Способ гирокомпасирования с применением датчика угловой скорости

Изобретение относится к области точного приборостроения и может быть использовано при создании гирокомпасов аналитического типа. Заявленное изобретение направлено на решение задачи повышения точности определения направления местного меридиана с использованием ДУС любого типа за счет дискретного поворота оси чувствительности ДУС на заданный угол в направлении плоскости местного меридиана, низкочастотной фильтрации выходного сигнала ДУС в каждом положении оси чувствительности ДУС и вычитания сигналов, полученных в соседних угловых положениях, с последующим делением разности на известный постоянный множитель, применением к полученному частному операции арксинуса и сложения результата с известной константой. Поставленная задача возникает при разработке гирокомпасов аналитического типа для навигационных систем и систем начальной ориентации навигационно-измерительных комплексов. Технический результат - повышение быстродействия при определении направления местного меридиана с использованием ДУС.

 

Изобретение относится к области точного приборостроения и может быть использовано при создании гирокомпасов аналитического типа.

Известны способы гирокомпасирования с использованием датчика угловой скорости (ДУС), состоящие в последовательном изменении ориентации ДУС с последующими измерениями различных параметров его выходного сигнала [Патент №2267748, RU, 2006 г. Способ гирокомпасирования с применением гироскопического датчика угловой скорости при неточной выставке гироскопа на объекте /Джанджгава Г.И. и др.; Патент №2210743,RU, 2003 г. Способ гирокомпасирования с применением гироскопического датчика угловой скорости, установленного на свободную в азимуте и стабилизированную в плоскости местного горизонта платформу / Редькин С.П.; Патент №2194948, RU, 2002 г. Способ алгоритмической компенсации погрешности гирокомпасирования с применением гироскопического датчика угловой скорости / Редькин С.П.]. Недостатками их являются сложность измерений и возможность использования только гироскопического ДУС. Известны способы гирокомпасирования с использованием ДУС, состоящие в реверсном изменении оси чувствительности ДУС относительно плоскости местного меридиана с последующим суммированием сигналов измерения [В.В. Серегин, P.M. Кукуев. Лазерные пирометры и их применение. М.: Машиностроение, 1990]. Недостатками их является невозможность компенсации широкополосных случайных помех измерения и низкая точность. Известен способ гирокомпасирования с использованием ДУС, состоящий в последовательном повороте оси чувствительности ДУС относительно направления местного меридиана на заданные углы [Ю. Голяев, А. Исаев, Ю. Колбас, С. Лантратов, В. Минзар, Г. Телегин. Гирокомпас на основе лазерного гироскопа с магнитооптическим управлением // Электроника. №8. 2006 г.] с последующим определением направления местного меридиана по максимуму выходного сигнала. Недостатком данного способа является низкая точность, обусловленная трудностью определения истинного максимума из-за нестационарных случайных помех в выходном сигнале ДУС.

Наиболее близким к предлагаемому изобретению является способ гирокомпасирования с использованием ДУС, состоящий в том, что после начальной выставки оси чувствительности ДУС в плоскость местного горизонта осуществляется последовательный дискретный поворот оси чувствительности ДУС на заданные углы в направлении плоскости местного меридиана (n-1) раз, в каждом очередном положении оси чувствительности ДУС осуществляется низкочастотная фильтрация выходного сигнала ДУС в течение фиксированного интервала времени, после чего осуществляется попарное вычитание сигналов, полученных в соседних угловых положениях оси чувствительности ДУС, и прекращение поворота определяется или достижением заданного значения величины n, или изменением знака разности сигналов, полученных в соседних угловых положениях оси чувствительности ДУС, при этом до начала процесса гирокомпасирования рассчитываются точные разности значений проекций угловой скорости Земли на ось чувствительности ДУС для всех возможных соседних значений углов ее ориентации относительно плоскости местного меридиана в заданном интервале их изменения, из массива которых методом перебора осуществляется выбор (n-1) последовательных значений точных разностей проекций угловой скорости Земли, максимально совпадающих по заданному критерию совпадения с рядом соответствующих значений разностей сигналов, полученных в соседних угловых положениях оси чувствительности ДУС, после чего определяется угол относительно плоскости местного меридиана, соответствующий n-му точному значению проекции угловой скорости Земли на ось чувствительности ДУС, который с высокой точностью является углом азимута n-го положения оси чувствительности ДУС [Патент №2698567, RU, 2019 г. Способ гирокомпасирования с применением датчика угловой скорости / Соколов С.В., Погорелов В.А., Савенкова Е.В., Шаталов А.Б., Гашененко И.Н.]. Недостатком данного способа являются большие вычислительные затраты и низкое быстродействие за счет необходимости реализации (n-1) последовательных дискретных поворотов оси чувствительности ДУС на заданные углы.

Заявленное изобретение направлено на решение задачи уменьшения вычислительных затрат и повышения быстродействия при определении направления местного меридиана с использованием ДУС.

Поставленная задача возникает при разработке гирокомпасов аналитического типа для навигационных систем и систем начальной ориентации навигационно-измерительных комплексов. Для обеспечения высокой точности определения направления местного меридиана с использованием ДУС предлагается способ, использующий после начальной выставки оси чувствительности ДУС в плоскость местного горизонта последовательный дискретный поворот оси чувствительности ДУС в направлении плоскости местного меридиана, в каждом положении оси чувствительности ДУС низкочастотную фильтрацию выходного сигнала ДУС в течение фиксированного интервала времени и вычитание сигналов, полученных в соседних угловых положениях оси чувствительности ДУС, при этом дискретный поворот оси чувствительности ДУС осуществляется один раз, а разность сигналов, полученных в соседних угловых положениях оси чувствительности ДУС и прошедших низкочастотную фильтрацию, делится на известный постоянный множитель с применением к полученному частному операции арксинуса и сложения результата с известной константой, в результате чего с высокой точностью определяется угол относительно плоскости местного меридиана (угол азимута) последнего (второго) положения оси чувствительности ДУС.

Выходной сигнал Z большинства современных датчиков угловой скорости (гироскопических, лазерных, волоконно-оптических и др.) в режиме гирокомпасирования может быть представлен в следующем виде:

Z=ω+S+W,

где ω=Ω cos ϕ cos А - проекция угловой скорости Земли на ось чувствительности ДУС, Ω - угловая скорость вращения Земли, ϕ - широта места, А - азимутальный угол оси чувствительности ДУС;

S=const - постоянная случайная помеха,

W - широкополосная случайная помеха.

Для реализации предложенного способа гирокомпасирования после начальной выставки оси чувствительности ДУС в плоскость местного горизонта из исходного положения с неизвестным азимутальным углом А0 осуществляется дискретный разворот оси чувствительности ДУС на заданный угол Δ относительно плоскости местного меридиана. Как в исходном, так и в последующем положениях оси чувствительности ДУС осуществляется низкочастотная фильтрация выходного сигнала ДУС Z (например, с использованием фильтра Баттерворта высокого порядка) в течение фиксированного интервала времени, зависящего от частоты съема измерений ДУС. По окончании процесса фильтрации выходной сигнал ДУС в исходном и последующем i-х положениях (i=0,1) Zi становится равным:

Zii+S,

где ωi=Ω cos ϕ cos Ai,

Ai - неизвестный азимутальный угол оси чувствительности ДУС в i-м положении.

Далее осуществляется вычитание сигналов Zi, i=0,1, полученных в исходном и последующем угловых положениях оси чувствительности ДУС (относительно меридиана отличающихся на Δ):

Из полученного значения разности δ путем деления на постоянный множитель с последующим использованием операции арксинуса и сложения с известной константой определяется угол А1:

который с высокой точностью (в силу независимости значения δ от вышеперечисленных помех) и будет углом азимута последнего (второго) положения оси чувствительности ДУС.

Способ гирокомпасирования с применением датчика угловой скорости (ДУС), использующий после начальной выставки оси чувствительности ДУС в плоскость местного горизонта последовательный дискретный поворот оси чувствительности ДУС в направлении плоскости местного меридиана, в каждом положении оси чувствительности ДУС низкочастотную фильтрацию выходного сигнала ДУС в течение фиксированного интервала времени и вычитание сигналов, полученных в соседних угловых положениях оси чувствительности ДУС, отличающийся тем, что дискретный поворот оси чувствительности ДУС осуществляется один раз, а разность сигналов, полученных в соседних угловых положениях оси чувствительности ДУС и прошедших низкочастотную фильтрацию, делится на известный постоянный множитель с применением к полученному частному операции арксинуса и сложения результата с известной константой, в результате чего с высокой точностью определяется угол относительно плоскости местного меридиана (угол азимута) последнего (второго) положения оси чувствительности ДУС.



 

Похожие патенты:

Изобретение относится к мониторингу оборудования. Система мониторинга состояния оборудования содержит архитектуру управления, датчики, соединенные с подконтрольным оборудованием, подсистему мониторинга, содержащую системный блок с монитором, а также модуль визуализации, установленный на оборудовании или около него.
Изобретение относится к снижению распространения инфекций. Способ информационного взаимодействия маломобильного пассажира с транспортным средством общего пользования на остановках общественного транспорта при идентификации и лоцировании пассажирами транспортных средств общего пользования, который реализуют с помощью установленных на транспортных средствах радиомодулей и звуковых маяков, а также носимых гражданами устройств пользователя.

Изобретение относится к способу оценки навигационных данных наземного транспортного средства, содержащему этапы, на которых: принимают инерциальные данные, считанные (100) инерциальным датчиком, принимают параметры геометрии и ориентации проходимой дороги, интегрируют (106) данные на основе параметров для получения навигационных данных, включающих в себя перемещение транспортного средства относительно дороги, измеренное в направлении (Zr, Yr), при этом транспортное средство может перемещаться в этом направлении только в ограниченном интервале, не покидая дороги, оценивают (108) погрешность в полученных навигационных данных посредством решения системы уравнений в предположении, что отклонение между вычисленным перемещением и контрольным перемещением образует погрешность перемещения транспортного средства параллельно направлению, при этом контрольное перемещение имеет значение, меньшее или равное длине указанного интервала, корректируют (110) полученные навигационные данные на основании оцененной погрешности.
Изобретение относится к области гироскопического приборостроения. Перед установкой динамически настраиваемого гироскопа в гироплатформу проводят его автономные вибрационные исследования с использованием вибростенда, платформа которого имеет упругую подвеску.

Изобретение относится к серверу и способу определения рекомендаций по парковке для пункта назначения на карте. Технический результат заключается в повышении релевантности поиска данных.

Изобретение относится к способам определения ориентации по координатам наблюдаемых звезд, преимущественно для навигационных целей. В частности, для космической навигации, путем определения положения космического аппарата относительно изображений звезд, наблюдаемых прибором звездной ориентации.

Изобретение относится к области пилотажно-навигационных систем транспортного летательного аппарата. Цифровая пилотажно-навигационная система транспортного летательного аппарата включает аппаратуру текущих пилотажно-навигационных параметров (ИС-1, ИС-2, СВС, РВ), блок переключения каналов, цифро-аналоговый преобразователь, блок исполнения команд, систему радиосвязи с приемником-передатчиком связи с пультом управления на начальном и конечном пунктах маршрута, блок программы маршрута, блок взлета-посадки, две бортовые цифровые вычислительные машины, две инерциальные системы.

Изобретение относится к области радиотехники и предназначено для контроля работоспособности навигационной аппаратуры потребителя (НАП) спутниковой радионавигационной системы (СРНС) воздушного судна (ВС). Технический результат изобретения заключается в повышении вероятности правильного контроля работоспособности НАП СРНС.

Изобретение относится к системам измерения и индикации, обеспечивающим управление летательным аппаратом, пилотируемым 2 летчиками в случае отказа основных пилотажно-навигационных систем. Технический результат заключается в повышении надежности пилотажного комплекса при пилотировании летательного аппарата 2 пилотами.

Изобретение относится к области авиационного приборостроения, в частности к внутрикабинным информационно-измерительным приборам с электронной индикацией пилотажно-навигационных параметров и тактической информации. Система выполнена в виде отдельного блока, содержащего датчики полного и статического давления, модуль пространственной ориентации, магнитный зонд, вычислитель с энергонезависимой памятью, индикаторный модуль, содержащего устройства управления режимами работы системы, предназначенные для выбора и ввода заданного курса, барокоррекции, заданной высоты и заданной скорости, выполненные в виде функциональных кремальер и расположенные на лицевой панели прибора рядом с жидкокристаллическим индикатором ЖКИ.

Изобретение относится к двухосным гироскопическим стабилизаторам, размещаемым на подвижных объектах, для получения неподвижного изображения и управления линией визирования оптических приборов. Система стабилизации изображения на подвижном основании содержит индикаторную гироскопическую платформу с установленной на ней стабилизируемой нагрузкой, карданов подвес, гироскоп с датчиками угла, усилительно-корректирующее устройство, представляющее контур стабилизации, содержащий последовательно соединенные корректирующее устройство и усилитель, на вход которого поступает сигнал с устройства сравнения, вычисляющего разность между текущим показанием датчика угла гироскопа и сигналом наведения, сумматор, на вход которого поступает сигнал усилителя и сигнал со звена удаления постоянной составляющей ДУСа, а выход соединен со звеном коррекции, выход которого соединен с сумматором, на вход которого поступает сигнал с датчика тока и выходной сигнал звена коррекции, выход которого соединен с усилителем мощности, выход усилителя мощности соединен с двигателем.
Наверх