Способ калибровки гироблоков платформы трехосного гиростабилизатора

Изобретение относится к области гироскопических систем. Сущность изобретения заключается в том, что способ калибровки гироблоков платформы трехосного гиростабилизатора (ТГС) дополнительно содержит этапы, на которых одновременно с определением азимута оси платформы ТГС на вход датчика моментов гироблока, обеспечивающего поворот платформы относительно вертикальной оси, подается управляющий ток в соответствии с заданным алгоритмом с одновременным измерением среднего значения тока другого гироблока, обеспечивающего горизонтирование платформы, и рассчитываются систематические составляющие угловых скоростей дрейфов этих гироблоков. Технический результат – расширение функциональных возможностей при определении параметров трехосного гиростабилизатора (ТГС). 1 ил.

 

Изобретение относится к области гироскопических систем и может быть использовано для определения азимута и калибровки гироблоков платформы трехосного гиростабилизатора, например, в высокоточных гироскопических системах различного назначения.

Известен способ азимутальной ориентации платформы трехосного гиростабилизатора (ТГС) по углу прецессии гироблока [1].

На фиг. 1 представлена структурная схема широко применяемого для построения различных гироскопических систем трехосного гиростабилизатора с вертикальной осью подвеса наружной рамки [2, с. 301, 593] в режиме определения азимута, где обозначено:

ГХ, ГУ, ГZ - двухстепенные гироблоки системы стабилизации относительно соответствующих осей;

КДУХ - широкодиапазонный кодовый датчик угла гироблока ГХ;

ДУУ, ДУГ, - датчики углов соответственно гироблоков ГУ и ГZ,

ДМХ, ДМУ, ДМГ, - датчики моментов соответствующих гироблоков;

АХ, AZ - акселерометры системы горизонтирования платформы ТГС относительно соответствующих осей;

СДХ, СДУ, СДГ - стабилизационные двигатели платформы ТГС относительно соответствующих осей;

УСХ, УСГ - усилители системы горизонтирования относительно соответствующих осей;

КК - корректирующий контур;

Н - векторы кинетических моментов гироблоков;

OXПYПZП - система координат, связанная с платформой ТГС;

ON - направление на север;

ΩГ - вектор горизонтальной составляющей угловой скорости вращения Земли;

ВУ - вычислительное устройство;

А - азимут оси ХП платформы ТГС в момент начала измерений.

Этот способ заключается в том, что гироблок системы горизонтирования и стабилизации одной из горизонтальных осей трехосного гиростабилизатора (гироскоп ГХ, фиг.1), которая примерно направлена на север, отключается от штатной системы горизонтирования и стабилизации, горизонтирование же и стабилизацию платформы относительно этой оси осуществляют по выходному сигналу акселерометра (акселерометр AZ на, фиг. 1), а азимут платформы определяют с использованием информации с широкодиапазонного кодового датчика угла этого гироблока, который с момента отключения его от штатной системы горизонтирования начинает функционировать в режиме двухстепенного гирокомпаса, то есть его гирокамера (поплавок) под действием гироскопического момента, обусловленного горизонтальной составляющей угловой скорости вращения Земли, начинает поворачиваться относительно корпуса гироблока, в сторону совмещения своего вектора кинетического момента с вектором сог.

Как следует из сути данного способа, использование широкодиапазонного датчика угла предполагает, что в начальный момент функционирования системы угол между вектором кинетического момента измерительного гироблока и вектором горизонтальной составляющей угловой скорости вращения Земли должен быть большим (близким к 90°). Только в этом случае гироскопический момент, обусловленный горизонтальной составляющей угловой скорости вращения Земли, будет достаточно большим и за время, необходимое для определения азимута, вектор кинетического момента гироскопа повернется на достаточно большой угол, что повышает информативность измеряемого сигнала.

С этой целью одну из осей, связанных с платформой ТГС, перед началом измерений грубо приводят по азимуту к меридиану, например методом гирокомпасирования [2, с. 592].

Алгоритм определения азимута платформы ТГС строится на основе динамической модели гироскопа. Учитывая, что угол между векторами ωГ и Н близок к 90°, модель гироскопа имеет следующий вид:

где

β - угол прецессии гироблока, то есть угол между осью платформы ТГС, примерно направленной на север (юг), и осью чувствительности измерительного гироблока, измеряемый широкодиапазонным кодовым датчиком угла последнего;

I - момент инерции гироблока;

f - коэффициент демпфирования гироблока;

Н - кинетический момент гироблока;

ΩГ - горизонтальная составляющая угловой скорости вращения Земли;

α - угол поворота оси платформы относительно Земли;

А - начальный азимут платформы;

ωГБ. - систематическая составляющая угловой скорости собственного ухода измерительного гироблока (гирокомпаса);

МВР. - достаточно малые случайные возмущающие воздействия, обусловленные влиянием нескомпенсированной скорости дрейфа платформы относительно вертикальной оси из-за наличия ошибок горизонтирования платформы ТГС.

Данное дифференциальное уравнение нелинейно, не имеет аналитического решения и определить с высокой точностью на его основе искомый азимут в условиях действия на двухстепенной гироблок различных внешних и внутренних возмущений, воздействующих на чувствительные элементы ТГС, имеющих случайную природу, весьма затруднительно.

Наиболее близким по технической сущности изобретением является способ азимутальной ориентации платформы трехосного

гиростабилизатора по приращениям угла прецессии гироблока [3].

В данном способе одновременно со считыванием информации с широкодиапазонного кодового датчика угла измерительного гироблока рассчитываются номинальные значения данного угла в вычислительном устройстве в соответствии с уравнением номинального движения, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими измеряемыми значениями его широкодиапазонного кодового датчика угла.

Номинальные значения угла прецессии гироблока βН определяются в соответствии с нелинейным дифференциальным уравнением номинального движения [3]:

где ωВ - вертикальная составляющая угловой скорости вращения Земли.

Данное уравнение описывает изменение угла βН при действии гироскопического момента, обусловленного горизонтальной составляющей угловой скорости вращения Земли ωГ, в предположении, что в начальный момент времени ось ХП платформы ТГС направлена точно на север, а направление оси чувствительности измерительного гироблока совпадает с направлением оси ХП, то есть при t=0: А=0 и β=0. При этом вредные возмущения ωГБ и МВР. отсутствуют.

Номинальные значения угла βН могут быть заранее рассчитаны одним из численных методов, например методом Рунге-Кутта [4, с. 417], и сохранены в вычислительном устройстве.

В этом случае уравнение (1) можно линеаризовать относительно уравнения (2) и использовать для определения начального азимута А оси ХП платформы ТГС хорошо известные методы оценок параметров линейных систем в условиях действия случайных возмущений, например оптимальный фильтр Калмана [5].

Целью данного изобретения, является расширение функциональных возможностей при определении параметров ТГС, в частности совместно с определением азимута оси платформы обеспечение калибровки систематических составляющих дрейфов гироблоков ГХ и ГZ (фиг. 1).

В соответствии с [1, 3] платформа находится в инерциальном режиме относительно местной вертикали, то есть ось ZП уходит относительно Земли с угловой скоростью ωВ3sinϕ (член α=ωBt в уравнениях (1) и (2)),

где Ω3 - угловая скорость вращения Земли;

ϕ - широта местоположения ТГС.

Если на датчик моментов ДМУ гироблока ГУ (фиг. 1) подать ток:

то платформа ТГС будет поворачиваться в инерциальном пространстве относительно вертикальной оси с угловой скоростью ωB и за время определения азимута А оси ХП платформы последний будет постоянной величиной.

В данном случае уравнения (1) примет вид:

а линеаризованное уравнение соответственно [6]:

Как следует из правой части уравнения (4) составляющая, зависящая от азимута, является переменной величиной, а систематическая составляющая дрейфа гироблока постоянна, и, следовательно, в фильтре Калмана они могут быть разделены при измерении в одном положении платформы в азимуте.

В [6, с. 73-77] приведены результаты моделирования по оценке данных составляющих в фильтре Калмана, откуда следует, что оценки данных составляющих могут быть получены с высокой точностью.

Если одновременно с измерением азимута А оси платформы ХП измерять среднее значение тока icpz в датчике моментов ДМZ гироблока ГZ (фиг. 1), то после завершения измерения азимута А можно в соответствии с прецессионной теорией гиростабилизатора записать выражение для уравнения моментов гироблока ГZ[2]:

где А - как и ранее азимут оси платформы ХП, так как угол между осями платформы ХП и ZП платформы ТГС известен с высокой точностью и равен 90°;

ωдpz - систематическая составляющая дрейфа гироскопа ГZ. Из (5) можно определить систематическую составляющую дрейфа гироблока ГZ:

Таким образом, предлагаемый способ: «Способ калибровки гироблоков платформы трехосного гиростабилизатора» отличается от прототипа тем, что одновременно с определением азимута оси платформы ТГС на вход датчика моментов гироблока, обеспечивающего поворот платформы относительно вертикальной оси, подается управляющий ток в соответствии с заданным алгоритмом с одновременным измерением среднего значения тока другого гироблока, обеспечивающего горизонтирование платформы, и рассчитываются систематические составляющие угловых скоростей дрейфов этих гироблоков.

Источники информации

1. Патент RU 2324897 С1, 20.05.2008.

2. Командно-измерительные приборы / Под ред. Б.И. Назарова. - М.: МО СССР, 1987, - 638 с.

3. Патент RU 2509289 С2, 10.03.2014.

4. Дьяконов В.П. MATLAB 7.*/R2006/R2007. Самоучитель. М.: ДМК Пресс, 2008, - 768 с.

5. Брамер К., Зифлинг Г. Фильтр Калмана - Бьюси. - М.: «Наука», 1982, - 200 с.

6. Макаров Д.В., Павлов Р.А., Касьянов Г.В. Способ определения азимута базового направления по информации с широкодиапазонного датчика угла двухстепенного поплавкового гироскопа. Труды ФГУП «НПЦ АП». Системы и приборы управления. – М.: ФГУП «НПЦ АП» №4(26) 2013, - 5 с.

Способ калибровки гироблоков платформы трехосного гиростабилизатора (ТГС), заключающийся в том, что используют один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляют путем отключения акселерометра от датчика моментов гироблока контура стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока, отличающийся тем, что одновременно с определением азимута оси платформы ТГС на вход датчика моментов гироблока, обеспечивающего поворот платформы относительно вертикальной оси, подается управляющий ток в соответствии с заданным алгоритмом с одновременным измерением среднего значения тока другого гироблока, обеспечивающего горизонтирование платформы, и рассчитываются систематические составляющие угловых скоростей дрейфов этих гироблоков.



 

Похожие патенты:

Изобретение относится к области точного приборостроения и может быть использовано при создании гирокомпасов аналитического типа. Заявленное изобретение направлено на решение задачи повышения точности определения направления местного меридиана с использованием ДУС любого типа за счет дискретного поворота оси чувствительности ДУС на заданный угол в направлении плоскости местного меридиана, низкочастотной фильтрации выходного сигнала ДУС в каждом положении оси чувствительности ДУС и вычитания сигналов, полученных в соседних угловых положениях, с последующим делением разности на известный постоянный множитель, применением к полученному частному операции арксинуса и сложения результата с известной константой.

Изобретение относится к области точного приборостроения и может быть использовано при создании гирокомпасов аналитического типа. Заявленное изобретение направлено на решение задачи повышения точности определения направления местного меридиана с использованием ДУС любого типа за счет дискретного поворота оси чувствительности ДУС на заданный угол в направлении плоскости местного меридиана, низкочастотной фильтрации выходного сигнала ДУС в каждом положении оси чувствительности ДУС и вычитания сигналов, полученных в соседних угловых положениях, с последующим делением разности на известный постоянный множитель, применением к полученному частному операции арксинуса и сложения результата с известной константой.

Изобретение относится к двухосным гироскопическим стабилизаторам, размещаемым на подвижных объектах, для получения неподвижного изображения и управления линией визирования оптических приборов. Система стабилизации изображения на подвижном основании содержит индикаторную гироскопическую платформу с установленной на ней стабилизируемой нагрузкой, карданов подвес, гироскоп с датчиками угла, усилительно-корректирующее устройство, представляющее контур стабилизации, содержащий последовательно соединенные корректирующее устройство и усилитель, на вход которого поступает сигнал с устройства сравнения, вычисляющего разность между текущим показанием датчика угла гироскопа и сигналом наведения, сумматор, на вход которого поступает сигнал усилителя и сигнал со звена удаления постоянной составляющей ДУСа, а выход соединен со звеном коррекции, выход которого соединен с сумматором, на вход которого поступает сигнал с датчика тока и выходной сигнал звена коррекции, выход которого соединен с усилителем мощности, выход усилителя мощности соединен с двигателем.

Изобретение относится к области инерциальных навигационных систем (ИНС) и может быть использовано для коррекции ошибок данных систем. Технический результат - повышение точности инерциальных навигационных систем без использования внешних измерительных устройств.

Изобретение относится к области гироскопических систем и может быть использовано для определения азимута платформы трехосного гиростабилизатора в навигационных системах различного назначения. Способ определения азимута трехосного гиростабилизатора (ТГС) по углу поворота гироскопа заключается в том, что платформу приводят по азимуту к меридиану, один из гироскопов отключают от системы стабилизации платформы и используют в режиме двухстепенного гирокомпаса.

Предложен способ оценки положения устройства управления, предназначенного для управления рабочими машинами. Устройство управления содержит средства для управления перемещением рабочей машины вдоль соответствующих направлений.

Изобретение относится к области гироскопических систем и может быть использовано для компенсации уходов платформы трехосных гиростабилизаторов, применяемых в навигационных системах. Технический результат – расширение функциональных возможностей.

Изобретение относится к космической технике, в частности к способам управления ориентацией и стабилизацией космического аппарата. Способ динамичной высокоточной ориентации и стабилизации космического аппарата заключается в использовании гиродинов в качестве исполнительных органов, которые позволяют обеспечить управление космическим аппаратом при поворотах КА на заданные углы по крену, рысканью и тангажу.

Изобретение относится к области гироскопических систем и может быть использовано для азимутального ориентирования платформы трехосного гиростабилизатора в высокоточных навигационных системах различного назначения. Технический результат - упрощение конструкции измерительной системы и сокращение времени готовности гиростабилизатора.

Изобретение относится к гиростабилизированным устройствам, размещаемым на подвижных объектах, для получения неподвижного изображения и управления линией визирования оптических приборов. Технический результат - повышение точности стабилизации за счет компенсации момента инерции зеркала.

Изобретение относится к области авиационных систем, в частности к беспилотным летательным аппаратам для проведения оперативного мониторинга обслуживания транспортной инфраструктуры, охраны объектов, мониторинга территорий, нужд силовых ведомств, поиска людей. Гиростабилизированная система стабилизации полезной нагрузки беспилотного воздушного средства состоит из трехстепенного гироскопа, датчиков момента угла, рам тангажа и крена, следящей системы стабилизации и виброгасительных элементов. При этом система стабилизации выполнена в виде крепежной площадки, к которой болтовым соединением крепится нижняя опора демпфера, при этом между нижней и верхней опорами демпфера расположены виброгасительные элементы, выполненные в виде двенадцати круглых резиновых демпферов, опоры демпфера выполнены из углепластика, рама тангажа представляет собой ферму тангажа, выполненную в виде платформы, на которой посредством болтового соединения закреплен табурет с установленным внутри электромотором крена. Датчик угла крена и крышка датчика угла крена расположены на верхней части табурета с электромотором крена, ферма панорамирования выполнена в виде основания, которое имеет болтовое соединение с электромотором панорамирования, на основании фермы панорамирования установлен датчик угла тангажа, напротив которого установлен табурет с установленным внутри электромотором тангажа, крышка которого установлена в верхней части табурета с электромотором тангажа. Крышка датчика угла тангажа установлена на основании посредством болтового соединения, электромотор крена соединен болтовым соединением с консолью крена, на которой закреплены видеокамера, плата управления видеокамерой и трехстепенный гироскоп, установленный под видеокамерой. При этом крышка датчика угла панорамирования расположена на верхней опоре демпфера и является общей с контроллером, который установлен на верхней опоре демпфера и имеет возможность подключения к автопилоту беспилотного воздушного средства. Технический результат – обеспечение возможности управления положением видеокамеры для стабилизации видеоизображения и слежения за целью. 7 ил.
Наверх