Способ комбинированной калибровки блока акселерометров

Изобретение относится к области приборостроения. Способ комбинированной калибровки блока акселерометров заключается в том, что по полученным измерениям формируется единый массив невязок полученных и ожидаемых измерений вектора кажущегося ускорения и его абсолютного значения. Полученный массив линейно связывается с калибруемыми параметрами модели погрешностей акселерометров. Влияние невязок по отдельным измерениям и по абсолютной величине вектора ускорения на получаемую оценку балансируется настройкой алгоритма фильтра Калмана для стационарной системы, с помощью которого и производится оценка вектора коррекции параметров измерительной модели акселерометров, то есть их уточнение. Технический результат – повышение точности калибровки блока акселерометров.

 

Изобретение относится к области приборостроения и может быть использовано при тестировании и проверке работоспособности чувствительных элементов инерциальных систем навигации.

Известны способы скалярной калибровки и векторной калибровки, описанные соответственно в статьях «О скалярной калибровке блока акселерометров и гироскопов» В.В. Аврутов, Вестник НТУУ «КПИ», 2010, серия «ПРИКЛАДОБОРУДОВАНИЕ», вып. 40, с. 10-17 (принято за прототип изобретения), и «Сравнение методов оценки параметров погрешностей блока акселерометров трехосной гиростабилизированной платформы» Гребенкин М.Д., Труды ФГУП "НПЦАП". Системы и приборы управления, 2017, No 4, с. 22-31 (принято за аналог изобретения).

В них рассматривается калибровка набора из трех взаимно ортогональных акселерометров. В качестве оцениваемых при калибровке параметров модели ошибок акселерометров рассматриваются отклонения масштабных коэффициентов, нулей и угловые параметры, описывающие ошибку выставки оси чувствительности датчика в приборной системе координат (по одному или по два на каждый из датчиков, в зависимости от метода). Блок акселерометров последовательно приводят угловые положения на неподвижном стенде, снимая измерения. В аналоге (векторный метод калибровки) получают измерения каждого акселерометра в отдельности и сравнивают с ожидаемыми в данном положении и географической точке. В прототипе (скалярный метод калибровки) для каждого момента измерения вычисляется модуль измеренного кажущегося ускорения и результат сравнивается с модулем вектора ускорения силы тяжести в данной географической точке. В обоих методах предполагается, что разности (невязки) между измеренными и ожидаемым величинами обусловлены отклонениями рассматриваемых параметров модели погрешности датчиков. С помощью ряда Тейлора невязки измерений линейно связываются с отклонениями оцениваемых параметров от их номинальных величин. После проведения достаточного количества измерений, получают несовместную систему линейных уравнений, которую можно решить приближенно. Результатом калибровки является получаемое приближенное решение, т.е. коррекция для рассматриваемого набора параметров.

Недостатком аналога является сильное влияние на точность оценки ошибок при выставке калибруемого блока в калибровочные угловые положения. Недостатком прототипа является ненаблюдаемость всех параметров модели погрешностей, описывающих ошибки выставки осей чувствительности акселерометров в приборной системе координат. Следствием этого является необходимость принимать положение оси чувствительности одного из акселерометров идеальным, то есть безошибочно совпадающим с одной из осей приборной системы координат. Это в свою очередь приводит к ошибке в привязке блока акселерометров к системе отсчета объекта управления и формированию дополнительных погрешностей в навигационных данных.

Задачей изобретения является повышение точности калибровки блока акселерометров за счет повышения устойчивости оценки к неучтенным погрешностям в калибровочных измерениях без потери наблюдаемости ряда параметров модели погрешностей акселерометров.

Заявленная задача выполняется в способе комбинированной калибровки блока акселерометров заключающемся в том, что в различных угловых положениях блока производят измерения кажущегося ускорения, обусловленного силой тяжести, а также рассчитывают квадраты абсолютной величины измеренного ускорения, решением калибровочной системы уравнений с помощью фильтра Калмана оценивают вектор отклонения параметров модели акселерометров и выполняют калибровку акселерометров, согласно изобретению, формируют массив невязок между измеренными и соответствующими ожидаемыми значениями проекций ускорения на оси чувствительности акселерометров, и невязок между рассчитанными и ожидаемыми значениями квадрата абсолютной величины кажущегося ускорения, полученный массив линейно связывают с вектором отклонений параметров, формируя комбинированную калибровочную матрицу системы уравнений, включающей в себя уравнения линейной связи вектора отклонения параметров с указанными невязками, а фильтр Калмана применяют с диагональной матрицей ковариации измерительного шума, в которой величина ковариации шума квадрата полученной абсолютной величины ускорения равна единице, а величины ковариаций шума измерений ускорения равны 106.

Для решения задачи результат каждого измерения используется для формирования 4-х уравнений в калибровочной системе уравнений. Три из них формируются по методу векторной калибровки и обеспечивают наблюдаемость всех параметров, необходимых для описания выставки осей чувствительности в приборной системе координат, привязанной к блоку. Четвертое формируется по методу скалярной калибровки и позволяет получить оценку, устойчивую к возмущениям в векторе измерений, вызванных неучтенными факторами.

Векторный метод калибровки позволяет оценить для каждого акселерометра 4 параметра модели погрешностей: смещение нуля, отклонение масштабного коэффициента и два угловых параметра ошибки выставки оси чувствительности в приборной системе координат.

Калибровочная система уравнений для векторного метода имеет вид:

где:

Δai, i=1..3n - отклонение полученного измерения одного акселерометра от ожидаемой величины;

δpj, j=1..k - оцениваемые отклонения параметров модели погрешностей от номинальных значений (всего к параметров для векторного метода);

dij, i=1..3n, j=1..k - элементы матрицы калибровки D, представляющие собой производные выходной величины акселерометра по величине параметра pj при его номинальном значении; n - количество моментов снятия измерений.

При этом система уравнений будет делиться на блоки по 3 уравнения, соответствующие единовременному снятию измерений с тройки акселерометров в момент времени ti:

Для скалярного метода решаемая система будет иметь вид:

где Δsi, i=1..n - отклонение измеренного модуля кажущегося ускорения от ожидаемой величины. При этом вектор оцениваемых параметров р для скалярного метода будешь меньше чем в случае векторного метода, так как три из шести угловых параметров одного акселерометра будут ненаблюдаемы.

Получение комбинированной модели в виде новой матрицы калибровки Dкомб может быть выполнено совмещением двух систем уравнений в одну. При этом приближенный вектор решения должен удовлетворять одновременно уравнениям обеих моделей по условию несмещенного вектора невязки (с нулевым средним).

Из за разницы рангов матриц скалярного и векторного методов, матрицу системы скалярного метода необходимо дополнить новыми столбцами, соответствующими трем ненаблюдаемым параметрам угловых ошибок выставки осей чувствительности ругл1, ругл2, ругл3 по применяемой схеме линеаризации:

Итоговая система уравнений будет строиться блоками по четыре уравнения, три из которых описывают влияние отклонений параметров на показания каждого акселерометра по отдельности, а четвертое описывает влияние отклонений на сумму квадратов этих показаний:

Три уравнения, соответствующих векторному способу калибровки, позволят сформировать оценки отклонений 6 угловых параметров по отдельности, а четвертое уравнение, соответствующее скалярной калибровке, не позволит получить их сильно смещенную оценку, так как определяет величины их линейных комбинаций и при этом является устойчивым к ошибке изначальной угловой выставки платформы в пространстве.

Для того, чтобы получаемая оценка в равной степени соответствовала как векторной, так и скалярной части системы, оценку необходимо проводить со взвешиванием. Для этого удобно использовать алгоритм фильтра Калмана, где взвешивание можно произвести, задавая нужный вид матрице ковариации измерительного шума R:

Результатом калибровки является полученное с помощью алгоритма фильтра Калмана приближенное решение калибровочного уравнения, составленного описанным способом.

Таким образом, заявлен способ комбинированной калибровки блока акселерометров заключающийся в том, что в различных угловых положениях блока производят измерения кажущегося ускорения, обусловленного силой тяжести, а также рассчитывают квадраты абсолютной величины измеренного ускорения, решением калибровочной системы уравнений с помощью фильтра Калмана оценивают вектор отклонения параметров модели акселерометров и выполняют калибровку акселерометров. Отличительная особенность способа заключается в том, что формируют массив невязок между измеренными и соответствующими ожидаемыми значениями проекций ускорения на оси чувствительности акселерометров, и невязок между рассчитанными и ожидаемыми значениями квадрата абсолютной величины кажущегося ускорения, полученный массив линейно связывают с вектором отклонений параметров, формируя комбинированную калибровочную матрицу системы уравнений, включающей в себя уравнения линейной связи вектора отклонения параметров с указанными невязками, а фильтр Калмана применяют с диагональной матрицей ковариации измерительного шума, в которой величина ковариации шума квадрата полученной абсолютной величины ускорения равна единице, а величины ковариаций шума измерений ускорения равны 106.

Техническим результатом изобретения является повышение точности калибровки блока акселерометров за счет повышения устойчивости оценки к неучтенным возмущениям в калибровочных измерениях без потери наблюдаемости ряда параметров модели погрешностей акселерометров.

Способ комбинированной калибровки блока акселерометров, заключающийся в том, что в различных угловых положениях блока производят измерения акселерометрами кажущегося ускорения, обусловленного силой тяжести, а также рассчитывают квадраты абсолютной величины измеренного ускорения, решением калибровочной системы уравнений с помощью фильтра Калмана оценивают вектор отклонения параметров модели акселерометров и выполняют калибровку акселерометров, отличающийся тем, что формируют массив невязок между измеренными и соответствующими ожидаемыми значениями проекций ускорения на оси чувствительности акселерометров и невязок между рассчитанными и ожидаемыми значениями квадрата абсолютной величины кажущегося ускорения, полученный массив линейно связывают с вектором отклонений параметров, формируя комбинированную калибровочную матрицу системы уравнений, включающей в себя уравнения линейной связи вектора отклонения параметров с указанными невязками, а фильтр Калмана применяют с диагональной матрицей ковариации измерительного шума, в которой величина ковариации шума квадрата полученной абсолютной величины ускорения равна единице, а величины ковариаций шума измерений ускорения равны 106.



 

Похожие патенты:

Изобретение относится к калибровочной и испытательной технике. Низкочастотный стенд для калибровки и испытаний акселерометров и сейсмоприемников дополнительно содержит бесконтактный электропривод, приводящий в движение подвижную вращающуюся платформу, балансировочные грузы, установленные на подвижную вращающуюся платформу, блок электроники, состоящий из внутреннего источника питания, понижающего преобразователя, микроконтроллера, датчика влажности и температуры, информационного дисплея и цифрового входа для подключения к компьютеру, также на подвижной платформе установлен блок микромеханических датчиков для контроля ее углового положения и контроля углового положения двух полуосей, на которых закреплена подвижная платформа, относительно плоскости горизонта.

Изобретение относится к области приборостроения и может быть использовано при тестировании и проверке работоспособности чувствительных элементов инерциальных систем навигации. Способ скалярной калибровки блока акселерометров дополнительно содержит этапы, на которых перед калибровкой определяют оптимальные угловые положения блока для измерений путем минимизации углового функционала так, чтобы минимизировать влияние неучитываемых погрешностей в условиях проведения калибровки.

Изобретение относится к области изготовления, регулировки и испытаний навигационных приборов и устройств и может быть использовано при регулировке виброчастотных акселерометров. Способ уменьшения чувствительности виброчастотного акселерометра к боковому ускорению, заключается в том, что в акселерометре, содержащем рамочный корпус и основание, осуществляют фиксацию рамочного корпуса на основании сначала с помощью одного штифта и двух крепежных элементов, определяют резонансную частоту при отсутствии бокового ускорения, затем измеряют резонансную частоту при действии бокового ускорения и получают требуемое значение величины изменения резонансной частоты путем поворачивания рамочного корпуса на углы α и/или β, после чего выполняют по месту с рамочным корпусом отверстие в основании и окончательно жестко фиксируют рамочный корпус на основании вторым штифтом.

Комплекс устройств относится к области приборостроения и может быть использован для дистанционного контроля работоспособности средств измерения параметров механических колебаний по преимуществу высокотемпературных объектов. Комплекс содержит два устройства - измерительно-усилительный блок и блок регистрации.

Группа изобретений относится к устройству для испытания инерциального датчика, в частности датчика ускорения и/или датчика скорости вращения. Устройство для испытания инерциального датчика, предназначенного для транспортного средства и имеющего по меньшей мере две точки крепления, содержащее по меньшей мере один первый колебательный элемент, к которому прикрепляется инерциальный датчик, и по меньшей мере один первый модуль возбуждения, соотнесенный с первым колебательным элементом для сообщения первому колебательному элементу ускорения по меньшей мере в одном направлении.

Группа изобретений относится к способу обнаружения неисправности датчика ускорения. Способ обнаружения неисправности датчика ускорения, при котором с помощью датчика ускорения формируют сигнал, причем при контроле проверяют, отвечает ли зависимый от сигнала параметр (а) заданному условию в отношении эталонного значения (r1, r2, r3), и с помощью контроля определяют наличие дефекта датчика ускорения, при этом с помощью счетчика времени подсчитывают время и в случае, если скорость объекта превышает заданный верхний предел скорости, при контроле проверяют, превышает ли параметр (а) заданное эталонное значение (r3), пока время достигает заданного значения времени, причем при каждом превышении эталонного значения (r3) предпоследний счетчик времени сбрасывают и время продолжают подсчитывать этим счетчиком времени только тогда, когда скорость объекта превышает заданный верхний предел скорости.

Изобретение относится к измерительной технике, а именно к устройствам для контроля и измерения электрических параметров авиационного радиооборудования, а именно доплеровских измерителей скорости и сноса. Технический результат решения заключается в создании контрольно-проверочного комплекса для проведения проверок ДИСС в полуавтоматическом режиме, что обеспечивает повышение надежности и достоверности результатов комплексной проверки параметров проверяемого оборудования во всех режимах функционирования, возможности проведения полуавтоматических проверок.

Группа изобретений относится к области калибровки инерциальных измерительных модулей (ИИМ). Способ калибровки ИИМ включает закрепление ИИМ на платформе калибровочного стенда с обеспечением совпадения одной из измерительных осей ИИМ с осью вращения двигателя стенда с допустимым отклонением не более 5°, вращение платформы с закрепленным ИИМ с изменяющейся угловой скоростью вокруг 3-х взаимно перпендикулярных осей платформы, запись измеренных датчиками ИИМ проекций угловых скоростей и кажущихся ускорений; оценивание и компенсацию в сигналах акселерометров составляющих, обусловленных смещением их чувствительных элементов относительно оси вращения платформы; оценивание остаточной несбалансированности платформы с закрепленным ИИМ и введения компенсирующих ее сигналов в контур управления двигателя стенда; оценивание составляющих моделей ошибок датчиков ИИМ, включающих погрешности масштабного коэффициента и нулевые сигналы акселерометров, погрешности масштабного коэффициента, нулевые сигналы и коэффициенты g-чувствительности датчиков угловой скорости, осуществляемое на основе записанных проекций угловых скоростей и кажущихся ускорений.

Изобретение относится к космической технике и может быть использовано при тарировке датчика микроускорений на космическом аппарате (КА) в условиях штатного космического полета. Сущность изобретения заключается в том, что в способе тарировки датчика микроускорений в условиях космического полета дополнительно воздействие на жесткозакрепленный на КА датчик микроускорений выполняют путем приложения к КА калибровочного импульса посредством включения двигательной установки КА, до и после интервала приложения калибровочного импульса измеряют параметры орбиты КА, по изменению параметров орбиты КА определяют фактическое значение приложенного к КА импульса, по показаниям датчика определяют значения микроускорений на интервале приложения калибровочного импульса, производят сравнение величины импульса, определенной по показаниям датчика на интервале приложения калибровочного импульса, с фактическим значением приложенного калибровочного импульса, определенным по изменению параметров орбиты КА, и по результатам данного сравнения осуществляют тарировку датчика.

Настоящее изобретение относится к области устройств измерения пространственного положения, в частности к способу прецизионной калибровки систем измерения пространственного положения. Способ прецизионной калибровки систем измерения пространственного положения включает следующие этапы: калибровку нулевого отклонения, масштабного коэффициента и неортогонального угла между осями акселерометра в системе измерения пространственного положения по модели (S1) аппроксимации эллипсоида; компенсацию исходных данных акселерометра с использованием вычисленного параметра (S2) эллипсоида; калибровку электронного компаса по модели аппроксимации эллипсоида на основании скомпенсированных данных (S3) акселерометра; компенсацию исходных данных электронного компаса с помощью вычисленного параметра (S4) эллипсоида; вычисление пространственного положения на основании скомпенсированных данных акселерометра и скомпенсированных данных электронного компаса (S5).
Наверх