Двухсторонний гетеропереходный фотоэлектрический преобразователь на основе кремния

Изобретение относится к области электроники, а именно к полупроводниковым приборам, и может быть использовано при изготовлении солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др. Фотоэлектрический преобразователь (ФЭП) включает текстурированную пластину поликристаллического, мультикристаллического, монокристаллического или квазимонокристаллического кремния n-типа (n)c-Si или р-типа (p)c-Si с фронтальной и тыльной поверхностями, причем на фронтальной поверхности последовательно расположены противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:H, пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si, легированный слой аморфного гидрогенизированного кремния ((n)a-Si:H) или микрокристаллического кремния (n-mc:Si) n-типа проводимости, токосъемный слой в виде антиотражающего прозрачного проводящего покрытия, токособирающая контактная сетка, а на тыльной поверхности последовательно расположены противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:H, пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si, легированный слой аморфного гидрогенизированного кремния ((p)a-Si:H) или микрокристаллического кремния (p-mc:Si) р-типа проводимости, токосъемный слой в виде антиотражающего прозрачного проводящего покрытия, токособирающая контактная сетка. Изобретение позволяет повысить эффективность и энергетическую выработку гетеропереходного ФЭП. 1 ил.

 

Область техники

Изобретение относится к области электроники, а именно к полупроводниковым приборам и может быть использовано при изготовлении солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др.

Уровень техники

Солнечный элемент - устройство, которое преобразует энергию солнечного света в электрический ток. Солнечный элемент служит для прямого преобразования солнечного излучения в электрическую энергию, используемую для питания электронных приборов и электроприводов устройств и механизмов, применяющихся в электронике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности, экологии и др.

Среди возобновляемых источников энергии фотоэлектрическое преобразование солнечной энергии в настоящее время признано самым перспективным. Дальнейшее развитие солнечной энергетики требует постоянного совершенствования характеристик фотоэлектрических преобразователей (ФЭП) или, другими словами, солнечных элементов (СЭ). Наиболее успешным направлением развития технологий повышения КПД солнечных элементов представляется использование гетеропереходов между аморфным гидрогенизированным и кристаллическим кремнием (a-Si:H/c-Si), которые позволяют получить более высокие КПД по сравнению с солнечными элементами на основе кристаллического кремния и могут быть изготовлены при низких температурах, что позволяет существенно снизить количество технологических операций и увеличить выход годных при производстве.

Эффективность работы первых солнечных элементов на основе a-Si:H/c-Si гетероперехода была ограничена низким качеством границы раздела a-Si:H/c-Si, что приводило к значительно меньшим значениям напряжения холостого хода и коэффициента заполнения вольт амперных характеристик (ВАХ) ФЭП, чем у традиционных солнечных элементов. Негативное влияние границы может быть снижено путем введения промежуточного слоя нелегированного гидрогенизированного аморфного кремния (i)-a-Si:H, который позволяет уменьшить рекомбинацию на границе a-Si:H/c-Si за счет пассивации дефектов на поверхности пластины c-Si. Использование слоя гидрогенизированного аморфного кремния собственной проводимости (i)-a-Si:H в структуре солнечного элемента дало начало бурному развитию так называемых HIT структур (Heterojunction with Intrinsic Thin Layer - гетеропереходы с собственным тонким слоем). Например, технология получения солнечного элемента, описанная в патенте США (см. [1] US 5066340, МПК H01L 31/036, опубликованный 19.11.1991), включает структуру одностороннего фотопреобразователя (ФЭП), состоящего из кристаллического слоя одного типа проводимости, аморфного слоя другого типа проводимости, собственного микрокристаллического слоя между легированными слоями, лицевого и тыльного электрода.

Существенный прогресс в повышении КПД солнечных элементов за последние два десятилетия был достигнут компанией Sanyo, в первую очередь, за счет оптимизации фронтальной и тыльной поверхностей солнечного элемента.

Известен способ получения солнечного элемента, описанный в патенте США (см. [2] US 5401336, МПК H01L 31/0236, опубликованный 28.03.1995), где односторонняя структура (поглощение и преобразование солнечного света происходит только с одной стороны СЭ) представляет гетеропереход между кристаллическим и аморфным полупроводником с аморфным или микрокристаллическим собственным слоем между ними, выполненный с применением текстурированных подложек и прозрачных электродов.

В другом патенте США (см. [3] US 5935344, МПК H01L 31/04, опубликованный 10.08.1999), описана структура СЭ (солнечного элемента) с гетеропереходами, состоящая из слоев собственного и легированного аморфного кремния, нанесенных на обе стороны подложки из кристаллического кремния.

Известен также способ получения солнечного элемента с многослойными гетеропереходами на основе слоев аморфного кремния и его сплавов, нанесенных на обе стороны подложки из кристаллического кремния (см. [4] ЕР 1187223, МПК H01L 31/04, опубликованный 13.03.2002).

Известен метод производства одностороннего солнечного элемента с гетеропереходом (см. [5] US 20090293948, МПК H01L 21/027, опубликованный 03.12.2009), содержащий подложку, на которую в качестве буферного слоя нанесен слой аморфного кремния, затем слой легированного кремния, с противоположной стороны подложки нанесено антиотражающее покрытие.

К недостаткам перечисленных солнечные элементов и методов их производства, относится отсутствие возможности двухстороннего поглощения и преобразования солнечного света, что снижает их эффективность и выработку электроэнергии солнечными модулями на их основе в условиях реальной эксплуатации. Кроме этого в перечисленных методах пассивация поверхности кремниевой пластины производится аморфным кремнием, что в свою очередь может вызвать паразитный эпитаксиальный рост на поверхности подложки, который приведет к увеличению рекомбинации носителей заряда и ухудшению фотоэлектрических характеристик элементов.

Известен солнечный элемент с гетеропереходом на основе кристаллического кремния (см. [6] KR 100847741, МПК H01L 31/04, опубликованный 23.07.2008), содержащий слой карбида кремния для уменьшения дефектов, а также контактной площади между слоем аморфного и кристаллического кремния. Пассивирующий слой может быть изготовлен из SiO2, SiC, SiNx и собственного аморфного кремния. К недостаткам солнечного элемента можно отнести отсутствие текстурированной рельефной поверхности кристаллического кремния с обеих сторон и обусловленное этим слабое рассеяние поступающего солнечного излучения, что приводит к низким значениям тока короткого замыкания СЭ и ухудшению его фотоэлектрических характеристик.

В заявке США (см. [7] US 20090250108, МПК H01L 31/0224, опубликованной 08.10.2009), описана двухсторонняя структура на основе подложки из кристаллического кремния n-типа и нанесенных последовательно на обе стороны слоев карбида кремния, аморфного кремния р(n)-типа, проводящего прозрачного слоя (ITO), Ag электродов в виде сетки на фронтальной и тыльной сторонах подложки. К недостаткам данного солнечного элемента можно отнести отсутствие с обеих сторон нелегированного слоя аморфного гидрогенизированного кремния: его функцию выполняет карбид кремния, который является более дефектным материалом, что значительно ухудшает качество пассивации поверхности, а соответственно и выходных характеристик СЭ.

Вышеприведенные недостатки были решены в нашем аналоге, патенте РФ на солнечный элемент (см. [8] RU 2590284, МПК H01L 31/0445, опубликованный 10.07.2016), включающий кристаллическую подложку из кремния n-типа с фронтальной и тыльной поверхностями, на которые нанесены промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора, нелегированный слой аморфного гидрогенизированного кремния, р-легированный (на фронтальной поверхности) и n-легированный (на тыльной поверхности) слой аморфного гидрогенизированного кремния, слой оксида индия-олова ITO. В данном аналоге описывается использование противоэпитаксиального подслоя из карбида кремния, но при этом ФЭП является односторонним, то есть тыльный электрод является сплошным металлическим слоем. При этом в патенте описывается структура, где р слой располагается на фронтальной стороне СЭ при этом пластина кристаллического кремния имеет проводимость n-типа, так называемая конфигурация с фронтальным эмиттером.

Известен гетероструктурный фотоэлектрический преобразователь на основе кристаллического кремния (см. [9] RU 2632266, МПК H01L 31/04, опубликованный 03.10.2017), с аналогичной, аналогу [8], структурой и с фронтальным эмиттером (р слой сверху), при этом в качестве n-слоя применяют металлические оксиды n-типа.

Также известна структура фотопреобразователя на основе кристаллического кремния (см. [10] RU 2632267, МПК H01L 31/0747, опубликованный 03.10.2017), которая содержит текстурированную поликристаллическую или монокристаллическую пластину кремния; пассивирующий слой в виде аморфного гидрогенизированного кремния, нанесенный на каждую сторону пластины кремния; р-слой; n-слой; контактные токосъемные слои в виде прозрачных проводящих оксидов; тыльный токосъемный слой в виде металлического непрозрачного проводящего слоя. При этом в качестве р-слоя и n-слоя применяют металлические оксиды, соответственно, р-типа и n-типа, т.е. структура выполнена как с фронтальным так с тыльным эмиттером, но ФЭП является односторонним, то есть тыльный электрод является сплошным металлическим слоем.

Наиболее близким аналогом заявленного изобретения, взятого за прототип, является структура гетеропереходного фотоэлектрического преобразователя с противоэпитаксиальным подслоем (см. [11] RU 2675069, МПК H01L 31/0747, опубликованный 14.12.2018), включающая подложку в виде пластины кремния, на обе стороны которой нанесены слои пассивации в виде слоев аморфного гидрогенизированного кремния, при этом на одну сторону кремниевой подложки с нанесенными пассивирующими слоями нанесен слой полупроводника n-типа, а на противоположную сторону нанесен слой полупроводника р-типа, причем перед слоями пассивации на поверхность пластины кремния нанесен противоэпитаксиальный слой в виде аморфного гидрогенизированного германия или аморфного гидрогенизированного кремний-германия толщиной до 10 нм. Структура данного ФЭП может быть выполнена как с фронтальным (n слой с фронтальной стороны СЭ, пластина кристаллического кремния р-типа проводимости), так и с тыльным эмиттером (р слой с тыльной стороны СЭ, пластина кристаллического кремния n-типа проводимости).

Сущность изобретения

Задачей заявляемого изобретения является устранение недостатков известных аналогов, в том числе создания двухстороннего гетеропереходного ФЭП с возможностью поглощения и преобразования солнечного света с двух сторон солнечного элемента на основе моно/мульти/поли/квазимоно-кристаллического кремния.

Техническим результатом является повышение эффективности и производительности ФЭП за счет возможности поглощения и преобразования солнечного света с двух сторон солнечного элемента, а также улучшенного процесса пассивацию поверхности за счет предотвращения частичного эпитаксиального роста во время нанесения слоя аморфного гидрогенизированного кремния толщиной 2-5 нм на кристаллическую подложку, за счет использования буферного противоэпитаксиального слоя нестехиометрического гидрогенизированного аморфного карбида кремния, что в свою очередь ведет к увеличению напряжения холостого хода и как следствию эффективности преобразования солнечного излучения СЭ на пластинах разного типа проводимости.

Для решения поставленной задачи и достижения заявленного результата предлагается фотоэлектрический преобразователь включающий текстурированную пластину поликристаллического, мультикристаллического, монокристаллического или квазимонокристаллического кремния n-типа (n)c-Si или р-типа (p)c-Si с фронтальной и тыльной поверхностями, причем на фронтальной поверхности последовательно расположены: противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:H, пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si, легированный слой аморфного гидрогенизированного кремния ((n)a-Si:H) или микрокристаллического кремния (n-mc:Si) n-типа проводимости, токосъемный слой в виде антиотражающего прозрачного проводящего покрытия, токособирающая контактная сетка, а на тыльной поверхности последовательно расположены: противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:H, пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si, легированный слой аморфного гидрогенизированного кремния ((p)a-Si:H) или микрокристаллического кремния (p-mc:Si) р-типа проводимости, токосъемный слой в виде антиотражающего прозрачного проводящего покрытия, токособирающая контактная сетка.

Краткое описание чертежей

На фиг. 1 - изображена структура двухстороннего гетеропереходного фотоэлектрического преобразователя.

На фигуре обозначены следующие позиции: 1 - текстурированная пластина; 2 - противоэпитаксиальный буферный слой; 3 - пассивирующий слой; 4 - легированный слой n-типа; 5 - легированный слой р-типа; 6 - токосъемный слой антиотражающего прозрачного проводящего покрытия; 7 - токособирающая контактная сетка.

Осуществление изобретения

Данное изобретение представляет собой двухсторонний гетеропереходный фотоэлектрический преобразователь на основе кремния, состоящий из пластины кремния с фронтальной и тыльной поверхностями. Пластина предоставляет собой текстурированную пластину (1) поликристаллического, мультикристаллического, монокристаллического или квазимонокристаллического кремния n-типа ((n)c-Si) или р-типа ((p)c-Si).

На фронтальной и тыльной поверхности последовательно расположены: противоэпитаксиальный буферный слой (2) в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:H; пассивирующий слой (3) аморфного гидрогенизированного кремния собственной проводимости i-a-Si; легированный слой (4) и (5); токосъемный слой (6) в виде антиотражающего прозрачного проводящего покрытия и токособирающая контактная сетка (7). При этом легированный слой (4) на фронтальной поверхности выполнен из аморфного гидрогенизированного кремния ((n)a-Si:H) или микрокристаллического гидрогенизированного кремния (n-mc:Si) n-типа проводимости, а легированный слой (5) на тыльной поверхности выполнен из аморфного гидрогенизированного кремния ((p)a-Si:H) или микрокристаллического гидрогенизированного кремния (p-mc:Si) р-типа проводимости.

Даная последовательность фотоактивных слоев позволяет получить наиболее максимальные КПД ФЭП на пластинах разного типа проводимости.

В случае использования пластины (1) поликристаллического, мультикристаллического, монокристаллического или квазимонокристаллического кремния n-типа, р слой будет располагаться с тыльной стороны СЭ, так называемая конфигурация с тыльным эмиттером. На данный момент, производимый кремний n-типа имеет лучшее качество материала за счет меньшего количества объемных дефектов по сравнению с кремнием р-типа, поэтому объемная рекомбинация неосновных носителей (дырок) в кремниевой пластине n-типа существенно меньше, чем в пластине р-типа. В таком случае использование конфигурации гетеропереходного ФЭП на основе кремниевой пластины n-типа с тыльным эмиттером позволяет получить лучший фактор заполнения вольт-амперной характеристики (ВАХ) СЭ за счет лучшего сбора основных носителей заряда (электронов) на фронтальной стороне СЭ посредством объемной проводимости самой пластины с проводимостью того же типа без существенных потерь в напряжении холостого хода СЭ.

В случае использования пластины (1) поликристаллического, мультикристаллического, монокристаллического или квазимонокристаллического кремния р-типа, n слой будет располагаться с фронтальной стороны СЭ, так называемая конфигурация с фронтальным эмиттером. Поскольку, из-за большого количества объемных дефектов в кремниевой пластине р-типа по сравнению с платиной n типа, возникает повышенная рекомбинация сгенерированных за счет поглощения солнечного света (фотонов) носителей заряда при их диффузии от области генерации (поглощения фотона) к области р-n перехода, которая приводит к уменьшению вольт-амперных характеристик (ВАХ) СЭ. В таком случае конфигурация с фронтальным эмиттером позволяет уменьшить длину диффузии носителей заряда от области генерации к области р-n перехода и, как следствие, вероятность объемной рекомбинации носителей и осуществить эффективный сбор неосновных носителей заряда (электронов) на фронтальной стороне ФЭП на основе кремниевой пластине р-типа, минимизируя потери в напряжении холостого хода, фактора заполнения и других ВАХ ФЭП.

Пример 1.

1. На поверхность текстурированной кремниевой пластины монокристаллического кремния n-типа (в соответствии с альтернативами заявленного изобретения, пластина также может быть выполнена из мультикристаллического, поликристаллического или квазимонокристаллического кремния соответствующего типа проводимости), с каждой из сторон, методом плазмохимического осаждения из газовой фазы (PECVD) наносится противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:Н толщиной 0.2-2 нм;

2. После этого, методом плазмохимического осаждения, на каждую из сторон, наносится пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si толщиной 2-10 нм;

3. После нанесения пассивирующего слоя i-a-Si на фронтальную сторону пластины наносится легированный слой аморфного гидрогенизированного кремния n-типа проводимости ((n)-a-Si:H) толщиной 3-10 нм;

4. На противоположную сторону от ((n)-a-Si:H) слоя методом PECVD наносится легированный слой аморфного гидрогенизированного кремния р-типа проводимости ((p)a-Si:H) толщиной 7-20 нм;

5. Далее методом магнетронного распыления (PVD) на обе стороны пластины наноситься слой проводящего прозрачного покрытия (ППП) на основе оксида индия-олова (ITO) толщиной 40-120 нм, необходимой для интерференционного просветления (антиотражающего эффекта) ППП слоев для падающего солнечного излучения. Причем поверхностное сопротивление фронтальных ПП должно варьироваться от 30 до 150 Ом на квадрат, а тыльных от 100 до 300 Ом на квадрат;

6. Методом трафаретной печати или гальваническим осаждением с каждой стороны наносится токособирающая контактная сетка.

Пример 2.

1. На поверхность текстурированной кремниевой пластины поликристаллического кремния р-типа (в соответствии с альтернативами заявленного изобретения, платина также может быть выполнена из мультикристаллического, монокристаллического или квазимонокристаллического кремния соответствующего типа проводимости), с каждой из сторон, методом плазмохимического осаждения из газовой фазы (PECVD) наносится противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:Н толщиной 0.2-2 нм;

2. После этого, методом плазмохимического осаждения, на каждую из сторон, наносится пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si толщиной 2-10 нм;

3. После нанесения пассивирующего слоя i-a-Si аморфного кремния на фронтальную сторону пластины методом PECVD наносится легированный слой аморфного гидрогенизированного кремния n-типа проводимости ((n)-a-Si:H) толщиной 3-10 нм;

4. На противоположную сторону от ((n)-a-Si:H) слоя методом PECVD наносится легированный слой аморфного гидрогенизированного кремния р-типа проводимости ((p)a-Si:H) толщиной 17-20 нм;

5. Далее методом магнетронного распыления (PVD) на обе стороны пластины наноситься слой проводящего прозрачного покрытия (ППП) на основе оксида индия-олова (ITO) толщиной 40-120 нм, необходимой для интерференционного просветления (антиотражающего эффекта) ППП слоев для падающего солнечного излучения. Причем поверхностное сопротивление фронтальных ПП должно варьироваться от 30 до 150 Ом на квадрат, а тыльных от 100 до 300 Ом на квадрат;

6. Методом трафаретной печати или гальваническим осаждением с каждой стороны наносится токособирающая контактная сетка.

Пример 3.

1. На поверхность текстурированной кремниевой пластины поликристаллического кремния n-типа (в соответствии с альтернативами заявленного изобретения, платина также может быть выполнена из мультикристаллического, монокристаллического или квазимонокристаллического кремния соответствующего типа проводимости), с каждой из сторон, методом плазмохимического осаждения из газовой фазы (PECVD) наносится противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:Н толщиной 0.2-2 нм;

2. После этого, методом плазмохимического осаждения, на каждую из сторон, наносится пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si толщиной 2-10 нм;

3. После нанесения пассивирующего слоя i-a-Si аморфного кремния на фронтальную сторону пластины методом PECVD наносится легированный слой микрокристаллического гидрогенизированного кремния n-типа проводимости ((n)-mc-Si:H) толщиной 10-15 нм;

4. На противоположную сторону от ((n)-mc-Si:H) слоя методом PECVD наносится легированный слой аморфного гидрогенизированного кремния р-типа проводимости ((p)a-Si:H) толщиной 7-20 нм;

5. Далее методом магнетронного распыления (PVD) на обе стороны пластины наноситься слой проводящего прозрачного покрытия (ППП) на основе оксида индия-олова (ITO) толщиной 90-110 нм, необходимой для интерференционного просветления (антиотражающего эффекта) ППП слоев для падающего солнечного излучения. Причем поверхностное сопротивление фронтальных ПП должно варьироваться от 30 до 150 Ом на квадрат, а тыльных от 100 до 300 Ом на квадрат;

6. Методом трафаретной печати или гальваническим осаждением с каждой стороны наносится токособирающая контактная сетка.

Пример 4.

1. На поверхность текстурированной кремниевой пластины поликристаллического кремния р-типа (в соответствии с альтернативами заявленного изобретения, платина также может быть выполнена из мультикристаллического, монокристаллического или квазимонокристаллического кремния соответствующего типа проводимости), с каждой из сторон, методом плазмохимического осаждения из газовой фазы (PECVD) наносится противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:Н толщиной 0.2-2 нм;

2. После этого, методом плазмохимического осаждения, на каждую из сторон, наносится пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si толщиной 2-10 нм;

3. После нанесения пассивирующего слоя i-a-Si аморфного кремния на фронтальную сторону пластины методом PECVD наносится легированный слой микрокристаллического гидрогенизированного кремния n-типа проводимости ((n)-mc-Si:H) толщиной 10-15 нм;

4. На противоположную сторону от ((n)-mc-Si:H) слоя методом PECVD наносится легированный слой аморфного гидрогенизированного кремния р-типа проводимости ((p)a-Si:H) толщиной 17-20 нм;

5. Далее методом магнетронного распыления (PVD) на обе стороны пластины наноситься слой проводящего прозрачного покрытия (ППП) на основе оксида индия-олова (ITO) толщиной 40-120 нм, необходимой для интерференционного просветления (антиотражающего эффекта) ППП слоев для падающего солнечного излучения. Причем поверхностное сопротивление фронтальных ПП должно варьироваться от 30 до 150 Ом на квадрат, а тыльных от 100 до 300 Ом на квадрат;

6. Методом трафаретной печати или гальваническим осаждением с каждой стороны наносится токособирающая контактная сетка.

Пример 5.

1. На поверхность текстурированной кремниевой пластины поликристаллического кремния n-типа (в соответствии с альтернативами заявленного изобретения, платина также может быть выполнена из мультикристаллического, монокристаллического или квазимонокристаллического кремния соответствующего типа проводимости), с каждой из сторон, методом плазмохимического осаждения из газовой фазы (PECVD) наносится противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:Н толщиной 0.2-2 нм;

2. После этого, методом плазмохимического осаждения, на каждую из сторон, наносится пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si толщиной 5-10 нм;

3. После нанесения пассивирующего слоя i-a-Si аморфного кремния на фронтальную сторону пластины методом PECVD наносится легированный слой микрокристаллического гидрогенизированного кремния n-типа проводимости ((n)-mc-Si:H) толщиной 10-15 нм;

4. На противоположную сторону от ((n)-mc-Si:H) слоя методом PECVD наносится легированный слой микрокристаллического гидрогенизированного кремния р-типа проводимости ((p)mc-Si:H) толщиной 20-30 нм;

5. Далее методом магнетронного распыления (PVD) на обе стороны пластины наноситься слой проводящего прозрачного покрытия (ППП) на основе оксида индия-олова (ITO) толщиной 40-120 нм, необходимой для интерференционного просветления (антиотражающего эффекта) ППП слоев для падающего солнечного излучения. Причем поверхностное сопротивление фронтальных ПП должно варьироваться от 30 до 150 Ом на квадрат, а тыльных от 100 до 300 Ом на квадрат;

6. Методом трафаретной печати или гальваническим осаждением с каждой стороны наносится токособирающая контактная сетка.

Пример 6.

1. На поверхность текстурированной кремниевой пластины поликристаллического кремния р-типа (в соответствии с альтернативами заявленного изобретения, платина также может быть выполнена из мультикристаллического, монокристаллического или квазимонокристаллического кремния соответствующего типа проводимости), с каждой из сторон, методом плазмохимического осаждения из газовой фазы (PECVD) наносится противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:Н толщиной 0.2-2 нм;

2. После этого, методом плазмохимического осаждения, на каждую из сторон, наносится пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si толщиной 2-10 нм;

3. После нанесения пассивирующего слоя i-a-Si аморфного кремния на фронтальную сторону пластины методом PECVD наносится легированный слой микрокристаллического гидрогенизированного кремния n-типа проводимости ((n)-mc-Si:H) толщиной 10-15 нм;

4. На противоположную сторону от ((n)-mc-Si:H) слоя методом PECVD наносится легированный слой микрокристаллического гидрогенизированного кремния р-типа проводимости ((p)mc-Si:H) толщиной 20-30 нм;

5. Далее методом магнетронного распыления (PVD) на обе стороны пластины наноситься слой проводящего прозрачного покрытия (ППП) на основе оксида индия-олова (ITO) толщиной 40-120 нм, необходимой для интерференционного просветления (антиотражающего эффекта) ППП слоев для падающего солнечного излучения. Причем поверхностное сопротивление фронтальных ПП должно варьироваться от 30 до 150 Ом на квадрат, а тыльных от 100 до 300 Ом на квадрат;

6. Методом трафаретной печати или гальваническим осаждением с каждой стороны наносится токособирающая контактная сетка.

Пример 7.

1. На поверхность текстурированной кремниевой пластины поликристаллического кремния n-типа (в соответствии с альтернативами заявленного изобретения, платина также может быть выполнена из мультикристаллического, монокристаллического или квазимонокристаллического кремния соответствующего типа проводимости), с каждой из сторон, методом плазмохимического осаждения из газовой фазы (PECVD) наносится противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:Н толщиной 0.2-2 нм;

2. После этого, методом плазмохимического осаждения, на каждую из сторон, наносится пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si толщиной 2-10 нм;

3. После нанесения пассивирующего слоя i-a-Si аморфного кремния на фронтальную сторону пластины методом PECVD наносится легированный слой аморфного гидрогенизированного кремния n-типа проводимости ((n)-a-Si:H) толщиной 3-10 нм;

4. На противоположную сторону от ((n)-a-Si:H) слоя методом PECVD наносится легированный слой микрокристаллического гидрогенизированного кремния р-типа проводимости ((p)mc-Si:H) толщиной 20-30 нм;

5. Далее методом магнетронного распыления (PVD) на обе стороны пластины наноситься слой проводящего прозрачного покрытия (ППП) на основе оксида индия-олова (ITO) толщиной 90-110 нм, необходимой для интерференционного просветления (антиотражающего эффекта) ППП слоев для падающего солнечного излучения. Причем поверхностное сопротивление фронтальных ПП должно варьироваться от 30 до 150 Ом на квадрат, а тыльных от 100 до 300 Ом на квадрат;

6. Методом трафаретной печати или гальваническим осаждением с каждой стороны наносится токособирающая контактная сетка.

Пример 8.

1. На поверхность текстурированной кремниевой пластины поликристаллического кремния р-типа (в соответствии с альтернативами заявленного изобретения, платина также может быть выполнена из мультикристаллического, монокристаллического или квазимонокристаллического кремния соответствующего типа проводимости), с каждой из сторон, методом плазмохимического осаждения из газовой фазы (PECVD) наносится противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:Н толщиной 0.2-2 нм;

2. После этого, методом плазмохимического осаждения, на каждую из сторон, наносится пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si толщиной 2-10 нм;

3. После нанесения пассивирующего слоя i-a-Si аморфного кремния на фронтальную сторону пластины методом PECVD наносится легированный слой аморфного гидрогенизированного кремния n-типа проводимости ((n)-a-Si:H) толщиной 3-10 нм;

4. На противоположную сторону от ((n)-a-Si:H) слоя методом PECVD наносится легированный слой микрокристаллического гидрогенизированного кремния р-типа проводимости ((p)mc-Si:H) толщиной 20-30 нм;

5. Далее методом магнетронного распыления (PVD) на обе стороны пластины наноситься слой проводящего прозрачного покрытия (ППП) на основе оксида индия-олова (ITO) толщиной 40-120 нм, необходимой для интерференционного просветления (антиотражающего эффекта) ППП слоев для падающего солнечного излучения. Причем поверхностное сопротивление фронтальных ПП должно варьироваться от 30 до 150 Ом на квадрат, а тыльных от 100 до 300 Ом на квадрат;

6. Методом трафаретной печати или гальваническим осаждением с каждой стороны наносится токособирающая контактная сетка.

Фотоэлектрический преобразователь, включающий текстурированную пластину поликристаллического, мультикристаллического, монокристаллического или квазимонокристаллического кремния n-типа (n)c-Si или р-типа (p)c-Si с фронтальной и тыльной поверхностями, на фронтальной поверхности последовательно расположены:

a) противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:H,

b) пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si,

c) легированный слой аморфного гидрогенизированного кремния ((n)а-Si:H) или микрокристаллического кремния (n-mc:Si) n-типа проводимости,

d) токосъемный слой в виде антиотражающего прозрачного проводящего покрытия,

e) токособирающая контактная сетка,

а на тыльной поверхности последовательно расположены:

f) противоэпитаксиальный буферный слой в виде аморфного гидрогенизированного карбида кремния собственной проводимости (i)-a-SixCx-1:H,

g) пассивирующий слой аморфного гидрогенизированного кремния собственной проводимости i-a-Si,

h) легированный слой аморфного гидрогенизированного кремния ((р)а-Si:H) или микрокристаллического кремния (p-mc:Si) р-типа проводимости,

i) токосъемный слой в виде антиотражающего прозрачного проводящего покрытия,

j) токособирающая контактная сетка.



 

Похожие патенты:

Заявленное изобретение относится к низкоразмерным материалам, в частности к низкоразмерным материалам, которые поддерживают квантовую самотермализацию и квантовую самолокализацию, а также квантовый фазовый переход между упомянутыми квантовыми фазами посредством управляемой вариации квантового перепутывания углеродоподобных искусственных ядер в четырехвалентных искусственных атомах, которые самособираются.

Изобретение относится к технологии функциональных материалов, конкретно к технологии оптически прозрачных оксидных полупроводников, применяемых в оптоэлектронике, фотовольтаике и плазмонике. Согласно изобретению предложен способ получения нанодисперсного оксида кадмия, допированного литием, включающий получение исходной смеси путем растворения карбоната кадмия и карбоната лития, взятых в стехиометрическом соотношении, в 10%-ной муравьиной кислоте, взятой в количестве 5,6 мл раствора кислоты на 1 г суммарного количества карбоната кадмия и карбоната лития, упаривание полученной смеси при температуре 50-60 °С до получения сухого остатка и отжиг при температуре 300-320 °С в течение 0,5 часа на первой стадии и при фиксированном значении температуры, находящейся в интервале 500-900 °С, в течение 1 часа на второй стадии.

Изобретение относится к технологии функциональных материалов, конкретно к технологии оптически прозрачных оксидных полупроводников, применяемых в оптоэлектронике, фотовольтаике и плазмонике. Согласно изобретению предложен способ получения нанодисперсного оксида кадмия, допированного литием, включающий получение исходной смеси путем растворения карбоната кадмия и карбоната лития, взятых в стехиометрическом соотношении, в 10%-ной муравьиной кислоте, взятой в количестве 5,6 мл раствора кислоты на 1 г суммарного количества карбоната кадмия и карбоната лития, упаривание полученной смеси при температуре 50-60 °С до получения сухого остатка и отжиг при температуре 300-320 °С в течение 0,5 часа на первой стадии и при фиксированном значении температуры, находящейся в интервале 500-900 °С, в течение 1 часа на второй стадии.

Изобретение относится к фотонике, а именно к методам и устройствам для анализа химического состава вещества (воздуха, жидкостей и твердых тел). Датчик химического состава вещества содержит по меньшей мере одну первую полупроводниковую структуру (1) с р-n переходом (2) и по меньшей мере одну вторую полупроводниковую структуру (3) с р-n переходом (4), оптически связанные и пространственно разнесенные на прозрачной в рабочем диапазоне длин волн подложке (5), чувствительную область (6) для размещения исследуемого вещества, расположенную с тыльной стороны подложки (5), и электрические контакты (8), (9) и (10), сформированные соответственно на р-слое и на n-слое соответственно первой (1) и второй (3) полупроводниковой структуры.

Изобретение относится к области защиты оптико-электронных средств (ОЭС) от мощных оптических излучений. Сущность изобретения: способ защиты ОЭС летательных аппаратов (ЛА) от воздействия мощного лазерного излучения заключается в обнаружении и измерении параметров сигналов локационного модуля (ЛЛМ) мощного лазерного средства (МЛС), определении по значениям параметров сигналов ЛЛМ МЛС и текущих значений координат местоположения ОЭС ЛА координат местоположения МЛС, определении по значениям измеренных параметров сигналов лазерного ЛЛМ МЛС класса МЛС и его типовых параметров сигналов силового лазерного модуля (СЛМ), вычислении с использованием значений типовых параметров сигналов СЛМ МЛС, значений измеренных координат местоположения МЛС, значений текущих координат местоположения ОЭС ЛА, значений заданных пространственных параметров формируемого локального аэрозольного образования (ЛАО), значений заданных параметров энергетического ослабления сигналов СЛМ МЛС формируемым ЛАО, значений заданного порогового уровня мощности оптических сигналов на входе ОЭС ЛА, при котором ОЭС ЛА сохраняет свою работоспособность, значений требуемых координат формирования ЛАО, формировании в требуемых координатах от момента времени обнаружения сигналов ЛЛМ МЛС за время ΔtЛАО ЛАО и защите ЛАО ОЭС ЛА от воздействия сигналов СЛМ МЛС, при этом ΔtЛАО<Δt, где Δt - время между моментами излучения сигналов ЛЛМ и СЛМ МЛС, выводе изменениями положения ЛА и ориентации поля зрения ОЭС ЛА из поля зрения ОЭС ЛАО и сохранении просмотра заданного участка подстилающей поверхности.
Изобретение относится к области электротехники и касается гибкого многослойного фотоэлектрического модуля. Модуль состоит из последовательно механически соединенных нижней несущей полимерной пленки, слоя электроизолирующего полимера с встроенными проводниками контактной сетки, гальванического соединения из последовательно-параллельно соединенных фотоэлектрических преобразователей, слоя электроизолирующего полимера с встроенными проводниками контактной сетки и прозрачного верхнего защитного полимерного слоя.

Изобретение относится к области защиты оптико-электронных средств (ОЭС) от мощных оптических излучений. Способ основан на пропускании лазерных импульсов через защитный элемент со значением лучевой стойкости меньшим значения минимальной лучевой стойкости элементов ОЭС и защите ОЭС посредством разрушения защитного элемента ОЭС при воздействии последовательности лазерных импульсов.

Изобретение относится к детекторам излучения, полевым транзисторам, туннельным усилителям с потоком горячих электронов, МДМДМ туннельным структурам для приема излучения миллиметровых и субмиллиметровых волн. Металл-Диэлектрик-Металл-Диэлектрик-Металл детектор, содержащий металлический проводник поглотителя излучения, контакты к этому проводнику, выполненные размещением контактного материала через прослойку изолятора, отличающийся тем, что металлический проводник поглотителя выполнен в виде пленки металла толщиной 10-30 нм и шириной 0.1-0.5 мкм и отделен от металлического контактного материала внешних тонкопленочных электродов туннельным барьером.

Настоящее изобретение относится к многопереходному солнечному элементу в форме стопки с передней стороной, контактирующей с задней стороной, имеющему образующую заднюю сторону этого многопереходного солнечного элемента германиевую подложку, германиевый субэлемент и по меньшей мере два субэлемента из элементов III-V групп, следующие друг за другом в указанном порядке, а также по меньшей мере одно сквозное контактное отверстие, доходящее от передней стороны многопереходного солнечного элемента через субэлементы до задней стороны, и проходящий через это сквозное контактное отверстие металлический замыкающийся контакт, причем это сквозное контактное отверстие имеет сплошную боковую поверхность и овальный контур в поперечном сечении, причем диаметр сквозного контактного отверстия ступенчато уменьшается в направлении от передней стороны к задней стороне многопереходного солнечного элемента, причем передняя сторона германиевого субэлемента образует выступающую внутрь в сквозное контактное отверстие, огибающую его первую ступеньку, имеющую первую глубину выступа ступеньки, и при этом образуется выступающая внутрь в сквозное контактное отверстие, огибающая его вторая ступенька, имеющая вторую глубину выступа ступеньки, от области германиевого субэлемента, расположенной ниже р-n перехода этого германиевого субэлемента.

Изобретение относится к технологии производства полупроводниковых приборов. Согласно изобретению предложен способ разъединения полупроводниковой пластины, включающей несколько стопок солнечных элементов, вдоль по меньшей мере одной разделительной линии, который включает по меньшей мере следующие стадии: предоставление полупроводниковой пластины с верхней стороной, нижней стороной, слоем адгезива, неразъемно соединенным с верхней стороной, и покровным стеклянным слоем, неразъемно соединенным со слоем адгезива, причем полупроводниковая пластина включает несколько стопок солнечных элементов, каждая из которых имеет германиевую подложку, образующую нижнюю сторону полупроводниковой пластины, германиевый частичный элемент и по меньшей мере два частичных элемента из элементов III-V групп; выполнение посредством лазерной абляции вдоль разделительной линии разделительной канавки, проходящей от нижней стороны полупроводниковой пластины насквозь через полупроводниковую пластину и слой адгезива по меньшей мере до примыкающей к слою адгезива нижней стороны покровного стеклянного слоя, и разделение покровного стеклянного слоя вдоль разделительной канавки.

Изобретение относится к технологии и способам размещения наноалмазов с NV-центрами на оптических структурах из Si3N4 и может быть использовано в будущих устройствах нанофотоники. Способ размещения наноалмазов на структурах из нитрида кремния включает покрытие защитным резистом с последующей электронной литографией для образования «окон», в которых должны размещаться наноалмазы. Раствор наноалмазов поддерживают до полного высыхания при постоянной температуре 20-24°С или при повышении температуры с 25°С до 70°С в течение 10-15 минут. После взрывной литографии наноалмазы остаются на месте «окон» на поверхности нитрида кремния. Технический результат: контролируемое размещение алмазов с NV-центрами в «окнах» с низкой вероятностью образования крупных агломератов. 2 з.п. ф-лы, 3 ил.
Наверх