Способ получения комплексного сорбционно-стимулирующего препарата для снижения аллелотоксичности почв

Изобретение относится к сельскому хозяйству. Способ приготовления комплексного сорбционно-стимулирующего препарата для снижения аллелотоксичности почвы характеризуется тем, что водные растворы бентонита, гумата калия или натрия, автолизата пивных дрожжей (АПД) и полиэтиленгликоля (ПЭГ) смешивают в массовом соотношении 4:0,9-1,1:2,8-3,2:0,35-0,45, соответственно, при непрерывном перемешивании в течение 5-6 часов с получением суспензии, которую высушивают до получения сухого остатка с последующим его измельчением в порошок. Изобретение позволяет повысить эффективность препарата, снижающего аллелотоксичность почв посредством сорбции аллелотоксинов, что приводит к уменьшению их негативного влияния на развитие растений, и создающего при этом оптимальные условия для жизнедеятельности микроорганизмов, ускоряющих развитие растений. 3 з.п. ф-лы, 1 табл.

 

Область техники

Изобретение относится к сельскому хозяйству и может быть использовано в тепличных хозяйствах при необходимости стимуляции развития ягод, цветов, овощей, рассады, а также для укоренения саженцев декоративных культур. Заявляемый способ направлен на получение препарата, способствующего ускорению развития растений, повышению их устойчивости к фитопатогенам и вредителям и, как следствие, увеличению урожайности за счет снижения негативного влияния на семена и растения аллелотоксичности (почвоутомления) почв и грунтов.

Уровень техники

Явление почвоутомления, заключающееся в негативном влиянии почв на развитие растений, по мнению многих исследователей, обусловлено, в первую очередь, накоплением в почве аллелотоксинов из-за ее (почвы) высокой сорбционной способности.

Исследования по снижению аллелотоксичности почв описывают их промывание большим количеством воды [1] или органических растворителей [7], промораживание, автоклавирование и известкование [1].

Кроме того, известны способы прогревания почвы и внесения в них навоза для снижения аллелотоксичности [8]. Вместе с тем, количество навоза, которое необходимо вносить в почву для достижения желаемого результата - велико, а его доступность в связи с резким сокращением поголовья крупного рогатого скота в России - мала, поэтому данный способ не дает ожидаемого эффекта.

При автоклавировании почвенные образцы выдерживают при температуре 100-120°С при повышенном давлении паров воды в течение 30 минут, после чего проверяют снижение аллелотоксичности почв на основе использования тест-культуры микроорганизма (Azotobacter sp.) [1]. К числу недостатков данного метода следует отнести сложность его внедрения в практику сельского хозяйства, а также невоспроизводимость получаемых результатов.

Промывку почвенных образцов, как правило, ведут 2% серной кислотой или раствором 2% гидроксида калия с последующим насыщением почв кальцием. В результате применения такого метода действительно наблюдают снижение аллелотоксичности почв и восстановление плодородия почвы [1], однако основным недостатком данного метода является узкая область его применения, которая ограничивается лабораторными условиями и не проецируется на промышленные масштабы.

Отдельные исследования посвящены тому, что аллелотоксичность почв способны снижать микроорганизмы, которые используют аллелотоксины в качестве источников углерода для своего питания [1, 9-11]. Было показано [11], что снижение аллелотоксичности почв происходит медленнее на стерильных почвах по сравнению с нестерильными образцами. Недостатками данного метода являются сложность выявления микроорганизмов, потребляющих аллелотоксины в качестве источника углерода, а также сложность их культивации для использования в промышленных масштабах.

В качестве средств и способов снижения аллелотоксичности почвы известно также применение препарата биочар [12], который вносится в почвы и, наряду со снижением аллелотоксичности, повышает их плодородие посредством увеличения сорбционной способности почв по отношению к питательным веществам и улучшает доступность этих веществ для растений [2]. К числу недостатков известного препарата следует отнести его высокий расход, а также большую зависимость положительного эффекта от качества исходного сырья и условий производства.

Известен способ снижения аллелотоксичности почв, заключающийся в использовании севооборотов или плодосменов [3], которые уменьшают поступление аллелотоксинов в почву. Однако такой подход применим только к выращиванию полевых культур. Возможность его использования в садоводстве, овощеводстве, цветоводстве, защищенном грунте сомнительна. Применение севооборотов не позволяет также активно влиять на состояние почв, обеспечивая их восстановление (снижение аллелотоксичности) быстрыми темпами, в которых часто нуждаются различные отрасли сельского хозяйства. Кроме того, существенным недостатком данного метода является необходимость чередования высеваемых культур.

Из уровня техники известно также использование бентонитов и гуматов в качестве средств для обработки семян и подкормки растений (патент РФ № 2722727, 2724511), при этом, как правило, гумусовый препарат (гумат) активируют посредством введения в него бентонита с последующим воздействием на смесь, например, ультразвуком. Известный способ позволяет получить модифицированный гумусовый препарат, обогащенный бентонитом и имеющий подтвержденные опытным путем данные о степени влияния на стимуляцию роста растений. Однако сведения об эффективности бентонито-гуматовых смесей для снижения аллелотоксичности почвы при ее обработке такими препаратами в уровне техники отсутствуют.

Из уровня техники (патент РФ №2728697) известен препарат, содержащий бентонит, гумат натрия или калия, автолизат пивных дрожжей (АПД) и полиэтиленгликоль (ПЭГ) в определенных пропорциях, однако данный препарат предназначен для обработки семян полусухим способом и не дает ожидаемого эффекта при внесении его в почву.

Наиболее близким к заявляемому техническому решению является использование активированного угля, который обеспечивает снижение аллелотоксичности [4].

Основным недостатком данного приема является его низкая эффективность, вследствие чего, для достижения оптимального эффекта требуется значительное количество сорбента, что заметно ограничивает рентабельные сферы применения.

Техническая проблема, решаемая посредством заявляемого изобретения, заключается в необходимости преодоления недостатков, присущих аналогам и прототипу, за счет снижения расхода при повышении эффективности препарата, снижающего аллелотоксичность почв посредством сорбции аллелотоксинов, что приводит к уменьшению их негативного влияния на развитие растений, и создающего при этом оптимальные условия для жизнедеятельности микроорганизмов, ускоряющих развитие растений.

Краткое раскрытие сущности изобретения

Технический результат, достигаемый при использовании заявляемого изобретения, заключается в обеспечении возможности снижения аллелотоксичности почв и, как следствие, уменьшении поступления аллелотоксинов в растения, а также формировании благоприятных условий для функционирования микроорганизмов, стимулирующих развитие растений при использовании сорбционно-стимулирующего препарата, полученного заявляемым способом. Применение такого препарата способствует увеличению устойчивости растений к фитопатогенам и вредителям, а также ускорению прорастания семян и развитию из них растений.

Заявляемый технический результат достигается тем, что в способе получения комплексного сорбционно-стимулирующего препарата для снижения аллелотоксичности почвы, согласно техническому решению водные растворы бентонита, гумата калия или натрия, автолизата пивных дрожжей (АПД) и полиэтиленгликоля (ПЭГ) смешивают в массовом соотношении 4:0,9-1,1:2,8-3,2:0,35-0,45, соответственно, при непрерывном перемешивании в течение 5-6 часов с получением суспензии, которую высушивают до получения сухого остатка с последующим его измельчением в порошок. Суспензия бентонита, гумата, АПД и ПЭГ имеет концентрацию 50-100 г/л. В процессе приготовления полученную суспензию высушивают выдерживанием при температуре 70-800С до удаления следов видимой влаги. Измельчение сухого остатка может быть проведено, например, мельницей ударного действия до получения частиц размером 5-200 мкм.

Были подобраны интервалы концентраций, в которых полученный препарат действует наиболее эффективно. Выявлено, что при определенных соотношениях «бентонит кальция – гумат – АПД – ПЭГ» возникает бентонито-гуматовый комплекс, обладающий значительной сорбционной способностью по отношению к органическим веществам (аллелотоксинам).

Для обеспечения сбалансированного количества бентонито-гуматового комплекса в препарате эмпирическим путем определены и проверены границы интервала его концентрации. Значение нижних границ интервалов кальциевого бентонита и гумата обусловлены способностью бентонито-гуматового комплекса эффективно поглощать и закреплять аллелотоксины, поступающие в семена из почв, а верхняя граница обусловлена тем, что количество биологически активных веществ из почв, способных стимулировать развитие семян, закрепляется на сорбенте в минимальной степени.

Для АПД выбранная нижняя граница интервала концентраций связана с необходимостью дополнительного блокирования активных центров сорбента, способных закреплять стимулирующие биологически активные вещества из почв, а верхняя граница обусловлена вытеснением стимулирующими биологически активными веществами из почв аллелотоксинов и увеличением их количества, поступающего в семена, что приводит к усилению ингибирования развития семян. Вместе с тем, следует учитывать, что на этот процесс накладывается поступление из АПД в семена веществ, стимулирующих развитие семян (например, витаминов).

Введение в препарат ПЭГ способствует усилению распада агрегатов частиц монтмориллонита, входящих в состав бентонита, до индивидуальных частиц и увеличению площади сорбционной поверхности препарата. Для ПЭГ, который является поверхностно-активным веществом, выбранные границы значений обусловлены наличием оптимальных концентраций в семенах (растениях), при которых биохимические реакции проходят с максимальной скоростью с учетом того, что часть ПЭГ закрепится на бентонито-гуматовом комплексе при приготовлении заявляемого препарата.

Осуществление изобретения

Заявляемый способ обеспечивает приготовление комплексного сорбционно-стимулирующего препарата, предназначенного не для обработки семян, а для внесения в почву. При этом к гумусовым веществам добавляют кальциевый бентонит, АПД и ПЭГ в выбранных пропорциях. При взаимодействии гумусовых веществ с бентонитом образуются глино-гумусовые комплексы, которые обладают значительно большей сорбционной способностью (по сравнению с отдельными компонентами) по отношению к органическим веществам [5], и при внесении в почву закрепляют аллелотоксины, не позволяя им поступать в растения и ингибировать их развитие. Следует отметить, что простое добавление растворов перечисленных выше компонентов не дает ожидаемого эффекта, а обеспечивает только получение препарата, в котором каждый активный компонент действует в соответствии с присущими ему физико-химическими свойствами без дополнительного синергетического эффекта. Введение в препарат ПЭГ способствует усилению распада агрегатов частиц монтмориллонита, входящих в состав бентонита, до индивидуальных частиц и увеличению площади сорбционной поверхности бентонито-гуматовой смеси. Добавление автолизата пивных дрожжей к полученному сорбционному комплексу позволяет улучшить условия функционирования микроорганизмов, стимулирующих развитие растений.

Дальнейшее описание сущности изобретения выполнено с использованием примеров конкретного выполнения.

Опыты проводили на семенах тестовой культуры – яровой пшенице сорт «Лиза» на дерново-подзолистой почве из окрестностей поймы реки Яхрома влажностью 18,1%.

Для приготовления сорбционно-стимулирующего препарата использовали жидкий концентрат гумата калия (натрия), произведенный ООО НВЦ «Агротехнологии» из бурого угля и кальциевый бентонит по ОСТ 18-49-71 (http://novagrohim.ru/index.php/partners/agriculture/27-agriculture/85-humates), автолизат пивных дрожжей (АПД), произведенный ООО «Биотех плюс» и полиэтиленгликоль (ПЭГ) фирмы «Merck» молекулярной массой 400. Указанные препараты хорошо зарекомендовали себя в качестве средств для обработки семян и подкормки растений, однако сведения об их эффективности в составе бентонито-гуматовых смесей и их производных при обработке почвы в уровне техники отсутствуют.

В общем случае, предварительно готовят водные растворы бентонита (концентрацией от 30 до 60 г/л, предпочтительно от 35 до 45 г/л, предпочтительно 40 г/л), гумата (концентрацией от 5 до 40 г/л, предпочтительно 10 г/л), и АПД (концентрацией от 8 до 15 г/л, предпочтительно 12 г/л).

Процедура приготовления препарата состояла в получении суспензии бентонита, гумата, АПД и ПЭГ концентрацией 50-100 г/л (для соотношения 4 части бентонита на 1 часть гумата, 3 части АПД и 0,4 части ПЭГ) и ее механическом перемешивании в течение 5-6 часов. После этого суспензию высушивали при 70-80°С в течение 6 часов до удаления видимых следов влаги. Получившуюся высушенную смесь измельчали мельницей ударного действия до состояния порошка c размером частиц 5-200 мкм.

Для внесения в почву полученный препарат смешивали с конечным объемом почвы, взятой из зоны посадки растений. Оптимальным является внесение 0,25 % препарата от массы почвы. В лабораторных условиях препарат вносили в почву напрямую и посредством перемешивания обеспечивали его равномерное распределение в объеме почвы. При проведении крупномасштабных экспериментов (например, в теплицах) и работе с малыми дозами препарата возможно его предварительное смешивание с малым объемом почвы, и внесением образовавшейся смеси в основной объем почвы с последующим ее перемешиванием культиватором или фрезой.

Для достижения равновесия почву с внесенным препаратом выдерживали в течение 3 суток, после чего в нее высевали семена. Следует отметить, что в полевых условиях данный факт не окажет значимого влияния на эффективность действия препарата, так как сроки развития растений, на которых предполагается использование данного препарата, исчисляются 2-3 месяцами.

Оптимальные соотношения компонентов сорбционно-стимулирующего препарата определены экспериментальным путем. Варианты соотношений компонентов и доз внесения приведены в таблице 1.

Для сравнения (в соответствии с прототипом) был подготовлен контрольный образец, в котором семена тестовой культуры высевали в почву, предварительно обработанную активированным углем из расчета 0,25 % угля от массы почвы.

Все результаты проведенных экспериментов приведены в таблице 1.

Для оценки эффективности реализации заявляемого способа использовали методику, основанную на существовании линейной зависимости между длиной проростков больших массивов семян и их насыпным объемом в воде [6]. Известный способ оценки стимулирующей активности препаратов-стимуляторов позволяет обрабатывать большие партии семян за короткое время, что делает его применимым в промышленных масштабах. Суммарная длина проростков семян определяет их насыпной объем. Чем больше длина проростков, тем больше насыпной объем проросших семян. Таким образом, изменение насыпного объема проросших семян характеризует общую длину их проростков и дает возможность сравнивать проросшие семена, посаженные в почву, обработанную заявляемым способом, и семена, посаженные в почву, обработанную в соответствии с прототипом, относительно необработанной почвы.

Для оценки длины проростков для каждой опытной партии семян выполняли следующие действия.

Предварительно готовили следующие образцы почвы:

необработанная почва (1 образец, по отношению к которому приводится % изменение аллелотоксичности, в таблице не представлен ввиду отсутствия внесения сорбционно-стимулирующих компонентов);

почва, обработанная активированным углем следующим образом:

уголь измельчали на мельнице ударного действия до частиц размером 5-200 мкм;

получившийся порошок отбирали в количестве, обеспечивающем соотношение 0,25 часть препарата на 100 частей почвы;

для равномерного внесения отобранной навески порошка ее делили на 4 части, каждую из которых вносили на поверхность почвы, тщательно перемешивали и добавляли следующую порцию навески.

почва, обработанная препаратом, полученным заявляемым способом, где сорбционно-стимулирующий препарат приготовлен из бентонита, гумата, АПД и ПЭГ (в соотношениях 4:0,67-1,5:1,2-3,2:0,3-0,5), а внесение препарата в почву выполнено в соответствии с пунктами 2.1.-2.3.

почва, обработанная смесью бентонита, гумата, АПД и ПЭГ с отклонениями от оптимальных условий приготовления препарата по заявляемого способу (таблица 1).

При проведении экспериментов по оценке влияния действия препаратов на снижение аллелотоксичности почв на дно чашки диаметром 95 мм помещали 30 г почвы (1, 2, 3 и 4 образцы), затем ровным слоем размещали 7,5 г семян из одной партии, а сверху - 30 г почвы (1, 2, 3 и 4 образцы, соответственно). После этого в чашку равномерно добавляли из мерной пипетки воду. Использовали шестикратную повторность с последующей статистической обработкой результатов.

Проросшие в почве семена отмывали от почвы и помещали порциями в мерный цилиндр на 100 мл с водой, размещенный на вибростоле, колеблющемся с частотой 50 Гц. После помещения каждой порции проросших семян в цилиндр, которые создавали ажурную пористую структуру, на них на 15-20 секунд помещали небольшой грузик массой 8 г в виде резиновой пробки, что приводило к уплотнению структуры. После помещения всех проросших семян в цилиндр на них ставили грузик и проводили дополнительное уплотнение структуры легкими постукиваниями (30-40) цилиндра с семенами о стол. Эти операции позволяли создать достаточно однородную структуру, а нижняя граница груза позволяла определять насыпной объем с точностью до 0,5 мл.

Перед проведением опытов по оценке снижения препаратами аллелотоксичности почв определяли оптимальную исходную влажность почвы, при которой и проводили испытания. Для этого по описанной выше методике определяли количество добавляемой к почве воды, которое обеспечит максимальную суммарную длину проростков семян, посаженных в необработанную почву за 2 суток. Оптимальная величина навески добавляемой к почве воды составила 9 г.

Результаты по снижению препаратами аллелотоксичности почв выражали в процентах изменения длины проростков семян в обработанной (прототипом или заявляемым способом) почве по сравнению с семенами, прораставшими в необработанной почве.

Из полученных данных видно, что оптимальными параметрами внесения препарата в почву являются соотношения кальциевого бентонита, гумата, АПД и ПЭГ равные 4:0,9-1,1:2,8-3,2:0,35-0,45.

Необходимость перемешивания состава свыше 5 часов обусловлена процессами распада агрегатов частиц монтмориллонита, входящего в состав бентонита, до индивидуальных частиц и повышения сорбционной поверхности препарата.

Таблица 1

№ образца в соответствии с описанием Препарат (П) Состав препарата Время образования препарата при перемешивании суспензии, часы Температура удаления воды из суспензии препарата, °С Снижение аллелотоксичности почв, %
Доля бентонита в составе препарата, частей Доля гумата в составе препарата, частей Доля АПД в составе препарата, частей Доля ПЭГ в составе препарата, частей Расход препарата, % от веса почвы
2 образец Активированный уголь - - - - 0,25 - 70-80 +3
3 образец П-1 4 0,67 - - 0,25 5-6 70-80 +4
П-2 4 0,9 - - 0,25 5-6 70-80 +8
П-3 4 1 - - 0,25 5-6 70-80 +8
П-4 4 1,1 - - 0,25 5-6 70-80 +8
П-5 4 1,5 - - 0,25 5-6 70-80 +5
П-6 4 1 1,2 - 0,25 5-6 70-80 +13
П-7 4 1 1,8 - 0,25 5-6 70-80 +19
П-8 4 1 2,8 - 0,25 5-6 70-80 +30
П-9 4 1 3,0 - 0,25 5-6 70-80 +30
П-10 4 1 3,2 - 0,25 5-6 70-80 +30
П-11 4 1 3,6 - 0,25 5-6 70-80 +23
П-12 4 1 3,0 0,30 0,25 5-6 70-80 +40
П-13 4 1 3,0 0,35 0,25 5-6 70-80 +45
П-14 4 1 3,0 0,40 0,25 5-6 70-80 +45
П-15 4 1 3,0 0,45 0,25 5-6 70-80 +45
П-16 4 1 3,0 0,50 0,25 5-6 70-80 +40
П-14 4 1 3,0 0,40 0,25 1-2 70-80 +17
П-14 4 1 3,0 0,40 0,25 3-4 70-80 +23
П-14 4 1 3,0 0,40 0,25 7-8 70-80 +45
П-14 4 1 3,0 0,40 0,25 24-28 70-80 +45
П-14 4 1 3,0 0,40 0,25 5-6 100-110 +30
П-14 4 1 3,0 0,40 0,25 5-6 150-160 +25
4 образец 4 1 3 0,4 0,25 0.2 +8

П-1-16 – номера компонентных составов препаратов, полученных заявляемым способом.

Таким образом, предлагаемое изобретение при его использовании в качестве средства обработки почвы позволяет значительно уменьшить ее аллелотоксичность и, за счет этого, повысить скорость развития в почве растений с 2 % (прототип) до 45 % (заявляемый способ).

Источники информации

1. Красильников Н.А. Микроорганизмы почвы и высшие растения. М.: Изд. АН СССР. 1958. 464 с.

2. Igalavithana A. D., Ok Y. S., Usman A. R., Al‐Wabel M. I., Oleszczuk P., Lee S. S. The effects of biochar amendment on soil fertility //Agricultural and environmental applications of biochar: Advances and barriers. 2016. V. 63. P. 123-144.

3. Лобков В.Т. Использование почвенно-биологического фактора в земледелии: монография. Орел: Изд-во ФГБОУ ВО Орловский ГАУ. 2017. 166 с.

4. Игнатьев Н. Н., Селицкая О. В., Бирюков А. О. Особенности стимулирующей и ингибирующей активности тепличного грунта при применении регуляторов роста растений // Известия Тимирязевской сельскохозяйственной академии. 2005. №.4. С. 3-10.

5. Куликова Н.А. связывающая способность и детоксицирующие свойства гумусовых кислот по отношению к атразину. Дисс. Канд. Биол. Наук. М.:МГУ. 1999. 171 с.

6. Федотов Г. Н. Шоба С.А., Федотова М.Ф., Горепекин И.В. Влияние аллелотоксичности почв на прорастание семян зерновых культур // Почвоведение. 2019. № 4. С. 489-496.

7. McCalla T.M., Haskins F.A. Phytotoxic Substances from Soil Microorganisms and Crop Residues // Bacteriological Reviews, 1964, v.28, no.2, pp. 181–207.

8. Гродзинский А.М., Богдан Г.П., Головко Э.А., Дзюбенко Н.Н., Мороз П.А., Прутенская Н.И. Аллелопатическое почвоутомление. Киев: Наукова думка, 1979. 248 с.

9. Reigosa M.J., Pedrol N., Gonzalez L. Allelopathy. A Physiological Process with Ecological Implications. Netherlands: Springer, 2006, 637 p.

10. Cheng F., Cheng Z. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy // Frontiers in Plant Science, 2015, v. 6, article 1020.

11. Ghulam J., Shaukat M., Arshad N.C., Imran H., Muhammad A. Allelochemicals: sources, toxicity and microbial transformation in soil — a review // Annals of Microbiology, 2008, 58 (3), pp. 351–357.

12. https://propozitsiya.com/gidrotermalnaya-karbonizaciya-biomassy-put-k-resheniyu-ekologicheskih-problem

1. Способ приготовления комплексного сорбционно-стимулирующего препарата для снижения аллелотоксичности почвы, отличающийся тем, что водные растворы бентонита, гумата калия или натрия, автолизата пивных дрожжей (АПД) и полиэтиленгликоля (ПЭГ) смешивают в массовом соотношении 4:0,9-1,1:2,8-3,2:0,35-0,45, соответственно, при непрерывном перемешивании в течение 5-6 часов с получением суспензии, которую высушивают до получения сухого остатка с последующим его измельчением в порошок.

2. Способ по п.1, отличающийся тем, что суспензия бентонита, гумата, АПД и ПЭГ имеет концентрацию 50-100 г/л.

3. Способ по п.1, отличающийся тем, что суспензию высушивают выдерживанием при температуре 70-80°С до удаления следов видимой влаги.

4. Способ по п.1, отличающийся тем, что измельчение сухого остатка проводят мельницей ударного действия до получения частиц размером 5-200 мкм.



 

Похожие патенты:
Изобретения относятся к сельскому хозяйству. Способ получения гранулята удобрения характеризуется тем, что получают суспензию по меньшей мере из по меньшей мере одного содержащего фосфор вторичного сырья и по меньшей мере одной минеральной кислоты, в суспензии труднорастворимые фосфаты из по меньшей мере одного содержащего фосфор вторичного сырья по меньшей мере частично растворяются и/или по меньшей мере частично преобразуются в водорастворимую и/или растворимую в нейтральном цитрате аммония фосфатную фазу и данная суспензия затем поступает на гранулирование, при этом образуется гранулят удобрения и при этом содержащийся P2O5 в грануляте удобрения более чем на 75% растворим в нейтральном цитрате аммония.
Изобретение относится к сельскому хозяйству. Органическая комплексная подкормка растений с функцией почвоулучшителя включает обожженную диатомитовую крошку с размером частиц 1,0-5,0 мм, гранулированную древесную золу с размером гранул от 1,0 до 3,0 мм, гранулированную золу лузги подсолнечника с размером гранул от 1,0 до 3,0 мм при следующем соотношении компонентов по массе, %: диатомит 65, зола древесная гранулированная 25, зола лузги подсолнечника гранулированная 10.

Изобретение относится к сельскому хозяйству, в частности к минеральным удобрениям для внекорневой обработки растений, содержащим фосфорные и азотные компоненты, а также микроэлементы. Внекорневое удобрение для выращивания продовольственных сельскохозяйственных культур содержит азотсодержащий материал, ортофосфорную кислоту, микроэлементы, в качестве которых используют соединения магния и цинка, вспомогательные вещества, а также удобрение дополнительно содержит этоксилированный алифатический (жирный) амин, при следующем содержании ингредиентов, мас.%: азотсодержащий материал - 0,1-40,0, ортофосфорная кислота - 1,0-60,0, соединение магния - 0,1-8,0, соединение цинка - 0,1-10,0, этоксилированный алифатический (жирный) амин - 0,01-6,0, вспомогательные вещества - 0,01-6,0, вода - остальное до 100%.
Изобретение относится к удобрениям для стимуляции и роста растений. Удобрение включает компонент, усиливающий рост, содержащий сополимер фульвокислоты и полиметаллических гуматов (CPFAPH) в количестве от 80% до 90% по массе в расчете на общую массу удобрения, элементы, выбранные из группы, включающей в себя: соединения азота, соединения фосфора и соединения серы в количестве от 3% до 7% по массе в расчете на общую массу удобрения, а также одно или большее количество вторичных нутриентов, выбранных из группы, включающей в себя: кальций, магний и серу, микронутриенты, выбранные из группы, включающей в себя: цинк, марганец и медь, а также биологически активные гетеромолекулярные комплексы металлических микроэлементов, содержащие металлический микроэлемент, выбранный из группы, включающей в себя: молибден, ванадий, кобальт и никель в количестве от 3% до 10% по массе в расчете на общую массу удобрения.

Изобретение относится к сельскому хозяйству. Препарат для некорневой подкормки сельскохозяйственных культур содержит микроэлемент серу в виде тиосульфата аммония и вспомогательные вещества, причем средство дополнительно содержит серу в виде сульфата аммония и в виде элементарной серы.

Изобретение относится к сельскому хозяйству. Способ предпосевной обработки семян клевера и люцерны характеризуется тем, что молибденошеелитовые отходы растворяют в кремнийсодержащей минеральной воде в соотношении 1:100, с последующим замачиванием семян в этом растворе в течение 2-3 часов.

Изобретение относится к области сельского хозяйства. Способ включает равномерное распределение по поверхности почвы табачной пыли, равномерное нанесение на обработанную площадь компонента, ускоряющего разложение табачной пыли, и заделывание в почву с помощью дисков на глубину 5-10 см за месяц до предполагаемого посева или посадки сельскохозяйственных культур.

Изобретение относится к сельскому хозяйству. Способ повышения содержания эфирного масла и урожайности семян фенхеля обыкновенного включает полив 0,001% раствором фуллеренсодержащей сажи, который осуществляют в четыре срока с интервалом 10-12 дней, по фазам вегетации, начиная с фазы всходов и заканчивая в фазу цветения.
Изобретение относится к области сельского хозяйства, а именно к применяемым в растениеводстве удобрениям на основе полимерной матрицы, содержащим комплекс элементов питания, необходимых для нормального роста и развития растений. Удобрение на основе полимерной матрицы содержит фрагменты карбоновых кислот, связанные по меньшей мере с одним макроэлементом, а также соли, содержащие макроэлементы и микроэлементы, при этом оно дополнительно содержит поли-N-виниллактам, причем по меньшей мере одна соль, содержащая макроэлементы, представляет собой сульфат аммония.
Изобретение относится к сельскому хозяйству. Способ повышения всхожести семян пшеницы включает обработку семян кремнийсодержащим стимулятором развития растений, причем предпосевную обработку семян проводят с использованием замачивания семян пшеницы в рабочих растворах гидротермального нанокремнезема в концентрациях 0,5-0,0001% в течение 120 минут.
Изобретение относится к сельскому хозяйству. Способ получения сорбционно-стимулирующего препарата для снижения аллелотоксичности почвы характеризуется тем, что водные растворы бентонита, гумата натрия или калия и автолизата пивных дрожжей (АПД) смешивают в массовом соотношении 4:0,9-1,1:2,8-3,2 соответственно при непрерывном перемешивании в течение 5-6 часов с получением суспензии, которую высушивают до получения сухого остатка с последующим его измельчением в порошок.
Наверх