле (5) 54,96 кВт /1000 ст. м.3 МВС.

В пересчете на водород чистотой 98% при степени выделения 95% из 1000 нм3 МВС получается 774.4 ст. м.3 согласно формуле (6).

Удельный расход электроэнергии по формуле (7) составляет 70,97 кВт на 1000 ст. м3 98% водорода.

Количество перекачиваемой МВС в тепловом эквиваленте равно 23.57 млрд. ст. м3 природного газа.

5. ВАРИАНТ ТРАНСПОРТИРОВКИ МВС с 85 об. % Н2.

В качестве метано-водородной смеси (МВС) используют продувочный газ синтеза метанола.

Содержание метана 15 об. %; содержание водорода 85 об. %. Объем транспортируемого газа на входе в трубопровод - 54.75 млрд. ст. м.3/год или 6.396 млн. ст. м.3/час.

Плотность смеси МВС с добавкой пентана должна составлять 0.701 кг/ст. м3. Используя формулу (1), находят значение А.

А=0,1709 или 17,09%, а содержание МВС в смеси с пентаном составляет 0.8291 или 82,91%.

Соотношение МВС: С5Н12=1:0.206

Объем компримируемого газа с добавкой пентана - 66.035 млрд. ст. м.3/год или - 7,714 млн. ст. м.3/час.

Расчет по формуле (2) позволяет получить часовую мощность компрессора сжатия МВС с пентаном.

Начальное давление смеси - 70 атм.;

Конечное давление сжатия - 220 атм.

Коэффициент КПД сжатия 0.7

Потребляемая мощность компрессорной группы, согласно формуле (4), 355147,3 кВт/час или 55,53 кВт /1000 ст. м3 МВС по формуле (5).

В пересчете на водород чистотой 98% при степени выделения 95% из 1000 ст. м.3 МВС получается 824 ст. м.3 согласно формуле (6).

Удельный расход электроэнергии, по формуле (7), составляет 67,39 кВт на 1000 ст. м.3 98% водорода.

6. ВАРИАНТ ТРАНСПОРТИРОВКИ МВС с 90 об. % Н2.

В качестве метано-водородной смеси (МВС) используют продувочный газ синтеза метанола.

Содержание метана 10 об. %; содержание водорода 9 об. %. Объем транспортируемого газа на входе в трубопровод - 63,18 млрд. ст. м.3/год или 7,3808 млн. ст. м.3/час.

Плотность смеси МВС с добавкой пентана должна составлять 0.701 кг/ст. м3. Используя формулу (1), находят значение А.

А=0,1794 или 17,94%, а содержание МВС в смеси с пентаном составляет 0.8206 или 82,06%.

Соотношение МВС:C5H12=1:0.219.

Объем компримируемого газа с добавкой пентана - 76.9924 млрд. ст. м.3/год или при числе часов работы 8560 часов/год - 8.994 млн. ст. м.3/час.

Начальное давление смеси - 70 атм.;

Конечное давление сжатия - 220 атм.

Коэффициент КПД сжатия 0.7

Потребляемая мощность компрессорной группы, по формуле (2), составляет 384505 кВт/час или 52.1 кВт /1000 ст. м.3 МВС по формуле (5).

В пересчете на водород чистотой 98% при степени выделения 95% из 1000 ст. м.3 МВС получается 872.4 ст. м3 согласно формуле (6).

Удельный расход электроэнергии по формуле (7) - 59.74 кВт на 1000 нм3 98% водорода.

7. ВАРИАНТ ТРАНСПОРТИРОВКИ МВС с 98 об. % Н2.

Используют метано-водородную смесь (МВС), полученную парокислородной конверсией природного газа.

Содержание метана 2 об. %, содержание водорода 98 об. %.

Объем транспортируемого газа на входе в трубопровод - 76,96 млрд. ст. м3/год или 9.3411 млн. ст. м.3/час.

Плотность смеси МВС с добавкой пентана должна составлять 0.701 кг/м3. Используя формулу (1), находят значение А.

А=0,1903 или 19,03%, а содержание МВС в смеси с пентаном составляет 0.807 или 80,7%.

Соотношение МВС:C5H12=1:0.236.

Объем компримируемого газа с добавкой пентана - 95.3656 млрд. ст. м3/год или при числе часов работы 8560 часов/год - 11.14 млн. ст. м.3/час.

Расчет по формуле (2) позволяет получить часовую мощность компрессора сжатия МВС с пентаном.

Начальное давление смеси - 30 атм.;

Конечное давление сжатия - 220 атм.

Производят двухступенчатое сжатие с 30 до 70 атм. и с 70 до 220 атм.

КПД первой ступени - 0,7;

КПД второй ступени - 0,65.

Для каждой ступени ведется расчет по формуле (2):

Потребляемая мощность компрессорной группы рассчитывается по формуле (4):

N6=Nф6.1+Nф6.2=379484,9+552330,1=931815,0 кВт/ч

В пересчете на МВС, согласно формуле(5), получаем:

В пересчете на водород чистотой 98% при степени выделения 95% из 1000 ст. м.3 МВС, согласно формуле (6).

Удельный расход электроэнергии по формуле (7) составляет 105,0 кВт на 1000 ст. м3 98% водорода.

На фиг. 1 представлена зависимость удельного расхода электроэнергии от содержания водорода в МВС.

Из приведенных примеров и полученной зависимости следует, что область минимальных значений удельного расхода электроэнергии можно определить в интервале содержания водорода от 78 об. % до 92 об. %.

Т. е. оптимальным по расходу энергии на 1000 ст. м.3 водорода чистотой 98% для компрессии и транспортировки является МВС с содержанием водорода от 78 об. % до 92 об. %.

При этом соотношение МВС к дозируемому пентану колеблется в диапазоне от 1:0.17 до 1:0.25.

Таким образом, предлагаемое изобретение обеспечивает транспортировку МВС с повышенным содержанием водорода при минимизации гидравлических потерь в процессе транспортировки.

Способ транспортирования метано-водородной смеси, заключающийся в том, что формируют метано-водородную смесь с содержанием водорода от 68 до 92 об. %, которую предварительно смешивают с пентаном, количество которого выбирают, исходя из условия достижения плотности полученной метано-водородной смеси величины, соответствующей величине плотности транспортируемой смеси газа без водорода при значениях давления Р=101325 Па и температуры Т=20°С, соответствующих стандартным условиям, согласно правилу аддитивности, используя следующую формулу:

где А - содержание пентана, добавляемого к МВС; ρCH4 - плотность метана, кг/м3; ρH2 - плотность водорода, кг/м3; ρC5 - плотность пентана, кг/м3; ωCH4 - содержание метана в МВС; ωH2 - содержание водорода в МВС,

полученную смесь подвергают сжатию до 220 атм, затем по окончании процесса компримирования пентан отделяют от метано-водородной смеси, которую направляют в трубопровод для транспортирования с обеспечением величины давления на выходе из трубопровода, соответствующей условиям хранения или подачи потребителю.



 

Похожие патенты:

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности к автоматическому поддержанию температурного режима технологических процессов установки низкотемпературной сепарации газа в период, когда охлаждение добываемого газа осуществляют турбодетандерными агрегатами в условиях Севера РФ.

Изобретение относится к энергетике, а именно к экологически чистым и экономически выгодным способам и установкам для выработки тепловой и механической энергий. Энерготехнологический комплекс для выработки тепловой и механической энергий включает энергетическую установку (1), состоящую из камеры сгорания, парогазовой турбины, соединенной с генератором электрической энергии, линий подачи кислорода, природного газа, воды и диоксида углерода в камеру сгорания, а также линии охлаждения отработанных газов, выполненной с возможностью конденсации воды и диоксида углерода, установку (2) криогенного разделения воздуха, систему вентиляции угольной шахты (3), при этом система вентиляции угольной шахты (3) соединена линией (5) подачи воздуха из угольной шахты (3) с установкой (2) криогенного разделения воздуха.

Изобретение относится к разделению компонентов газовых смесей. Ректификационная установка (200) содержит ректификационную колонну (201), имеющую верхнюю часть (202), охлаждающее устройство (203) и сепаратор (206) конденсата, имеющий отверстие (207) для удаления жидкости.

Изобретение относится к оборудованию для промысловой подготовки природного газа и может быть использовано в газовой промышленности. Изобретение касается установки комплексной подготовки газа с увеличенным извлечением газового конденсата, включающей расположенные на линии сырого природного газа узел охлаждения и сепаратор, соединенный с деметанизатором линией подачи газа сепарации с редуцирующим устройством, при этом низ деметанизатора соединен линией подачи деметанизированного конденсата с блоком фракционирования, оснащенным линиями вывода углеводородных фракций, и оснащен нагревателем, а верх деметанизатора соединен линией подготовленного природного газа с узлом охлаждения.

Изобретение относится к оборудованию для промысловой подготовки природного газа и может быть использовано в газовой промышленности. Изобретение касается установки комплексной подготовки газа переменного расхода, включающей расположенные на линии сырого природного газа узел охлаждения и сепаратор, соединенный с деметанизатором линией подачи газа сепарации с редуцирующим устройством, при этом низ деметанизатора соединен линией подачи деметанизированного конденсата с блоком фракционирования, оснащенным линиями вывода углеводородных фракций, и оснащен нагревателем, а верх деметанизатора соединен линией подготовленного природного газа с узлом охлаждения.

Настоящее изобретение относится к установке комплексной подготовки природного газа низкотемпературной конденсацией, включающей холодильную машину, расположенные на линии сырого природного газа узел охлаждения, сепаратор, соединенный с деметанизатором линиями подачи газа и остатка сепарации с редуцирующими устройствами, при этом низ деметанизатора соединен линией подачи деметанизированного конденсата с блоком фракционирования, оснащенным линиями вывода углеводородных фракций, и оснащен нагревателем, а верх деметанизатора соединен линией вывода подготовленного природного газа с узлом охлаждения.

Изобретение относится к оборудованию для промысловой подготовки природного газа и может быть использовано в газовой промышленности. Изобретение касается установки комплексной подготовки газа с повышенным извлечением газового конденсата, включающей расположенные на линии сырого природного газа узел охлаждения и сепаратор, соединенный с деметанизатором линией подачи газа сепарации с редуцирующим устройством, при этом низ деметанизатора соединен линией подачи деметанизированного конденсата с блоком фракционирования, оснащенным линиями вывода углеводородных фракций, и оснащен нагревателем, а верх деметанизатора соединен линией подготовленного природного газа с узлом охлаждения.

Изобретение относится к нефтяной и газовой промышленности, в частности к области подготовки и переработки попутного нефтяного газа. Способ подготовки попутного нефтяного газа включает следующие последовательные стадии: охлаждение потока попутного нефтяного газа (ПНГ) в первом рекуперативном теплообменном аппарате до температуры от 5°C до 20°C обратным потоком ПНГ, поступающим после отделения жидкости; охлаждение потока ПНГ до температуры от 0°C до 10°C во втором рекуперативном теплообменном аппарате, соединенном с контуром охлаждения; отделение жидкости от потока ПНГ в сепараторе по меньшей мере на одном сепарационном элементе и её отвод; нагревание потока ПНГ, выходящего из сепаратора после отделения жидкости.

Изобретение относится к двум вариантам установки деэтанизации природного газа с получением СПГ. По одному из вариантов установка оснащена линиями газа высокого и низкого давления, включает блок осушки, рекуперационный теплообменник, детандеры, соединенные с компрессором посредством кинематической или электрической связи, дефлегматор, оснащенный линией вывода флегмы, соединенный линией подачи газа дефлегмации, оборудованной детандером, и линией подачи газа низкого давления с сепаратором, который оснащен линиями подачи метансодержащего газа из блока фракционирования и вывода широкой фракции легких углеводородов в блок фракционирования.

Настоящее изобретение относится к установке для подготовки попутного нефтяного газа, включающей конвертор и дефлегматор. При этом на линии подачи попутного нефтяного газа установлен сатуратор, оснащенный линиями ввода нагретой и вывода охлажденной воды и линией вывода газа сатурации, на которой после примыкания линии подачи водного конденсата расположены дефлегматор, рекуперационный теплообменник и конвертор, оснащенный линией вывода конвертированного газа, на которой после примыкания линии ввода воздуха расположен реактор селективного каталитического окисления водорода с линией вывода газопаровой смеси, на которой расположены рекуперационный теплообменник и дефлегматор, оснащенный линиями подачи охлаждающей/вывода нагретой воды, а также линиями вывода водного конденсата и подготовленного газа.

Изобретение относится к нефтегазовой, нефтехимической и нефтеперерабатывающей промышленности, в частности к сбору, подготовке, хранению и транспорту продукции скважин, нефти, нефтепродуктов и легкоиспаряющихся жидкостей, в том числе на объектах подготовки нефти и воды, удалённых от систем газосбора. Установка улавливания газовых выбросов включает два резервуара, соединенные газоуравнительной обвязкой, подключенной к паровым объемам резервуаров через огнепреградители, газопровод, соединяющий газоуравнительную обвязку с конденсатосборником, газопровод, соединяющий газорегуляторный пункт с регулирующими клапанами и датчиком давления.
Наверх